Energy Conversion Ideal vs Real Operation Analysis Webinar

915 views
863 views

Published on

Engineering webinar material dealing with simple and basic Brayton Cycle and power cycle components/processes and their T - s diagrams, ideal and real operation and major performance trends when air is considered as the working fluid.

Published in: Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
915
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Energy Conversion Ideal vs Real Operation Analysis Webinar

  1. 1. Engineering Software P.O. Box 2134 Kensington, MD 20891 Phone: (301) 919-9670 E-Mail: info@engineering-4e.com http://www.engineering-4e.com Copyright © 1996
  2. 2. Energy Conversion Ideal vs Real Operation Analysis Webinar Objectives In this webinar, the engineering students and professionals get familiar with the simple and basic power cycles, power cycle components/processes and compressible flow and their T - s, p - V and h - T diagrams, ideal vs real operation and major performance trends when air is considered as the working fluid. Performance Objectives: Introduce basic energy conversion engineering assumptions and equations Know basic elements of Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion and expansion processes and compressible flow (nozzle, diffuser and thrust) and their T - s, p - V and h - T diagrams Be familiar with Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion, expansion and compressible flow (nozzle, diffuser and thrust) ideal vs real operation Understand general Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion, expansion and compressible flow (nozzle, diffuser and thrust) performance trends
  3. 3. This webinar consists of the following three major sections: • Power Cycles (Carnot, Brayton, Otto and Diesel) • Power Cycle Components/Processes (compression, combustion and expansion) • Compressible Flow (nozzle, diffuser and thrust) In this webinar, first overall engineering assumptions and basic engineering equations are provided. Furthermore, for each major section, basic engineering equations, section material and conclusions are provided. Energy Conversion Analysis Webinar
  4. 4. The energy conversion analysis presented in this webinar considers ideal (isentropic) vs real operation and the working fluid is air. Furthermore, the following assumptions are valid: Power Cycles Single species consideration -- fuel mass flow rate is ignored and its impact on the properties of the working fluid Basic equations hold (continuity, momentum and energy equations) Specific heat is constant Power Cycle Components/Processes Single species consideration Basic equations hold (continuity, momentum and energy equations) Specific heat is constant Compressible Flow Single species consideration Basic equations hold (continuity, momentum and energy equations) Specific heat is constant Thermodynamic and Transport Properties Single species consideration Ideal gas approach is used (pv=RT) Specific heat is not constant Coefficients describing thermodynamic and transport properties were obtained from the NASA Glenn Research Center at Lewis Field in Cleveland, OH -- such coefficients conform with the standard reference temperature of 298.15 K (77 F) and the JANAF Tables Engineering Assumptions
  5. 5. Basic Conservation Equations Continuity Equation m = ρvA [kg/s] Momentum Equation F = (vm + pA)out - in [N] Energy Equation Q - W = ((h + v2/2 + gh)m)out - in [kW] Basic Engineering Equations
  6. 6. Ideal Gas State Equation pv = RT [kJ/kg] Perfect Gas cp = constant [kJ/kg*K] Kappa χ = cp/cv [/] For air: χ = 1.4 [/], R = 0.2867 [kJ/kg*K] and cp = 1.004 [kJ/kg*K] Basic Engineering Equations
  7. 7. Power Cycles Engineering Equations Carnot Cycle Efficiency  = 1 - TR/TA Otto Cycle Efficiency  = (cv(T3 - T2) - cv(T4 - T1))/(cv(T3 - T2)) Brayton Cycle Efficiency  = (cp(T3 - T2) - cp(T4 - T1))/(cp(T3 - T2)) Diesel Cycle Efficiency  = (cp(T3 - T2) - cv(T4- T1))/(cp(T3 - T2)) Cycle Efficiency  = Wnet/Q [/] Heat Rate HR = (1/)3,412 [Btu/kWh] rp = p2/p1 [/]; ε = V1/V2 [/]; φ = V3/V2 [/]
  8. 8. Power Cycles Engineering Equations Otto Cycle wnet = qh - ql = cv(T3 - T2) - cv(T4 - T1) [kJ/kg] Wnet = wnetm [kW] Brayton Cycle wnet = qh - ql = cp(T3 - T2) - cp(T4 - T1) [kJ/kg] Wnet = wnetm [kW] Diesel Cycle wnet = qh - ql = cp(T3 - T2) - cv(T4 - T1) [kJ/kg] Wnet = wnetm [kW]
  9. 9. Carnot Cycle Schematic Layout Compressor Heat Exchanger Gas Turbine 1 32 4 Heat Addition Heat Exchanger Heat Rejection Carnot Cycle
  10. 10. Carnot Cycle T - s Diagram 1 32 4 Temperature--T[K] Entropy -- s [kJ/kg*K] Carnot Cycle
  11. 11. Carnot Cycle Efficiency 0 20 40 60 80 500 600 700 800 900 1,000 CarnotCycleEfficiency[%] Heat Addition Temperature [K] Compressor Inlet Temperature: 298 [K] Carnot Cycle
  12. 12. Carnot Cycle Efficiency 0 20 40 60 80 278 288 298 308 318 328 CarnotCycleEfficiency[%] Heat Rejection Temperature [K] Turbine Inlet Temperature: 800 [K] Carnot Cycle
  13. 13. Brayton Cycle (Gas Turbine) Schematic Layout -- Open Cycle Compressor Combustor Gas Turbine 1 32 4 Fuel Brayton Cycle (Gas Turbine) Heat Addition Working Fluid In Working Fluid Out
  14. 14. Brayton Cycle Schematic Layout -- Closed Cycle Compressor Heat Exchanger Gas Turbine 1 32 4 Heat Addition Heat Exchanger Heat Rejection Brayton Cycle (Gas Turbine)
  15. 15. Brayton Cycle (Gas Turbine) T - s Diagram 1 3 2s 4s Temperature--T[K] Entropy -- s [kJ/kg*K] Brayton Cycle (Gas Turbine) 2 4
  16. 16. Brayton Cycle (Gas Turbine) Efficiency 0 20 40 60 80 5 10 15 20 25 Compression Ratio (P2/P1) [/] BraytonCycle(GasTurbine)Efficiency[%] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Compression Efficiency [%] Ambient Temperature: 298 [K] -- Gas Turbine Inlet Temperature: 1,500 [K]
  17. 17. Brayton Cycle (Gas Turbine) Specific Power Output 0 100 200 300 400 500 900 1,200 1,500 Gas Turbine Inlet Temperature [K] BraytonCycle(GasTurbine)SpecificPower Output[kJ/kg] 85 90 95 100 Working Fluid: Air Compressor Inlet Temperature: 298 [K] -- Gas Turbine Inlet Pressure: 15 [atm] Brayton Cycle (Gas Turbine) Isentropic Compression Efficiency [%] Compression Ratio (P2/P1) = 15 [/]
  18. 18. Brayton Cycle (Gas Turbine) Power Output 0 25 50 75 100 50 100 150 Working Fluid Mass Flow Rate [kg/s] BraytonCycle(GasTurbine)PowerOutput[MW] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Compression Efficiency [%] Gas Turbine Inlet Temperature: 1,500 [K] -- Gas Turbine Inlet Pressure: 15 [atm] Compression Ratio (P2/P1) = 15 [/]
  19. 19. Brayton Cycle (Gas Turbine) Efficiency 0 20 40 60 80 5 10 15 20 25 Compression Ratio (P2/P1) [/] BraytonCycle(GasTurbine)Efficiency[%] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Expansion Efficiency [%] Ambient Temperature: 298 [K] -- Gas Turbine Inlet Temperature: 1,500 [K]
  20. 20. Brayton Cycle (Gas Turbine) Specific Power Output 0 100 200 300 400 500 900 1,200 1,500 Gas Turbine Inlet Temperature [K] BraytonCycle(GasTurbine)SpecificPower Output[kJ/kg] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Expansion Efficiency [%] Compressor Inlet Temperature: 298 [K] -- Gas Turbine Inlet Pressure: 15 [atm] Compression Ratio (P2/P1) = 15 [/]
  21. 21. Brayton Cycle (Gas Turbine) Power Output 0 25 50 75 100 50 100 150 Working Fluid Mass Flow Rate [kg/s] BraytonCycle(GasTurbine)PowerOutput[MW] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Expansion Efficiency [%] Compression Ratio (P2/P1) = 15 [/] Gas Turbine Inlet Temperature: 1,500 [K] -- Gas Turbine Inlet Pressure: 15 [atm]
  22. 22. Brayton Cycle (Gas Turbine) Efficiency 0 20 40 60 80 5 10 15 20 25 Compression Ratio (P2/P1) [/] BraytonCycle(GasTurbine)Efficiency[%] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Compression and Expansion Efficiency [%] Ambient Temperature: 298 [K] -- Gas Turbine Inlet Temperature: 1,500 [K]
  23. 23. Brayton Cycle (Gas Turbine) Specific Power Output 0 100 200 300 400 500 900 1,200 1,500 Gas Turbine Inlet Temperature [K] BraytonCycle(GasTurbine)SpecificPower Output[kJ/kg] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Compression and Expansion Efficiency [%] Compressor Inlet Temperature: 298 [K] -- Gas Turbine Inlet Pressure: 15 [atm] Compression Ratio (P2/P1) = 15 [/]
  24. 24. Brayton Cycle (Gas Turbine) Power Output 0 25 50 75 100 50 100 150 Working Fluid Mass Flow Rate [kg/s] BraytonCycle(GasTurbine)PowerOutput[MW] 85 90 95 100 Working Fluid: Air Brayton Cycle (Gas Turbine) Isentropic Compression and Expansion Efficiency [%] Compression Ratio (P2/P1) = 15 [/] Gas Turbine Inlet Temperature: 1,500 [K] -- Gas Turbine Inlet Pressure: 15 [atm]
  25. 25. Otto Cycle p - V Diagram 1 3 2S 4S Pressure--p[atm] Volume -- V [m^3] Otto Cycle
  26. 26. Otto Cycle T - s Diagram 1 3 2S 4S Temperature--T[K] Entropy -- s [kJ/kg*K] Otto Cycle 2 4
  27. 27. Otto Cycle Efficiency 0 20 40 60 80 2.5 5 7.5 10 12.5 Compression Ratio (V1/V2) [/] OttoCycleEfficiency[%] 85 90 95 100 Working Fluid: Air Otto Cycle Isentropic Compression Efficiency [%] Ambient Temperature: 298 [K] -- Combustion Temperature: 1,200 [K]
  28. 28. Otto Cycle Power Output 0 100 200 300 400 1,200 1,500 1,800 Combustion Temperature [K] OttoCyclePowerOutput[kW] 85 90 95 100 Compression Ratio (V1/V2) = 10 [/] Working Fluid: Air Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s] For Given Geometry of the Four Cylinder and Four Stroke Otto Engine Otto Cycle Isentropic Compression Efficiency [%]
  29. 29. Otto Cycle Efficiency 0 20 40 60 80 2.5 5 7.5 10 12.5 Compression Ratio (V1/V2) [/] OttoCycleEfficiency[%] 85 90 95 100 Working Fluid: Air Otto Cycle Isentropic Expansion Efficiency [%] Ambient Temperature: 298 [K] -- Combustion Temperature: 1,200 [K]
  30. 30. Otto Cycle Power Output 0 100 200 300 400 1,200 1,500 1,800 Combustion Temperature [K] OttoCyclePowerOutput[kW] 85 90 95 100 Compression Ratio (V1/V2) = 10 [/] Working Fluid: Air Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s] For Given Geometry of the Four Cylinder and Four Stroke Otto Engine Otto Cycle Isentropic Expansion Efficiency [%]
  31. 31. Otto Cycle Efficiency 0 20 40 60 80 2.5 5 7.5 10 12.5 Compression Ratio (V1/V2) [/] OttoCycleEfficiency[%] 85 90 95 100 Working Fluid: Air Otto Cycle Isentropic Compression and Expansion Efficiency [%] Ambient Temperature: 298 [K] -- Combustion Temperature: 1,200 [K]
  32. 32. Otto Cycle Power Output 0 100 200 300 400 1,200 1,500 1,800 Combustion Temperature [K] OttoCyclePowerOutput[kW] 85 90 95 100 Compression Ratio (V1/V2) = 10 [/] Working Fluid: Air Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s] For Given Geometry of the Four Cylinder and Four Stroke Otto Engine Otto Cycle Isentropic Compression and Expansion Efficiency [%]
  33. 33. Diesel Cycle p - V Diagram 1 32S 4S Pressure--p[atm] Volume -- V [m^3] Diesel Cycle
  34. 34. Diesel Cycle T - s Diagram 1 3 2S 4S Temperature--T[K] Entropy -- s [kJ/kg*K] Diesel Cycle 2 4
  35. 35. Diesel Cycle Efficiency 0 20 40 60 80 7.5 10 12.5 15 17.5 Compression Ratio (V1/V2) [/] DieselCycleEfficiency[%] 85 90 95 100 Working Fluid: Air Diesel Cycle Isentropic Compression Efficiency [%] Ambient Temperature: 298 [K] Combustion Temperature: 1,800 [K]
  36. 36. Diesel Cycle Power Output 0 200 400 600 7.5 10 12.5 15 17.5 Compression Ratio (V1/V2) [/] DieselCyclePowerOutput[kW] 85 90 95 100 Combustion Temperature: 1,800 [K] Working Fluid: Air Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s] For Given Geometry of the Four Cylinder and Four Stroke Diesel Engine Diesel Cycle Isentropic Compression Efficiency [%]
  37. 37. Diesel Cycle Efficiency 0 20 40 60 80 7.5 10 12.5 15 17.5 Compression Ratio (V1/V2) [/] DieselCycleEfficiency[%] 85 90 95 100 Working Fluid: Air Diesel Cycle Isentropic Expansion Efficiency [%] Ambient Temperature: 298 [K] Combustion Temperature: 1,800 [K]
  38. 38. Diesel Cycle Power Output 0 200 400 600 7.5 10 12.5 15 17.5 Compression Ratio (V1/V2) [/] DieselCyclePowerOutput[kW] 85 90 95 100 Diesel Cycle Isentropic Expansion Efficiency [%] Combustion Temperature: 1,800 [K] Working Fluid: Air Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s] For Given Geometry of the Four Cylinder and Four Stroke Diesel Engine
  39. 39. Diesel Cycle Efficiency 0 20 40 60 80 7.5 10 12.5 15 17.5 Compression Ratio (V1/V2) [/] DieselCycleEfficiency[%] 85 90 95 100 Working Fluid: Air Diesel Cycle Isentropic Compression and Expansion Efficiency [%] Ambient Temperature: 298 [K] Combustion Temperature: 1,800 [K]
  40. 40. Diesel Cycle Power Output 0 200 400 600 7.5 10 12.5 15 17.5 Compression Ratio (V1/V2) [/] DieselCyclePowerOutput[kW] 85 90 95 100 Diesel Cycle Isentropic Compression and Expansion Efficiency [%] Combustion Temperature: 1,800 [K] Working Fluid: Air Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s] For Given Geometry of the Four Cylinder and Four Stroke Diesel Engine
  41. 41. Diesel Cycle Cut Off Ratio 0 1 2 3 4 7.5 10 12.5 15 17.5 Compression Ratio (V1/V2) [/] DieselCycleCutOffRatio[/] 100 Diesel Cycle Isentropic Compression and Expansion Efficiency [%] Combustion Temperature: 1,800 [K] Working Fluid: Air Ambient Temperature: 298 [K] -- Number of Revolutions: 60 [1/s] For Given Geometry of the Four Cylinder and Four Stroke Diesel Engine
  42. 42. Power Cycles Conclusions The Carnot Cycle efficiency increases with an increase in the heat addition temperature when the heat rejection temperature does not change at all. Furthermore, the Carnot Cycle efficiency decreases with an increase in the heat rejection temperature when the heat addition temperature does not change at all. The Carnot Cycle efficiency is not dependent on the working fluid properties. The Brayton Cycle efficiency depends on the compression ratio values . The efficiency increases with an increase in the compression ratio values for a fixed gas turbine inlet temperature. The Brayton Cycle specific power output increases with an increase in the gas turbine inlet temperature for a fixed compression ratio. Furthermore, the increase is greater for the higher gas turbine inlet temperature values. The Brayton Cycle power output increases with an increase in the working fluid mass flow rate. The increase is greater for the higher working fluid mass flow rate values for the fixed gas turbine inlet temperature and compression ratio values. The Otto Cycle efficiency increases with an increase in the compression ratio values for a fixed combustion temperature. Also, the Otto Cycle power output increases with an increase in the combustion temperature for a fixed compression ratio value and given geometry of the four cylinder and four stroke Otto engine. The Diesel Cycle efficiency increases with an increase in the compression ratio and with a decrease in the cut off ratio values for a fixed combustion temperature. Also, the Diesel Cycle power output increases with an increase in the compression ratio values for a fixed combustion temperature value and given geometry of the four cylinder and four stroke Diesel engine. In general, as the isentropic compression and expansion efficiency values decrease, the cycle efficiency decreases too.
  43. 43. Isentropic Compression T2s/T1 = (p2/p1)(χ-1)/χ [/] T2s/T1 = (V1/V2s)(χ-1) [/] p2/p1 = (V1/V2s)χ [/] wc = cp(T2 - T1) [kJ/kg] Wc = cp(T2 - T1)m [kW] c = (T2s - T1)/(T2 - T1) [/] Power Cycle Components/Processes Engineering Equations
  44. 44. Combustion is complete with and without heat loss and at stoichiometric and stoichiometry > 1 conditions having different oxidant preheat temperature and the oxidant is air. Also, Ideal Flame Temperature [K] hreactants = hproducts [kJ/kg] Real Flame Temperature [K] hreactants = hproducts - heat loss [kJ/kg] heat loss = (1 - combustion )HHV [kJ/kg] Higher Heating Value (HHV) [Btu/lbm] HHV = hreactants - hproducts [kJ/kg] Power Cycle Components/Processes Engineering Equations
  45. 45. Isentropic Expansion T1/T2s = (p1/p2)(χ-1)/χ [/] T1/T2s = (V2s/V1)(χ-1) [/] p1/p2 = (V2s/V1)χ [/] we = cp(T1 - T2) [kJ/kg] We = cp(T1 - T2)m [kW] e = (T1 - T2)/(T1 - T2s) [/] Power Cycle Components/Processes Engineering Equations
  46. 46. Compression Schematic Layout Working Fluid In Working Fluid Out Compressor 1 2 Compression
  47. 47. Compression T - s Diagram Temperature--T[K] Entropy -- s [kJ/kg*K] Compression 2s 1 2
  48. 48. Compression Specific Power Input 100 200 300 400 500 5 10 15 Compression Ratio (P2/P1) [/] CompressionSpecificPowerInput[kJ/kg] 85 90 95 100 Working Fluid: Air Compressor Inlet Temperature: 298 [K] -- Ambient Pressure: 1 [atm] Compression Isentropic Compression Efficiency [%]
  49. 49. Compression Power Input 0 25 50 75 100 50 100 150 Working Fluid Mass Flow Rate [kg/s] CompressionPowerInput[MW] 85 90 95 100 Working Fluid: Air Compressor Inlet Temperature: 298 [K] -- Compression Ratio (P2/P1): 15 [/] Compression Isentropic Compression Efficiency [%]
  50. 50. Combustion Schematic Layout Fuel Oxidant -- Air Combustion Products Combustion
  51. 51. Enthalpy vs Temperature -20,000 -10,000 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 500 800 1,100 1,400 1,700 2,000 2,300 2,600 2,900 3,200 3,500 3,800 4,100 4,400 4,700 5,000 Temperature [K] Enthalpy[kJ/kg] O2 N2 C(S) S(S) H2 CO2 SO2 H2O H2O(L) CH4 Combustion
  52. 52. Enthalpy - Temperature h - T Diagram Enthalpy--h[kJ/kg] Temperature -- T [K] Reactants Products HHV TflameTreference Combustion Heat Loss Ideal Real
  53. 53. Combustion Oxidant Composition Fuel Composition C [kg/kg] 1.000 0.000 0.000 0.780 0.860 - H [kg/kg] 0.000 1.000 0.000 0.050 0.140 - S [kg/kg] 0.000 0.000 1.000 0.030 0.000 - N [kg/kg] 0.000 0.000 0.000 0.040 0.000 - O [kg/kg] 0.000 0.000 0.000 0.080 0.000 - H2O [kg/kg] 0.000 0.000 0.000 0.020 0.000 - CH4 [kg/kg] - - - - - 1.000 Fuel Carbon Hydrogen Sulfur Coal Oil Gas N [kmol/kmol] 0.790 O [kmol/kmol] 0.210 N [kg/kg] 0.767 O [kg/kg] 0.233 Oxidant Air
  54. 54. Combustion CO2 [kg/kg] 0.295 0.000 0.000 0.249 0.202 0.151 H2O [kg/kg] 0.000 0.255 0.000 0.041 0.080 0.124 SO2 [kg/kg] 0.000 0.000 0.378 0.005 0.000 0.000 N2 [kg/kg] 0.705 0.745 0.622 0.705 0.718 0.725 O2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 CO2 [kmol/kmol] 0.210 0.000 0.000 0.170 0.132 0.095 Fuel Carbon Hydrogen Sulfur Coal Oil Gas SO2 [kmol/kmol] 0.000 0.000 0.210 0.002 0.000 0.000 N2 [kmol/kmol] 0.790 0.653 0.790 0.759 0.739 0.715 Combustion Products Flame Temperature, Stoichiometric Oxidant to Fuel Ratio and HHV Flame Temperature [K] 2,460 2,525 1,972 2,484 2,484 2,327 Stoichiometric Oxidant to Fuel Ratio [/] 11.444 34.333 4.292 10.487 14.649 17.167 HHV [Btu/lbm] 14,094 60,997 3,982 14,162 20,660 21,563 Fuel Carbon Hydrogen Sulfur Coal Oil Gas H2O [kmol/kmol] 0.000 0.347 0.000 0.068 0.129 0.190 O2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 Stoichiometric Combustion Combustion Products Composition on Weight and Mole Basis
  55. 55. Combustion Carbon [K] 2,460 2,361 2,262 2,163 Hydrogen [K] 2,525 2,409 2,293 2,176 Sulfur [K] 1,972 1,895 1,818 1,741 Coal [K] 2,484 2,381 2,278 2,174 Oil [K] 2,484 2,381 2,275 2,168 Gas [K] 2,327 2,236 2,145 2,053 Combustion Efficiency [/] 1.00 0.95 0.90 0.85 Combustion Products Flame Temperature, Stoichiometric Oxidant to Fuel Ratio and HHV Ideal Flame Temperature [K] 2,460 2,525 1,972 2,484 2,484 2,327 Stoichiometric Oxidant to Fuel Ratio [/] 11.444 34.333 4.292 10.487 14.649 17.167 HHV [Btu/lbm] 14,094 60,997 3,982 14,162 20,660 21,563 Fuel Carbon Hydrogen Sulfur Coal Oil Gas Stoichiometric Combustion Combustion Products Ideal vs Real Flame Temperature
  56. 56. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel and Oxidant Inlet Temperature: 298 [K]
  57. 57. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel and Oxidant Inlet Temperature: 298 [K]
  58. 58. Combustion Products Flame Temperature 1,900 2,000 2,100 2,200 2,300 2,400 2,500 2,600 Carbon Hydrogen Sulfur Coal Oil Gas FlameTemperature[K] Flame Temperature Combustion Fuel and Oxidant Inlet Temperature: 298 [K]
  59. 59. Combustion Products Flame Temperature 1,600 1,800 2,000 2,200 2,400 2,600 2,800 Carbon Hydrogen Sulfur Coal Oil Gas FlameTemperature[K] 85 90 95 100 Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Combustion Efficiency [%]
  60. 60. Combustion Stoichiometric Oxidant to Fuel Ratio 0 5 10 15 20 25 30 35 40 Carbon Hydrogen Sulfur Coal Oil Gas StoichiometricOxidanttoFuelRatio[/] Stoichiometric Oxidant to Fuel Ratio Combustion Fuel and Oxidant Inlet Temperature: 298 [K]
  61. 61. Higher Heating Value (HHV) 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 Carbon Hydrogen Sulfur Coal Oil Gas HHV[Btu/lbm] HHV Combustion Fuel and Oxidant Inlet Temperature: 298 [K]
  62. 62. Combustion Oxidant Composition Fuel Composition C [kg/kg] 1.000 0.000 0.000 0.780 0.860 - H [kg/kg] 0.000 1.000 0.000 0.050 0.140 - S [kg/kg] 0.000 0.000 1.000 0.030 0.000 - N [kg/kg] 0.000 0.000 0.000 0.040 0.000 - O [kg/kg] 0.000 0.000 0.000 0.080 0.000 - H2O [kg/kg] 0.000 0.000 0.000 0.020 0.000 - CH4 [kg/kg] - - - - - 1.000 Fuel Carbon Hydrogen Sulfur Coal Oil Gas N [kmol/kmol] 0.790 O [kmol/kmol] 0.210 N [kg/kg] 0.767 O [kg/kg] 0.233 Oxidant Air
  63. 63. Combustion Stoichiometric Combustion Flame Temperature Hydrogen [K] 2,525 2,583 2,640 2,689 2,757 2,818 2,879 2,942 Sulfur [K] 1,972 2,045 2,118 2,191 2,267 2,343 2,421 2,501 Coal [K] 2,484 2,551 2,618 2,686 2,756 2,827 2,899 2,972 Oil [K] 2,484 2,551 2,616 2,683 2,751 2,820 2,891 2,963 Preheat Temperature [K] 298 400 500 600 700 800 900 1,000 Combustion Products Stoichiometric Oxidant to Fuel Ratio and HHV Stoichiometric Oxidant to Fuel Ratio [/] 11.444 34.333 4.292 10.487 14.649 17.167 HHV [Btu/lbm] 14,094 60,997 3,982 14,162 20,660 21,563 Fuel Carbon Hydrogen Sulfur Coal Oil Gas Gas [K] 2,327 2,391 2,455 2,520 2,586 2,653 2,721 2,791 Carbon [K] 2,460 2,531 2,602 2,674 2,747 2,822 2,898 2,976
  64. 64. Combustion Products Flame Temperature 0 1,000 2,000 3,000 298 400 500 600 700 800 900 1,000 FlameTemperature[K] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel Inlet Temperature: 298 [K] Oxidant Preheat Temperature for Stoichiometric Combustion Conditions
  65. 65. Combustion 298 [K] 2,460 2,361 2,262 2,163 400 [K] 2,531 2,433 2,334 2,235 500 [K] 2,602 2,503 2,405 2,306 600 [K] 2,674 2,575 2,477 2,378 700 [K] 2,747 2,649 2,551 2,452 800 [K] 2,822 2,724 2,626 2,527 Combustion Efficiency [/] 1.00 0.95 0.90 0.85 Combustion Products Ideal vs Real Flame Temperature as a Function of Preheat Fuel: Carbon 900 [K] 2,898 2,800 2,702 2,604 1,000 [K] 2,976 2,878 2,780 2,682
  66. 66. Combustion 298 [K] 2,525 2,409 2,293 2,176 400 [K] 2,583 2,468 2,351 2,235 500 [K] 2,640 2,525 2,409 2,293 600 [K] 2,698 2,583 2,468 2,352 700 [K] 2,757 2,643 2,528 2,412 800 [K] 2,818 2,704 2,589 2,474 Combustion Efficiency [/] 1.00 0.95 0.90 0.85 Combustion Products Ideal vs Real Flame Temperature as a Function of Preheat Fuel: Hydrogen 900 [K] 2,879 2,765 2,651 2,536 1,000 [K] 2,942 2,828 2,714 2,600
  67. 67. Combustion 298 [K] 1,972 1,895 1,818 1,741 400 [K] 2,045 1,969 1,892 1,815 500 [K] 2,118 2,041 1,965 1,888 600 [K] 2,191 2,115 2,039 1,963 700 [K] 2,267 2,191 2,115 2,039 800 [K] 2,343 2,268 2,192 2,116 Combustion Efficiency [/] 1.00 0.95 0.90 0.85 Combustion Products Ideal vs Real Flame Temperature as a Function of Preheat Fuel: Sulfur 900 [K] 2,421 2,346 2,270 2,195 1,000 [K] 2,501 2,426 2,350 2,275
  68. 68. Combustion 298 [K] 2,484 2,381 2,278 2,174 400 [K] 2,551 2,449 2,346 2,243 500 [K] 2,618 2,516 2,413 2,310 600 [K] 2,686 2,584 2,482 2,379 700 [K] 2,756 2,654 2,552 2,449 800 [K] 2,827 2,725 2,623 2,521 Combustion Efficiency [/] 1.00 0.95 0.90 0.85 Combustion Products Ideal vs Real Flame Temperature as a Function of Preheat Fuel: Coal 900 [K] 2,899 2,797 2,695 2,593 1,000 [K] 2,972 2,871 2,769 2,667
  69. 69. Combustion 298 [K] 2,484 2,379 2,274 2,167 400 [K] 2,551 2,446 2,340 2,235 500 [K] 2,616 2,512 2,406 2,301 600 [K] 2,683 2,578 2,474 2,368 700 [K] 2,751 2,647 2,542 2,437 800 [K] 2,820 2,716 2,612 2,507 Combustion Efficiency [/] 1.00 0.95 0.90 0.85 Combustion Products Ideal vs Real Flame Temperature as a Function of Preheat Fuel: Oil 900 [K] 2,891 2,787 2,683 2,579 1,000 [K] 2,963 2,859 2,755 2,651
  70. 70. Combustion 298 [K] 2,327 2,236 2,145 2,053 400 [K] 2,391 2,301 2,210 2,118 500 [K] 2,455 2,365 2,274 2,182 600 [K] 2,520 2,429 2,339 2,248 700 [K] 2,586 2,496 2,405 2,315 800 [K] 2,653 2,563 2,473 2,383 Combustion Efficiency [/] 1.00 0.95 0.90 0.85 Combustion Products Ideal vs Real Flame Temperature as a Function of Preheat Fuel: Gas 900 [K] 2,721 2,632 2,542 2,452 1,000 [K] 2,791 2,702 2,612 2,522
  71. 71. Combustion Products Flame Temperature 0 1,000 2,000 3,000 298 400 500 600 700 800 900 1,000 FlameTemperature[K] 85 90 95 100 Combustion Fuel Inlet Temperature: 298 [K] Oxidant Preheat Temperature for Stoichiometric Combustion Conditions Fuel: Carbon Combustion Efficiency [%]
  72. 72. Combustion Products Flame Temperature 0 1,000 2,000 3,000 298 400 500 600 700 800 900 1,000 FlameTemperature[K] 85 90 95 100 Combustion Fuel Inlet Temperature: 298 [K] Oxidant Preheat Temperature for Stoichiometric Combustion Conditions Fuel: Hydrogen Combustion Efficiency [%]
  73. 73. Combustion Products Flame Temperature 0 1,000 2,000 3,000 298 400 500 600 700 800 900 1,000 FlameTemperature[K] 85 90 95 100 Combustion Fuel Inlet Temperature: 298 [K] Oxidant Preheat Temperature for Stoichiometric Combustion Conditions Fuel: Sulfur Combustion Efficiency [%]
  74. 74. Combustion Products Flame Temperature 0 1,000 2,000 3,000 298 400 500 600 700 800 900 1,000 FlameTemperature[K] 85 90 95 100 Combustion Fuel Inlet Temperature: 298 [K] Oxidant Preheat Temperature for Stoichiometric Combustion Conditions Fuel: Coal Combustion Efficiency [%]
  75. 75. Combustion Products Flame Temperature 0 1,000 2,000 3,000 298 400 500 600 700 800 900 1,000 FlameTemperature[K] 85 90 95 100 Combustion Fuel Inlet Temperature: 298 [K] Oxidant Preheat Temperature for Stoichiometric Combustion Conditions Fuel: Oil Combustion Efficiency [%]
  76. 76. Combustion Products Flame Temperature 0 1,000 2,000 3,000 298 400 500 600 700 800 900 1,000 FlameTemperature[K] 85 90 95 100 Combustion Fuel Inlet Temperature: 298 [K] Oxidant Preheat Temperature for Stoichiometric Combustion Conditions Fuel: Gas Combustion Efficiency [%]
  77. 77. Combustion Oxidant Composition Fuel Composition C [kg/kg] 1.000 0.000 0.000 0.780 0.860 - H [kg/kg] 0.000 1.000 0.000 0.050 0.140 - S [kg/kg] 0.000 0.000 1.000 0.030 0.000 - N [kg/kg] 0.000 0.000 0.000 0.040 0.000 - O [kg/kg] 0.000 0.000 0.000 0.080 0.000 - H2O [kg/kg] 0.000 0.000 0.000 0.020 0.000 - CH4 [kg/kg] - - - - - 1.000 Fuel Carbon Hydrogen Sulfur Coal Oil Gas N [kmol/kmol] 0.790 O [kmol/kmol] 0.210 N [kg/kg] 0.767 O [kg/kg] 0.233 Oxidant Air
  78. 78. Combustion Combustion Products Composition on Weight and Mole Basis Combustion Products Flame Temperature and Oxidant to Fuel Ratio Flame Temperature [K] 2,460 1,506 1,145 952 831 748 Oxidant to Fuel Ratio [/] 11.444 22.889 34.333 45.778 57.222 68.667 Stoichiometry [/] 1 2 3 4 5 6 Fuel: Carbon CO2 [kg/kg] 0.295 0.153 0.104 0.083 0.063 0.053 H2O [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 SO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kg/kg] 0.705 0.735 0.745 0.751 0.754 0.756 O2 [kg/kg] 0.000 0.112 0.151 0.171 0.183 0.191 CO2 [kmol/kmol] 0.210 0.105 0.070 0.053 0.042 0.035 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kmol/kmol] 0.790 0.790 0.790 0.790 0.790 0.790 H2O [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 O2 [kmol/kmol] 0.000 0.105 0.140 0.157 0.168 0.175
  79. 79. Combustion 1 [K] 2,460 2,361 2,262 2,163 2 [K] 1,506 1,450 1,395 1,339 3 [K] 1,145 1,106 1,066 1,027 4 [K] 952 922 891 860 5 [K] 831 806 781 755 6 [K] 748 726 705 683 Combustion Efficiency [/] 1.00 0.95 0.90 0.85 Combustion Products Ideal vs Real Flame Temperature as a Function of Stoichiometry Fuel: Carbon
  80. 80. Combustion Combustion Products Composition on Weight and Mole Basis Flame Temperature [K] 2,525 1,645 1,269 1,059 924 830 Oxidant to Fuel Ratio [/] 34.333 68.667 103.000 137.333 171.667 206.000 Stoichiometry [/] 1 2 3 4 5 6 Fuel: Hydrogen CO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 H2O [kg/kg] 0.255 0.129 0.087 0.065 0.052 0.043 SO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kg/kg] 0.745 0.756 0.760 0.761 0.763 0.763 O2 [kg/kg] 0.000 0.115 0.154 0.173 0.185 0.193 CO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kmol/kmol] 0.653 0.715 0.738 0.751 0.758 0.763 H2O [kmol/kmol] 0.347 0.190 0.131 0.100 0.081 0.068 O2 [kmol/kmol] 0.000 0.095 0.131 0.150 0.161 0.169 Combustion Products Flame Temperature and Oxidant to Fuel Ratio
  81. 81. Combustion 1 [K] 2,525 2,409 2,293 2,176 2 [K] 1,645 1,574 1,502 1,430 3 [K] 1,269 1,217 1,164 1,111 4 [K] 1,059 1,017 976 934 5 [K] 924 890 855 820 6 [K] 830 800 771 741 Combustion Efficiency [/] 1.00 0.95 0.90 0.85 Combustion Products Ideal vs Real Flame Temperature as a Function of Stoichiometry Fuel: Hydrogen
  82. 82. Combustion Combustion Products Composition on Weight and Mole Basis Flame Temperature [K] 1,972 1,229 949 799 705 641 Oxidant to Fuel Ratio [/] 4.292 8.583 12.875 17.167 21.458 25.750 Stoichiometry [/] 1 2 3 4 5 6 Fuel: Sulfur CO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 H2O [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 SO2 [kg/kg] 0.378 0.209 0.144 0.110 0.089 0.075 N2 [kg/kg] 0.622 0.687 0.712 0.725 0.733 0.738 O2 [kg/kg] 0.000 0.104 0.144 0.165 0.178 0.187 CO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.210 0.105 0.070 0.053 0.042 0.035 N2 [kmol/kmol] 0.790 0.790 0.790 0.790 0.790 0.790 H2O [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 O2 [kmol/kmol] 0.000 0.105 0.140 0.158 0.168 0.175 Combustion Products Flame Temperature and Oxidant to Fuel Ratio
  83. 83. Combustion 1 [K] 1,972 1,895 1,818 1,741 2 [K] 1,229 1,186 1,143 1,099 3 [K] 949 918 888 857 4 [K] 799 775 751 727 5 [K] 705 685 666 646 6 [K] 641 624 607 591 Combustion Efficiency [/] 1.00 0.95 0.90 0.85 Combustion Products Ideal vs Real Flame Temperature as a Function of Stoichiometry Fuel: Sulfur
  84. 84. Combustion Combustion Products Composition on Weight and Mole Basis Fuel: Coal CO2 [kg/kg] 0.249 0.130 0.088 0.067 0.053 0.045 H2O [kg/kg] 0.041 0.021 0.014 0.011 0.009 0.007 SO2 [kg/kg] 0.005 0.003 0.002 0.001 0.001 0.001 N2 [kg/kg] 0.705 0.735 0.745 0.750 0.754 0.756 O2 [kg/kg] 0.000 0.111 0.151 0.171 0.183 0.191 CO2 [kmol/kmol] 0.170 0.087 0.059 0.044 0.035 0.030 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.002 0.001 0.001 0.001 0.001 0.000 N2 [kmol/kmol] 0.760 0.774 0.779 0.782 0.783 0.785 H2O [kmol/kmol] 0.068 0.035 0.024 0.018 0.014 0.012 O2 [kmol/kmol] 0.000 0.103 0.138 0.156 0.166 0.174 Flame Temperature [K] 2,484 1,544 1,178 981 856 769 Oxidant to Fuel Ratio [/] 10.487 20.992 31.497 42.002 52.507 63.013 Stoichiometry [/] 1 2 3 4 5 6 Combustion Products Flame Temperature and Oxidant to Fuel Ratio
  85. 85. Combustion 1 [K] 2,484 2,381 2,278 2,174 2 [K] 1,544 1,486 1,427 1,367 3 [K] 1,178 1,136 1,094 1,051 4 [K] 981 948 915 881 5 [K] 856 829 801 774 6 [K] 769 746 723 699 Combustion Efficiency [/] 1.00 0.95 0.90 0.85 Combustion Products Ideal vs Real Flame Temperature as a Function of Stoichiometry Fuel: Coal
  86. 86. Combustion Combustion Products Composition on Weight and Mole Basis Flame Temperature [K] 2,484 1,555 1,187 989 863 776 Oxidant to Fuel Ratio [/] 14.694 29.298 43.947 58.596 73.244 87.893 Stoichiometry [/] 1 2 3 4 5 6 Fuel: Oil CO2 [kg/kg] 0.202 0.104 0.070 0.053 0.042 0.035 H2O [kg/kg] 0.080 0.042 0.028 0.021 0.017 0.014 SO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kg/kg] 0.718 0.742 0.750 0.754 0.757 0.758 O2 [kg/kg] 0.000 0.113 0.152 0.172 0.184 0.192 CO2 [kmol/kmol] 0.132 0.068 0.046 0.035 0.028 0.023 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kmol/kmol] 0.739 0.764 0.772 0.777 0.779 0.781 H2O [kmol/kmol] 0.129 0.067 0.045 0.034 0.027 0.023 O2 [kmol/kmol] 0.000 0.102 0.137 0.155 0.166 0.173 Combustion Products Flame Temperature and Oxidant to Fuel Ratio
  87. 87. Combustion 1 [K] 2,484 2,379 2,274 2,167 2 [K] 1,555 1,494 1,433 1,371 3 [K] 1,187 1,144 1,100 1,056 4 [K] 989 954 920 885 5 [K] 863 834 806 777 6 [K] 776 751 727 702 Combustion Efficiency [/] 1.00 0.95 0.90 0.85 Combustion Products Ideal vs Real Flame Temperature as a Function of Stoichiometry Fuel: Oil
  88. 88. Combustion Combustion Products Composition on Weight and Mole Basis Flame Temperature [K] 2,327 1,480 1,137 951 832 750 Oxidant to Fuel Ratio [/] 17.167 34.333 51.500 68.667 85.833 103.000 Stoichiometry [/] 1 2 3 4 5 6 Fuel: Gas CO2 [kg/kg] 0.151 0.078 0.052 0.039 0.032 0.026 H2O [kg/kg] 0.124 0.064 0.043 0.032 0.026 0.022 SO2 [kg/kg] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kg/kg] 0.725 0.745 0.752 0.756 0.758 0.760 O2 [kg/kg] 0.000 0.113 0.152 0.172 0.184 0.192 CO2 [kmol/kmol] 0.095 0.050 0.034 0.026 0.021 0.017 Stoichiometry [/] 1 2 3 4 5 6 SO2 [kmol/kmol] 0.000 0.000 0.000 0.000 0.000 0.000 N2 [kmol/kmol] 0.715 0.751 0.763 0.770 0.774 0.776 H2O [kmol/kmol] 0.190 0.100 0.068 0.051 0.041 0.034 O2 [kmol/kmol] 0.000 0.100 0.135 0.153 0.165 0.172 Combustion Products Flame Temperature and Oxidant to Fuel Ratio
  89. 89. Combustion 1 [K] 2,327 2,236 2,145 2,053 2 [K] 1,480 1,426 1,372 1,317 3 [K] 1,137 1,099 1,060 1,020 4 [K] 951 920 889 859 5 [K] 832 807 781 756 6 [K] 750 728 706 685 Combustion Efficiency [/] 1.00 0.95 0.90 0.85 Combustion Products Ideal vs Real Flame Temperature as a Function of Stoichiometry Fuel: Gas
  90. 90. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Stoichiometry [/] Fuel: Carbon Fuel and Oxidant Inlet Temperature: 298 [K]
  91. 91. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Stoichiometry [/] Fuel: Carbon Fuel and Oxidant Inlet Temperature: 298 [K]
  92. 92. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Fuel: Hydrogen Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  93. 93. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Fuel: Hydrogen Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  94. 94. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Fuel: Sulfur Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  95. 95. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Fuel: Sulfur Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  96. 96. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Fuel: Coal Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  97. 97. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Fuel: Coal Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  98. 98. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Fuel: Oil Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  99. 99. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Fuel: Oil Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  100. 100. Combustion Products -- Weight Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kg/kg] 1 2 3 4 5 6 Combustion Fuel: Gas Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  101. 101. Combustion Products -- Mole Basis 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CO2 H2O SO2 N2 O2 CombustionProducts[kmol/kmol] 1 2 3 4 5 6 Combustion Fuel: Gas Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  102. 102. Combustion Products Flame Temperature 600 1,100 1,600 2,100 2,600 1 2 3 4 5 6 FlameTemperature[K] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  103. 103. Combustion Products Flame Temperature 500 1,000 1,500 2,000 2,500 3,000 1 2 3 4 5 6 FlameTemperature[K] 85 90 95 100 Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Fuel: Carbon Stoichiometry [/] Combustion Efficiency [%]
  104. 104. Combustion Products Flame Temperature 500 1,000 1,500 2,000 2,500 3,000 1 2 3 4 5 6 FlameTemperature[K] 85 90 95 100 Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Fuel: Hydrogen Stoichiometry [/] Combustion Efficiency [%]
  105. 105. Combustion Products Flame Temperature 500 1,000 1,500 2,000 2,500 3,000 1 2 3 4 5 6 FlameTemperature[K] 85 90 95 100 Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Fuel: Sulfur Stoichiometry [/] Combustion Efficiency [%]
  106. 106. Combustion Products Flame Temperature 500 1,000 1,500 2,000 2,500 3,000 1 2 3 4 5 6 FlameTemperature[K] 85 90 95 100 Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Fuel: Coal Stoichiometry [/] Combustion Efficiency [%]
  107. 107. Combustion Products Flame Temperature 500 1,000 1,500 2,000 2,500 3,000 1 2 3 4 5 6 FlameTemperature[K] 85 90 95 100 Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Fuel: Oil Stoichiometry [/] Combustion Efficiency [%]
  108. 108. Combustion Products Flame Temperature 500 1,000 1,500 2,000 2,500 3,000 1 2 3 4 5 6 FlameTemperature[K] 85 90 95 100 Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Combustion Efficiency [%] Fuel: Gas Stoichiometry [/]
  109. 109. Combustion Oxidant to Fuel Ratio 0 40 80 120 160 200 240 1 2 3 4 5 6 OxidanttoFuelRatio[/] Carbon Hydrogen Sulfur Coal Oil Gas Combustion Fuel and Oxidant Inlet Temperature: 298 [K] Stoichiometry [/]
  110. 110. Expansion Schematic Layout Working Fluid In Working Fluid Out Turbine 1 2 Expansion
  111. 111. Expansion T - s Diagram Temperature--T[K] Entropy -- s [kJ/kg*K] Expansion 1 2s 2
  112. 112. Expansion Specific Power Output 400 500 600 700 800 900 5 10 15 Expansion Ratio (P1/P2) [/] ExpansionSpecificPowerOutput[kJ/kg] 85 90 95 100 Working Fluid: Air Turbine Inlet Temperature: 1,500 [K] -- Ambient Pressure: 1 [atm] Expansion Isentropic Expansion Efficiency [%]
  113. 113. Expansion Power Output 0 40 80 120 160 50 100 150 Working Fluid Mass Flow Rate [kg/s] ExpansionPowerOutput[MW] 85 90 95 100 Working Fluid: Air Turbine Inlet Temperature: 1,500 [K] -- Expansion Ratio (P1/P2): 15 [/] Expansion Isentropic Expansion Efficiency [%]
  114. 114. Power Cycle Components/Processes Conclusions The compression specific power input increases with an increase in the compression ratio values for a fixed compression inlet temperature. As the working fluid mass flow rate increases for the fixed compression ratio and compression inlet temperature values, the compression power input requirements increase too. As the isentropic compression efficiency decreases, the compression power input increases. Hydrogen as the fuel has the highest flame temperature, requires the most mass amount of oxidant/air in order to have complete combustion per unit mass amount of fuel and has the largest fuel higher heating value. As the combustion efficiency decreases, the combustion products flame temperature decreases. When hydrogen reacts with oxidant/air, there is no CO2 present in the combustion products. The expansion specific power output increases with an increase in the expansion ratio values for a fixed expansion inlet temperature. As the working fluid mass flow rate increases for the fixed expansion ratio and expansion inlet temperature values, the expansion power output values increase too. As the isentropic expansion efficiency decreases, the expansion power output decreases.
  115. 115. Sonic Velocity vsonic = (χ RT)1/2 [m/s] Mach Number M = v/vsonic [/] Compressible Flow Engineering Equations
  116. 116. Isentropic Flow Tt/Ts = (1 + M2(χ - 1)/2) [/] pt/p = (1 + M2(χ - 1)/2)χ/(χ-1) [/] ht = (hs + v2/2) [kJ/kg] Tt = (Ts + v2/(2cp)) [K] n = (Tt - T)/(Tt - Ts) [/] d = (Tt - T s)/(Tt - T) [/] Thrust = vm + (p - pa)A [N] Compressible Flow Engineering Equations
  117. 117. Nozzle Schematic Layout Working Fluid In Working Fluid Out Nozzle 1 2 Nozzle
  118. 118. Nozzle T - s Diagram Temperature--T[K] Entropy -- s [kJ/kg*K] Nozzle 1 2s 2
  119. 119. Nozzle Performance 0.2 0.4 0.6 0.8 1.0 400 500 600 Velocity [m/s] MachNumber[/] 85 90 95 100 Nozzle Nozzle Inlet Stagnation Conditions -- Temperature: 1,500 [K] and Pressure: 10 [atm] Isentropic Nozzle Efficiency [%]
  120. 120. Nozzle Performance 1.00 1.05 1.10 1.15 1.20 400 500 600 Velocity [m/s] Tstagnation/Tstatic[/] 85 90 95 100 Nozzle Nozzle Inlet Stagnation Conditions -- Temperature: 1,500 [K] and Pressure: 10 [atm] Isentropic Nozzle Efficiency [%]
  121. 121. Nozzle Performance 1.20 1.30 1.40 1.50 1.60 400 500 600 Velocity [m/s] Pstagnation/Pstatic[/] 85 90 95 100 Nozzle Nozzle Inlet Stagnation Conditions -- Temperature: 1,500 [K] and Pressure: 10 [atm] Isentropic Nozzle Efficiency [%]
  122. 122. Diffuser Schematic Layout Working Fluid In Working Fluid Out Diffuser 1 2 Diffuser
  123. 123. Diffuser T - s Diagram Temperature--T[K] Entropy -- s [kJ/kg*K] Diffuser 2s 1 2
  124. 124. Diffuser Performance 0.2 0.4 0.6 0.8 1.0 100 200 300 Velocity [m/s] MachNumber[/] 85 90 95 100 Diffuser Diffuser Inlet Static Conditions -- Temperature: 298 [K] and Pressure: 1 [atm] Isentropic Diffuser Efficiency [%]
  125. 125. Diffuser Performance 1.00 1.05 1.10 1.15 1.20 100 200 300 Velocity [m/s] Tstagnation/Tstatic[/] 85 90 95 100 Diffuser Isentropic Diffuser Efficiency [%] Diffuser Inlet Static Conditions -- Temperature: 298 [K] and Pressure: 1 [atm]
  126. 126. Diffuser Performance 1.20 1.30 1.40 1.50 1.60 100 200 300 Velocity [m/s] Pstagnation/Pstatic[/] 85 90 95 100 Diffuser Isentropic Diffuser Efficiency [%] Diffuser Inlet Static Conditions -- Temperature: 298 [K] and Pressure: 1 [atm]
  127. 127. Thrust Schematic Layout Working Fluid Out Nozzle 21 Working Fluid at Still Thrust
  128. 128. Thrust T - s Diagram Temperature--T[K] Entropy -- s [kJ/kg*K] Thrust 1 2s 2
  129. 129. Nozzle Performance 0.6 0.7 0.8 0.9 1.0 900 1,200 1,500 Nozzle Inlet Stagnation Temperature [K] MachNumber[/] 85 90 95 100 Thrust Isentropic Nozzle Efficiency [%] Nozzle Inlet Stagnation Conditions -- Pressure: 10 [atm] Nozzle Outlet Static Conditions -- Mach Number: 0.85 [/]
  130. 130. Nozzle Performance 1.00 1.05 1.10 1.15 1.20 900 1,200 1,500 Nozzle Inlet Stagnation Temperature [K] Tstagnation/Tstatic[/] 85 90 95 100 Thrust Isentropic Nozzle Efficiency [%] Nozzle Inlet Stagnation Conditions -- Pressure: 10 [atm] Nozzle Outlet Static Conditions -- Mach Number: 0.85 [/]
  131. 131. Nozzle Performance 1.40 1.50 1.60 1.70 1.80 900 1,200 1,500 Nozzle Inlet Stagnation Temperature [K] Pstagnation/Pstatic[/] 85 90 95 100 Thrust Nozzle Inlet Stagnation Conditions -- Pressure: 10 [atm] Isentropic Nozzle Efficiency [%] Nozzle Outlet Static Conditions -- Mach Number: 0.85 [/]
  132. 132. Thrust 800 900 1,000 1,100 1,200 900 1,200 1,500 Nozzle Inlet Stagnation Temperature [K] Thrust[N] 85 90 95 100 Working Fluid Mass Flow Rate: 1 [kg/s] Thrust Nozzle Outlet Static Conditions -- Mach Number: 0.85 [/] Nozzle Inlet Stagnation Pressure: 10 [atm] and Ambient Conditions Pressure: 1 [atm] Isentropic Nozzle Efficiency [%]
  133. 133. Compressible Flow Conclusions Nozzle stagnation over static temperature and pressure ratio values increase with an increase in the velocity (Mach Number). Diffuser stagnation over static temperature and pressure ratio values increase with an increase in the velocity (Mach Number). Thrust increases with an increase in the inlet stagnation temperature. As the nozzle and diffuser efficiency values decrease, the nozzle, diffuser and thrust performance decreases.

×