Your SlideShare is downloading. ×
0
DemostracionteoremadepitáGoras
DemostracionteoremadepitáGoras
DemostracionteoremadepitáGoras
DemostracionteoremadepitáGoras
DemostracionteoremadepitáGoras
DemostracionteoremadepitáGoras
DemostracionteoremadepitáGoras
DemostracionteoremadepitáGoras
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

DemostracionteoremadepitáGoras

385

Published on

Published in: Education, Travel
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
385
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
11
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. 1. DEMOSTRACIÓN DE PITÁGORAS (S. VI a.C.) Pitágoras había viajado a la antigua Babilonia  y a Egipto donde posiblemente conoció la propiedad que verifican los lados de un triángulo rectángulo. En una tablilla de arcilla procedente de Babilonia conocida por PLIMPTON 322 y fechada en el 1900 a.C. aparecen, colocadas en columnas, ternas de números que verifican el teorema de Pitágoras son las llamadas "TERNAS PITAGÓRICAS".
  • 2. Un cuadrado de lado  b+c   se divide en dos cuadrados de lados b y c y en cuatro triángulos rectángulos de catetos b y c e hipotenusa a. Por tanto igualando las dos áreas obtenemos:
  • 3. 2. ROMPECABEZAS DE PERIGAL A partir de un triángulo rectángulo de catetos b y c e hipotenusa a, se hace una partición del cuadrado de lado b de la siguiente forma: por el centro del cuadrado se trazan dos segmentos, uno paralelo a la hipotenusa y el otro perpendicular a ella. Obteniéndose así cuatro piezas que junto al cuadrado de lado c  encajan perfectamente en el cuadrado de lado a.
  • 4. 3. DEMOSTRACIÓN DE BHÂSKARA (1114-1185) El matemático hindú Bhâskara reconstruyó la demostración del teorema de Pitágoras que aparece en un diagrama de la Aritmética Clásica China, en el que se representa la más antigua demostración del teorema, admirada por su elegancia. Bhâskara expuso esta demostración en su libro Vijaganita sin añadir más comentarios que el de “observe”. A partir de un triángulo rectángulo de catetos b y c e hipotenusa a se ha hecho una partición en cinco partes: cuatro de estas partes son triángulos rectángulos iguales al de partida y la otra es un cuadrado de lado (b-c).  
  • 5. Por tanto igualando las dos expresiones se obtiene: En el cuadrado superior tenemos: En la figura inferior tenemos:
  • 6. 4. ROMPECABEZAS DE OZANAM Las cinco piezas que componen este rompecabezas se obtienen de cortar los dos cuadrados construidos sobre los catetos. Se colocan los cuadrados de lados b y c . Se consideran dos cuadrados equivalentes al de lado c situados inferiormente como muestra la figura anexa. Se trazan dos segmentos de medida a   y perpendiculares por P.
  • 7. Estos segmentos al cortar a los lados de los cuadrados determinan las cinco piezas que encajan para formar el cuadrado construido sobre la hipotenusa .  
  • 8. 5. ROMPECABEZAS CON OCHO PIEZAS En cada uno de los cuadrados construidos sobre los catetos se traza una diagonal y por los otros dos vértices del cuadrado se trazan segmentos paralelos a la hipotenusa, determinándose así cuatro partes en cada uno de los cuadrados, que agrupadas convenientemente forman el cuadrado sobre la hipotenusa.

×