Business Semantic Web

2,691 views

Published on

A lecture I gave given in a seminar at the MBA school of the Hebrew University, Israel

Published in: Economy & Finance, Education
0 Comments
6 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,691
On SlideShare
0
From Embeds
0
Number of Embeds
196
Actions
Shares
0
Downloads
137
Comments
0
Likes
6
Embeds 0
No embeds

No notes for slide
  • Business Semantic Web

    1. 1. Is The Semantic Web Ready for Business? Eran Toch May 2005 Information Systems Engineering Area Faculty of Industrial Engineering and Management Technion – Israel Institute of Technology
    2. 2. Agenda <ul><li>Why do we need it? </li></ul><ul><li>What is it? </li></ul><ul><li>Challenges and Opportunities </li></ul><ul><li>Applications </li></ul><ul><ul><li>Current Commercial Activities </li></ul></ul><ul><ul><li>Semantic Web Services </li></ul></ul><ul><ul><li>Social Software </li></ul></ul><ul><li>Summary </li></ul>
    3. 3. The WWW Technically <ul><li>A set of protocols and languages driven by a strong standards approach: </li></ul><ul><ul><li>URI </li></ul></ul><ul><ul><li>HTTP </li></ul></ul><ul><ul><li>HTML </li></ul></ul><ul><ul><li>XML </li></ul></ul><ul><li>Principles: </li></ul><ul><ul><li>Implementation and platform independence crucial </li></ul></ul><ul><ul><li>World Wide Web Consortium the most prominent </li></ul></ul>
    4. 4. Problems with the WWW <ul><li>65,900,000 results were returned </li></ul><ul><li>Google - Market Cap:72.45 B $ </li></ul>
    5. 5. More Problems: Comparison Shopping <ul><li>Shopping.com - Market Cap : 502.70 M $ </li></ul>
    6. 6. Building Shopping Comparison Engine
    7. 7. Trust Spam Phishing E-Commerce Who can you trust to send you emails? Is this site is the one it claims to be? How can I know for sure if a transaction really occurred?
    8. 8. Problem Domains <ul><li>The General Web </li></ul><ul><ul><li>Data-mining activities (e.g. search, comparison, notification) </li></ul></ul><ul><ul><li>Transactions (e-comm, e-gov) </li></ul></ul><ul><li>Business Knowledge bases </li></ul><ul><ul><li>Intranets, data warehouses </li></ul></ul><ul><li>Collaborative Computing </li></ul><ul><ul><li>Transaction between systems </li></ul></ul><ul><li>Knowledge-based businesses </li></ul><ul><ul><li>biology, law etc </li></ul></ul>
    9. 9. Agenda <ul><li>Why do we need it? </li></ul><ul><li>What is it? </li></ul><ul><li>Challenges and Opportunities </li></ul><ul><li>Applications </li></ul><ul><ul><li>Current Commercial Activities </li></ul></ul><ul><ul><li>Business Models </li></ul></ul><ul><ul><li>Social Software </li></ul></ul><ul><ul><li>Semantic Web Services </li></ul></ul><ul><li>Summary </li></ul>
    10. 10. The Semantic Web [SciAme] “ The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation.” Sir Tim Berners-Lee
    11. 11. Making the Web Machine-Friendly <ul><li>Making knowledge self explainable for machines </li></ul><ul><li>Creating an environment for knowledge inference </li></ul><ul><li>Establishing trust </li></ul>
    12. 12. Making it Meaningful for Machines WWW Resource Humans Machines <RDF> http://www.amazon.com/4344533
    13. 13. Knowledge For Machines P roduct $14.99 Soundrack Audio CD Universal 24 hours Kissing Jessica Stein hasPrice hasTitle availability itsLabel itsType is a http://www.amazon.com/4344533 RDF – Resource Description Framework [REF]
    14. 14. Ontologies <ul><li>An ontology is standard for some knowledge domain, e.g. </li></ul><ul><ul><li>Healthcare </li></ul></ul><ul><ul><li>Bioinformatics </li></ul></ul><ul><ul><li>CRM </li></ul></ul><ul><ul><li>Web services </li></ul></ul><ul><li>It provides a formal and agreed upon controlled vocabulary, which is used to define concepts </li></ul><ul><li>Information can be tagged according to these concepts </li></ul>Healthcare Disease Medicine Product Price Doctor Patient Is a treats takes Is treated by has prescribe
    15. 15. Web Ontology Language (OWL) <ul><li>OWL is an RDF-based language for Ontology modeling. </li></ul><ul><li>Enable class and instance definition, using relations and properties such as: </li></ul><ul><ul><li>Properties (price is a property of product) </li></ul></ul><ul><ul><li>subClassOf (Employee is subClassOf Person) </li></ul></ul><ul><ul><li>intersectionOf (music CD is intersectionOf playable thing and consumer product) </li></ul></ul><ul><ul><li>Cardinality constrains (product has 1 (and only 1) price properties) </li></ul></ul><ul><li>OWL ontologies can be developed independently, having concepts reference each other </li></ul>
    16. 16. Ontologies E-Commerce Healthcare Disease Medicine Product Price Customer Doctor Supplier RFID Patient Is a Is a treats takes Is treated by supplies has buys has
    17. 17. Generalizing Knowledge Networks P roduct Price Medicine Side Effect OTC Medicine Prescription Is a Is a Is a Price Comparison Robot Hospital Drug Monitor Robot
    18. 18. The Network Effect E-Commerce Site E-Commerce Site E-Commerce Site Library Personal Computer Song Path Product Price Item Catalog ID Is a Is a
    19. 19. Agenda <ul><li>Why do we need it? </li></ul><ul><li>What is it? </li></ul><ul><li>Challenges and Opportunities </li></ul><ul><li>Applications </li></ul><ul><ul><li>Current Commercial Activities </li></ul></ul><ul><ul><li>Semantic Web Services </li></ul></ul><ul><ul><li>Social Software </li></ul></ul><ul><li>Summary </li></ul>
    20. 20. Business on the Semantic Web Business Processes BP Reasoning Storing metadata (databases, messaging) Creating Metadata (editors, translators, automatic extraction, services)
    21. 21. Bottlenecks <ul><li>Sufficient metadata is the main bottleneck of the Semantic Web </li></ul><ul><li>There is a loop: </li></ul><ul><ul><li>Without metadata, no applications will be built </li></ul></ul><ul><ul><li>Without applications, no one will create metadata </li></ul></ul>Academic The Metadata gap Commercial
    22. 22. Metadata Chasm <ul><li>Ontology creation requires companies and organization to standardize their concepts, much harder than to standardize communication protocols </li></ul><ul><li>Ontology creation requires large investments. Because ontologies reduce the uncertainty of information, their benefits will be revealed mainly in the long run. </li></ul><ul><li>Thus, they do not provide immediate return on the investment, not immediately [KIM]. </li></ul><ul><li>However, in some markets, ontologies may have faster cost-to-benefit cycle. </li></ul>
    23. 23. Markets <ul><li>Niece fields on the general WWW </li></ul><ul><ul><li>Content syndication </li></ul></ul><ul><ul><li>Communications and social networks </li></ul></ul><ul><li>Business Processes </li></ul><ul><ul><li>Handling interoperability </li></ul></ul><ul><ul><li>Extending Service Oriented Architecture (SOA) </li></ul></ul><ul><li>Knowledge-rich markets </li></ul><ul><ul><li>Bioinformatics </li></ul></ul><ul><ul><li>Software Engineering </li></ul></ul><ul><ul><li>Law </li></ul></ul><ul><li>Business Intelligence </li></ul><ul><ul><li>Business intelligence using semantic annotations </li></ul></ul>
    24. 24. Agenda <ul><li>Why do we need it? </li></ul><ul><li>What is it? </li></ul><ul><li>Challenges and Opportunities </li></ul><ul><li>Applications </li></ul><ul><ul><li>Current Commercial Activities </li></ul></ul><ul><ul><li>Business Models </li></ul></ul><ul><ul><li>Social Software </li></ul></ul><ul><ul><li>Semantic Web Services </li></ul></ul><ul><li>Summary </li></ul>
    25. 25. Semantic Web Applications <ul><li>Adobe - uses RDF as a basis for documenting meta-data, in PDF and other tools </li></ul><ul><li>Boeing – uses RDF and OWL in several internal projects </li></ul><ul><li>AGFA – uses RDF to categorize medical photos </li></ul><ul><li>NOKIA – lots of Semantic Web activities. Including RDF knowledge store </li></ul><ul><li>IBM – Strong research activities </li></ul>
    26. 26. Aduna <ul><li>Netherlands-based startup </li></ul><ul><li>Main products: </li></ul><ul><ul><li>Semantic desktop search </li></ul></ul><ul><ul><li>Semantic enterprise search </li></ul></ul><ul><ul><li>Semantic Metadata server </li></ul></ul>[ADUNA]
    27. 27. Celcorp <ul><li>Based in Santa-Monica </li></ul><ul><li>Claim to have 3 customers from Fortune 500 </li></ul><ul><li>Main business: Semantic EAI (Enterprise Application Integration) </li></ul><ul><li>Main product: Celware Intelligent Access </li></ul><ul><ul><li>Records user actions in legacy systems </li></ul></ul><ul><ul><li>Builds an editable knowledge based of reusable task models </li></ul></ul><ul><ul><li>Generates executable processes, based on the tasks </li></ul></ul><ul><ul><li>Business processes are automatically planned and executed, using the knowledge base </li></ul></ul>[CELCORP]
    28. 28. Brandsoft <ul><li>Based in Los Gatos, CA </li></ul><ul><li>Main product: Brandsoft Resource Manager </li></ul><ul><ul><li>Content management and application development suite, based on RDF </li></ul></ul>
    29. 29. Cerebra <ul><li>Based in Carlsbad, CA. AKA Network Inference. </li></ul><ul><li>Claim to have more than 25 customers, some of them from Fortune 500 </li></ul><ul><li>Cerebra Server – </li></ul><ul><ul><li>Provides ontology management and storage </li></ul></ul><ul><ul><li>Semantic integration of data from RDBMS etc </li></ul></ul><ul><ul><li>Querying through XQuery </li></ul></ul><ul><li>Cerebra Construct – </li></ul><ul><ul><li>Ontology modeling using MS-Visio </li></ul></ul><ul><li>Professional Services </li></ul>[CEREBRA]
    30. 30. Tucana <ul><li>Based in Reston, VA. </li></ul><ul><li>Their main product, Tucana Knowledge Discovery Suite, is a semantic knowledge base, with some business intelligence abilities. It is built upon: </li></ul><ul><ul><li>Scaleable RDF triple store </li></ul></ul><ul><ul><li>Reasoning engine </li></ul></ul><ul><ul><li>Metadata extraction from RDBMS, files, emails, ERP etc. </li></ul></ul>[Tucana]
    31. 31. Semantic Web Services 1. The customer’s agent automatically locates and invokes the brokerage firm’s Web service 2. Domain and Service models can be used to automatically or manually compose services
    32. 32. Semantic Web Services, cont’d <ul><li>OWL-S is an upper ontology for a semantic description of Web services. </li></ul><ul><ul><li>E.g. an input message can be typed as the concept “Product”, and not just a String </li></ul></ul><ul><li>Describes a Web service by: </li></ul><ul><ul><li>What it does (inputs, outputs, preconditions…) </li></ul></ul><ul><ul><li>How it works (a process model) </li></ul></ul><ul><ul><li>Grounding to an invocation method (WSDL) </li></ul></ul>[OWL-S]
    33. 33. Semantic SOA (Service Oriented Computing) Order product Order Management Employee Signoff Report employee daily activities check order status Update inventory Get customer History Check user security profile Get incoming messages Customer Care
    34. 34. FOAF <ul><li>Stands for &quot;Friend Of A Friend“* </li></ul><ul><li>Provides a template for metadata about people, and their interests, relationships and activities </li></ul><ul><li>An open community-lead and open-source initiative </li></ul>[FOAF]
    35. 35. FOAF Example <Person> Name Website Picture Email <Person> <Person> knows knows
    36. 36. FOAF-Based Applications <ul><li>FOAF Explorer: </li></ul><ul><li>More </li></ul><ul><ul><li>Job search </li></ul></ul><ul><ul><li>Dating </li></ul></ul><ul><ul><li>Identity </li></ul></ul><ul><ul><li>Security </li></ul></ul>[http://xml.mfd-consult.dk/foaf/explorer/]
    37. 37. FOAF-Applications – cont’d <ul><li>FOAFNaut - <http://www.foafnaut.org/> </li></ul>
    38. 38. Email Trust with FOAF [TRUST]
    39. 39. Inferring Trust me trust trust trust Don’t trust trust trust trust email email Email is blocked Email is accepted
    40. 40. Agenda <ul><li>Why do we need it? </li></ul><ul><li>What is it? </li></ul><ul><li>Challenges and Opportunities </li></ul><ul><li>Applications </li></ul><ul><ul><li>Current Commercial Activities </li></ul></ul><ul><ul><li>Business Models </li></ul></ul><ul><ul><li>Social Software </li></ul></ul><ul><ul><li>Semantic Web Services </li></ul></ul><ul><li>Summary </li></ul>
    41. 41. Summary Widespread Use Academia desert Where would the semantic web go
    42. 42. Key Points for Success <ul><li>Crossing the metadata chasm </li></ul><ul><ul><li>Automatic extraction of metadata in predefined domains </li></ul></ul><ul><ul><li>Reducing the turn-on-investment cycle. Making ontologies useful, now </li></ul></ul><ul><li>Niece markets </li></ul><ul><ul><li>Bioinformatics </li></ul></ul><ul><ul><li>Software engineering </li></ul></ul><ul><li>Business Processes </li></ul><ul><ul><li>Leveraging semantic markup with Web services and enterprise computing </li></ul></ul>
    43. 43. Long Term Implications of a Success <ul><li>New professions: </li></ul><ul><ul><li>Ontology editors </li></ul></ul><ul><ul><li>Taggers </li></ul></ul><ul><li>Agents </li></ul><ul><ul><li>Many automated tasks (shopping, travel, dating…) </li></ul></ul><ul><ul><li>Bigger threats on human agents (travel agents, insurance agents…) </li></ul></ul><ul><li>Business Processes </li></ul><ul><ul><li>IT missions change - from constructing applications to providing frameworks </li></ul></ul><ul><ul><li>Work of operational personnel change – from requirement definitions to business process modeling </li></ul></ul>
    44. 44. References <ul><li>[SciAme] Berners-Lee, T., Hendler, J., Lassila, O., The Semantic Web , Scientific American, 284(5), 2001, pp. 34-43. </li></ul><ul><li>[RDF] http://www.w3.org/RDF , http://www.ilrt.bris.ac.uk/discovery/rdf </li></ul><ul><li>[OWL] http://www.w3.org/TR/owl-guide </li></ul><ul><li>[KIM] Kim, Henry M. (2002). &quot; Predicting How Ontologies for the Semantic Web Will Evolve &quot;, Communications of the ACM , Vol. 45, No. 2, pp. 48-54. </li></ul><ul><li>[FOAF] http :// www . foaf - project . org / </li></ul><ul><li>[ADUNA] http://aduna.biz </li></ul><ul><li>[CELCORP] http://www.celcorp.com </li></ul><ul><li>[CEREBRA] http://cerebra.com </li></ul><ul><li>[OWL-S] http://www.daml.org/services </li></ul><ul><li>[TRUST] http://trust.mindswap.org </li></ul>
    45. 45. Thank You [email_address] http:// www.technion.ac.il/erant

    ×