Your SlideShare is downloading.
×

×
Saving this for later?
Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.

Text the download link to your phone

Standard text messaging rates apply

Like this presentation? Why not share!

- Scientific computing by Brijesh Kumar 1071 views
- Numba: Array-oriented Python Compil... by Travis Oliphant 5476 views
- Машинное обучение 1, осень 2014: Ли... by CS Center 306 views
- SJUT/Mat210/Interpolation/Direct 20... by John Ham 88 views
- Interpolation 1 by Jean Dcedric 137 views
- Mobile 3-D by CurvSurf 104 views
- Term project by Mark Brandao 95 views
- Aryabhatta knowledge university by Aku Bihar 607 views
- Ms mohammed by smprincesskayla 2397 views
- International Journal of Mathematic... by inventionjournals 103 views
- Python For Scientists by aeberspaecher 3892 views
- On finite differences, interpolatio... by PlusOrMinusZero 1875 views

43,322

Published on

In many data-processing scenarios it is necessary to use a discrete set of available data-points to infer the value of a function at a new data-point. One approach to this problem is interpolation, …

In many data-processing scenarios it is necessary to use a discrete set of available data-points to infer the value of a function at a new data-point. One approach to this problem is interpolation, which constructs a new model-function that goes through the original data-points. There are many forms of interpolation (polynomial, spline, kriging, radial basis function, etc.), and SciPy includes some of these interpolation forms. This webinar will review the interpolation modules available in SciPy and in the larger Python community and provide instruction on their use via example.

No Downloads

Total Views

43,322

On Slideshare

0

From Embeds

0

Number of Embeds

13

Shares

0

Downloads

321

Comments

0

Likes

6

No embeds

No notes for slide

- 1. Interpolation with Python November 20, 2009 Wednesday, December 2, 2009
- 2. Enthought Python Distribution (EPD) http://www.enthought.com/products/epd.php Wednesday, December 2, 2009
- 3. Enthought Training Courses Dec. 7 - 9 Dec. 10 - 11 Python Basics, NumPy, SciPy, Matplotlib, Traits, TraitsUI, Chaco… Wednesday, December 2, 2009
- 4. Enthought Consulting Wednesday, December 2, 2009
- 5. Interpolation Wednesday, December 2, 2009
- 6. Contrast with Curve-fitting Extrapolation Wednesday, December 2, 2009
- 7. 2-D Interpolation Wednesday, December 2, 2009
- 8. Curve interpolation and scattered samples Wednesday, December 2, 2009
- 9. Interpolation basic mathematics Given data points (xi , fi ) f (x) = fj φ(x − xj ) j φ(xi − xj ) = δij f (xi ) = fi Wednesday, December 2, 2009
- 10. Interpolation scipy.interpolate — General purpose Interpolation •1D Interpolating Class • Constructs callable function from data points and desired spline interpolation order. • Function takes vector of inputs and returns interpolated value using the spline. •1D and 2D spline interpolation (FITPACK) • Smoothing splines up to order 5 • Parametric splines 10 Wednesday, December 2, 2009
- 11. 1D Spline Interpolation >>> from scipy.interpolate import interp1d interp1d(x, y, kind='linear', axis=-1, copy=True, bounds_error=True, fill_value=numpy.nan) Returns a function that uses interpolation to find the value of new points. • x – 1d array of increasing real values which cannot contain duplicates • y – Nd array of real values whose length along the interpolation axis must be len(x) • kind – kind of interpolation (e.g. 'linear', 'nearest', 'quadratic', 'cubic'). Can also be an integer n>1 which returns interpolating spline (with minimum sum-of-squares discontinuity in nth derivative). • axis – axis of y along which to interpolate • copy – make internal copies of x and y • bounds_error – raise error for out-of-bounds • fill_value – if bounds_error is False, then use this value to fill in out-of-bounds. 11 Wednesday, December 2, 2009
- 12. 1D Spline Interpolation # demo/interpolate/spline.py from scipy.interpolate import interp1d from pylab import plot, axis, legend from numpy import linspace # sample values x = linspace(0,2*pi,6) y = sin(x) # Create a spline class for interpolation. # kind=5 sets to 5th degree spline. # kind='nearest' -> zeroth older hold. # kind='linear' -> linear interpolation # kind=n -> use an nth order spline spline_fit = interp1d(x,y,kind=5) xx = linspace(0,2*pi, 50) yy = spline_fit(xx) # display the results. plot(xx, sin(xx), 'r-', x, y, 'ro', xx, yy, 'b--', linewidth=2) axis('tight') legend(['actual sin', 'original samples', 'interpolated curve']) 12 Wednesday, December 2, 2009
- 13. 2D Spline Interpolation >>> from scipy.interpolate import interp2d interp2d(x, y, z, kind='linear') Returns a function, f, that uses interpolation to find the value of new points: z_new = f(x_new, y_new) x – 1d or 2d array y – 1d or 2d array z – 1d or 2d array representing function evaluated at x and y kind – kind of interpolation: 'linear', 'quadratic', or 'cubic' The shape of x, y, and z must be the same. Resulting function is evaluated at cross product of new inputs. 13 Wednesday, December 2, 2009
- 14. 2D Spline Interpolation EXAMPLE >>> from scipy.interpolate import ... interp2d >>> from numpy import hypot, mgrid, ... linspace >>> from scipy.special import j0 >>> x,y = mgrid[-5:6,-5:6] >>> z = j0(hypot(x,y)) >>> newfunc = interp2d(x, y, z, ... kind='cubic') >>> xx = linspace(-5,5,100) >>> yy = xx # xx and yy are 1-d # result is evaluated on the # cross product >>> zz = newfunc(xx,yy) >>> from enthought.mayavi import mlab >>> mlab.surf(x,y,z) >>> x2, y2 = mgrid[-5:5:100j, ... -5:5:100j] >>> mlab.surf(x2,y2,zz) 14 Wednesday, December 2, 2009
- 15. What else is in SciPy? • Interpolate: Fitpack interface • splrep : represent 1-d data as spline • splprep : represent N-d parametric curve as spline • splev : evaluate spline at new data points • splint : evaluate integral of spline • splalde : evaluate all derivatives of spline • bisplrep : reprsent 2-d surface as spline • bisplev : evaluate 2-d spline at new data points • Additional class-based interface: –UnivariateSpline –InterpolatedUnivariateSpline –LSQUnivariateSpline –BivariateSpline –SmoothBivariateSpline Wednesday, December 2, 2009
- 16. What else is in SciPy? • Interpolate: General spline interface (no fitpack) • splmake : create a general spline representation from data • spleval : evaluate spline at new data • spline : front end to splmake and spleval (all in one) • spltopp : take spline reprentation and return piece-wise polynomial representation of a spline • ppform : piecewise polynomial representation of spline • PiecewisePolynomial : class to generate arbitrary piecewise polynomial interpolator given data + derivatives • lagrange : Lagrange polynomial interpolator • BarycentricInterpolator : polynomial interpolation class • KroghInterpolator : polynomial interpolation class that allows setting derivatives as well Wednesday, December 2, 2009
- 17. What else is in SciPy? • Signal: Fast B-spline implementations (equally-spaced) • bspline : B-spline basis functions of order n • gauss_spline : Gaussian approximation to the B-spline • qspline1d : quadratic B-spline coefficients from 1-d data • cspline1d : cubic B-spline coefficients from 1-d data • qspline1d_eval : evaluate quadratic spline • cspline1d_eval : evaluat cubic spline • qspline2d : quadratic B-spline coefficients from 2-d data • cspline2d : cubic B-spline coefficients from 2-d data • spline_filter : spline filter using from coefficients • resample : sinc-interpolation using a Fourier method Wednesday, December 2, 2009
- 18. What else is in SciPy? • ndimage: N-d spline interpolation • map_coordinates : N-d interpolation • spline_filter : repeated interpolation from spline coefficients • interpolate : Radial Basis Functions • Rbf : N-d interpolation using radial basis functions Wednesday, December 2, 2009
- 19. Things I’d like to see • Monotonic Splines • PCHIP • Finishing out the splmake, spleval interface • Improving a simplified interface to all the tools • An interpnd Wednesday, December 2, 2009
- 20. Scientific Python Classes http://www.enthought.com/training Dec 7-11 Feb 22-26 Python for Scientists and Engineers (3 days) Advanced Modules (2 days) May 17-21 Take both together to receive a discount Aug 23-27 Wednesday, December 2, 2009

Be the first to comment