IB Maths. Turning points. First derivative test
Upcoming SlideShare
Loading in...5
×
 

IB Maths. Turning points. First derivative test

on

  • 846 views

 

Statistics

Views

Total Views
846
Views on SlideShare
804
Embed Views
42

Actions

Likes
0
Downloads
5
Comments
0

2 Embeds 42

http://evmaths.jimdo.com 40
http://www16.jimdo.com 2

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

IB Maths. Turning points. First derivative test IB Maths. Turning points. First derivative test Document Transcript

  • By the end of the lesson you will be able to: • Use the derivative of a function to find      maximum and minimum points. • Use the second derivative to test the nature of a  stationary point and/or point of inflexion.
  • increasing increasing decreasing stationary stationary http://www.math.umn.edu/%7Egarrett/qy/TraceTangent.html
  • •   •   •   •   A B P Q At  A   ⇒  f '(x) > 0 ⇒ f is increasing           At  P   ⇒  f '(x) < 0 ⇒ f is decreasing           At  B and Q   ⇒  f '(x) = 0 ⇒ B and Q are  stationary points.          f '  = 0 f '  < 0 f '  > 0 f '  > 0 f ' = 0
  • If the derivative is positive then the function is increasing. If the derivative is negative then the function is decreasing.  
  • f '( a ) = 0   ⇒ (a, f(a))   is a stationary point •   •   •   •   A B P Q A point on a curve at which the gradient is zero is called a stationary point. At a stationary point, the tangent to the curve is horizontal.
  • •   •   •   Local Maximum point  f '   > 0  f '   = 0  f '   < 0 P To the left of P At point P To the right of P  f '   > 0  f '   < 0 f '   = 0 P  is a local maximum point
  • Local Minimum point  f '   > 0  f '   = 0  f '   < 0 To the left of P At point P To the right of P  f '   > 0 f '   < 0  f '   = 0 P  is a local minimum point P •   •  •   Maximum and minimum points are also called  turning points.
  • Point of inflexion •   •   •   f ' =0 f ' > 0 f ' > 0P •   •   •   f ' = 0 f ' < 0 f ' < 0 P f ' ( a) = 0 but  f ' has the same sign to the right  and left of a,  a is called a horizontal point of  inflexion.(because the tangent is horizontal at P) Point of inflection.ggb
  • •   non­horizontal point of inflexion ( tangent is not  horizontal) f ' < 0 f ' < 0 tangent •  
  • Find the coordinates of the stationary points on the  curve y= x3 +3x2 +1 and determine their nature.
  • y= x3 +3x2 +1 
  • Find the coordinates of the stationary points on the  curve y= x4  ­ 4 x3   and determine their nature.
  • y= x4  ­ 4 x3  
  • Attachments Point of inflection.ggb