Like this presentation? Why not share!

# Oreilly Energy Lieracy Webcast - 092302009

## by energyliteracy on Sep 23, 2009

• 1,404 views

Webcast of energy literacy talk for O'Reilly media.

Webcast of energy literacy talk for O'Reilly media.

### Views

Total Views
1,404
Views on SlideShare
1,404
Embed Views
0

Likes
2
63
1

No embeds

### Report content

11 of 1 previous next

## Oreilly Energy Lieracy Webcast - 092302009Presentation Transcript

• Two stories : one global, one personal.
• Energy is measured in Joules (J) Lifting an apple from the ground to the table. ~ 1 Joule
• Power is measured in Watts (W).1 Watt = 1 Joule / second Lifting one apple from the ground to the table each second. ~ 1 Watt.
• 40 apples per secondfrom the ground to thetable = 40 Watts.
• Running this Apple laptop takes 40 Watts.
• Power 100 W = You, sitting there, reading. 1000 W 1kW = Domestic kettle 1 kilowatt (kW) = 1000 W 1000000 W 1MW = Diesel locomotive / wind turbine. 1 megawatt (MW) = 1000 kW 1000000000 W 1GW = Hoover dam 1 gigawatt (GW) = 1000 MW 1000000000000 W 1TW = World power consumption, 1890 1 terawatt (TW) = 1000 GW
• HOW MUCH POWER DO I USE?
• Why watts ?Allows you to compare activities on different timescales.Allows you to consider non-carbon effects of using so much power.If you do something yearly (like ﬂy 105,000 miles), it contributes:168,207 kilometers 1 year 1.40 megajoules Joules 1 year � 31,536,000 seconds � 1 kilometer � 7,462 second = 7,462 WattsIf you do something monthly (like your electricity bill), it contributes:122 kilowatt ·hours 1 month 3.6 megajoules Joules 1 month � 2,952,000 seconds � 1 kilowatt · hour � 170 second = 170 WattsIf you do something daily (like drink 1 Energy drink), it contributes:1 energy drink 1 day 7.84 megajoules Joules 1 day � 86,400 seconds � 1 bottle � 90 second = 90 WattsYearly things + Monthly things + Daily things = your lifestyle in watts.
• "Watts per always" - your life in light bulbs. 100W A 12,000 Watt lifestyle is 120 x 100 watt light bulbs burning permanently. ( Or 920 Compact Fluorescents )
• FlightSaul Griffith in 2007: 112,000 Miles7,992 Watts equivalent. 18.500 kg CO2
• Driving 4500 Mi/yr10,000 Miles Honda Insight1,500 Watts 55 mpg 2000 Mi/yr 81.82 gallons spent other (avg. rental) 9,900,000,000 J Seattle 16 mpg 313.71 Watts 125 gallons spent 15,125,000,000 J 479.28 Watts Boston 1000 Mi/yr Dune Buggy (VW) Chicago New York 25 mpg San Francisco 40 gallons spent 4,840,000,000 J 1200 Mi/yr 153.37 Watts Toyota Tacoma 18 mpg 66.67 gallons spent 8,066,666,667 J 255.62 Watts San Diego Tucson Atlanta Jacksonville 700 Mi/yr Toyota Hilux 17 mpg 600 Mi/yr Key West 41.18 gallons spent Sprinter Diesel 4,982,352,941 J 20 mpg 157.88 Watts 30 gallons spent 4,128,000,000 J 130.81 Watts
• Domestic energy consumption2 person stand alone house, 2br, Mission District, SF. Home Gas and Electric breakdown625W1400 GAS shower GAS cooking GAS heat ELEC fridge1200 ELEC computer ELEC toothbrush ELEC phone chargers ELEC laptop11000 ELEC laptop2 ELEC stereo ELEC lights&other800600400200 0 JANUARY FEBRUARY NOVEMBER JULY DECEMBER AUGUST SEPTEMBER MAY JUNE MARCH OCTOBER APRIL
• Work Power Consumption... 18,400² Foot Office, 40 People sharing1250 Gas : 201 Watts Electric : 411 Watts1000750500250 0 Jan feb mar apr may jun jul aug sep oct nov dec
• My 2007 diet. 772 Watts Milk Cheese: 30 W Wine: 76 W Vegetables: 100 Farming: 100 WTransportation: 120 W Fertilizer: 125 W Meat & Fish: 221 W
• Society - my 1/300 000 000th share of the US infrastructure...US Military: 94 WUS Nuclear protection: 50 WUS Government: 18 WNASA: 1.1 WUSPS: 5 W* Published fuel and electricity numbers. Does not include embodied energy in battle-ships, tanks, bullets, bridges, buildings & infrastructure...
• Insight up gy ick g bu ne ap Honda du ot en toy g wa ks er H l d dd trip er vo or la e rs ov re e y k nc ep ast tre we ec la r hisl ke io st s po honpatuolletlbow ot w p AS ns m istm tma te uin na r ex m alch hrisrry g alu tur ialc ca eba ic e c tif as n ar uitc fere lla st ne s n re e co mb lChpho boo chrina u oo sk m ru llp ers intr snwuga ce bb pa ndgklmkrkr n taateo e laean ictenn vinlebne inlscmo n c n eta nstaakp Fr b ing oo mduhuspp r itc s sp wosec apee pp baok g r upe ceixc so yc K ll kit u in s fr r b eesappk nn e etep intchffh Wmoleaaic h id wcttn odbcueitc ma ed tele tao repin sb kec slaeinn tesareg tus hfo lagcteolo tt aoelaceif e ol sg te d peeurif laoo pdkleten k t le sbs ll aabmns sprlaskan Greope gulop creotanif o o b rk eproeiv o P sto ed TR T de ba somp es pr es coo c plantp pla ots rge ofab ing ntpotla s irdin ble tin gk din a ta ch ing itc he n sit g fallow oorru h nc So pi nfl f be l e ole he ram wo oksfutonf ame Boodenlfutonfr ss ttre nma wo eta m futo ChairWood) ( er it beltleath crocsshoes Table oolSu MenW opants menso t cks carg llaredar rtst- shirat t ensco erwe nshocks woolh ebrimha d me shir tm enunhoes so wid Shoes m rs oots leathe Hat et uggb s len pant Woocoatjack lls per oachveralls overa axedpa Watch-C il clingwrapsaran w erroll co fo toiletpap aluminum d er washingpow detergent teacandle Book conditionerthpastesheetsofpaper tooframed se rt Papercup a hampoo (mhbrush l) CDjewelca e ardgam Toot lfball bo ll tennisba go lftee go d tennisrac ket surfb cycle oar r motogerbag n esse le lephantet BikemGolfClubinflaotabrcyeclehelm s rs m to e Pap ws Ne e s in an az e ag in ar Re M o uter gaz m ly a th m m n ee p on ta rly m Dr Oveerahine cr ns Co frig ac p r r tio te n to p ec m Ca e kto oj ar pr on es g t qu Ph D p s PHYSICAL STUFF ye cle La ile ob hin M y as Bic House W ~2500 Watts
• SFO TO LHR 41 W W W 60 LHR- 3W 4 SF 30 TS 29 SF O ER ATL HE 3 O-A H TH DS LIG ED SFO L-A -ATL 60 W O -SF A TL T NT O W W O EE 1 M R -CP A 4 OU S- 410 W O1 K- TR A 160 AT O E W 0W S AS H5 CC G IC 4 L- N G ST GY S -H W N-A W 10 JU ER W FO O 4 W 3 N N ER W 3 W NO -O 57 E H S A 1 S IR W OT S LE FA 0 SF K W 5 W 56 2 C F BO O- BO 0 HH A E HI S-A ICE W S V V S- S G V. AN R W SF 21 O ER -SE 0 OA O 21 0 W G T L 10 OA K DC -DC V E TA E K-O 0W 8W S NS RD -O 18 S PO FE -M ON AK 18 W 0 OD 40 W E -QU GO 3 D QU E-D E2 0W ITE ION TW 10 WH UCAT 60 W -SF W ED ANCE O2BUR-O SFO 10 W FIN AK 20 -JFK 80 W W OAK-BUR 200 RE 6 20 W JFK-SFO W HCA 200 W H EALT SFO-BO W BOS-ORD S 210 W TION 110 70 W RECREA ORD-SFO 14 0W HOUSE 260 W SFO-JFK 200 W JFK-SFO 200 W 230 W MISCSTU SJC-SJO FF1000 W 0W JC 23 SJO-S 0W BOO IJ 28 KS S JC-V W WA 130 80 STE W C2 BIK DIS -SJ NE ES PO TEXT VIJ WS 6 WW SA L 9 ILES EL 18 A EC 0 W TER 1 W T 90 W TR 60 RAN W ON W SPO 1 40 CO IC S2 RTT OM D1 M PU 50 E 4 SY W 0W O- TE SF RS BO W 70 0 AT 0 CA 31 W W S RS R 0 50 0W WO -D 31 56 W W O WO ERTI 28 FO SF RK 0W AG IN 0 80 HILU 150 W -S TE W 0W RK K HE W 0W O2 .F OA SHOWERS GAS 70 W 0W COOKING GAS 30 W DR RN 31 EL AT 100 X 16 ET O- F MA 24 HT EC 20 TAXIORRENTAL 47 K-S W SF 70 SIG LIZ TER 0W TR YV OA W IC ER A IN UGG A TACO PRIN 41 OTA 50 ND 0W EB GE S W TOY HO My 2007 life: DUN TOYOT AG AG PEST 0 W 0 W DOD . FO CTR ES AG .E CO . BE SS LE ICID FF SU18000 Watts. ER CE ILF OTHER EE LIGHTS GA STERE FR LAPTOP COMPU &W W RE FRIDGE DA UE 0 W HEATIN IC R UIT 50 W S 3 2 FA AL IRY LS ME INE 20 4 TS ,V S& ELEC 8 O ELEC AT 80 ELEC 7 EG AN GGS 10 6 TER EL ELEC 1 G GAS 4 GR TS 9 ELEC 3 &E W DO &N W AIN U IL 0W W S 1W EC 10 16 0W 10 00 W W 0W 0W 0W W W
• Footprint calculators? 11333 www.climatecare.org (34 T CO2) 7800 www.carbonneutral.com (23.4 T CO2) 16800 www.earthday.net (8.4 planets) 6248 www.safeclimate.net (18.7 T CO2) 11300 www.bp.com (34 T CO2) 12040 www.travelmatters.org (36.1 T CO2) 8783 www.climatecrisis.net (26.4 T CO2) 12000 www.conservation.org (36 T CO2) 10167 www.carbonfootprint.com (30.5 T CO2) 2887 www.epa.gov (8.7 T CO2) 8067 green.msn.com (24.2 T CO2) 17433 www.earthlab.com (52.3 T CO2) 23600 www.treeswaterpeople.org (70.8 T CO2) 11420 average - which is remarkably close to US average? 18000 My calculation 25000 My estimate
• Me
• My wife, my city, and me...
• KiloWatts 0 5 11.14kW Average = 10 15 20 25 30 35 40 0 Alaska Wyoming Louisiana North Dakota Texas Kentucky Alabama West Virginia Indiana Montana 10 Oklahoma Mississippi Arkansas Iowa South Carolina Kansas Tennessee Nebraska Minnesota Delaware 20 New Mexico Idaho Maine South Dakota Ohio Georgia Virginia Missouri Wisconsin Washington 30 Pennsylvania Illinois Nevada Utah Oregon New Jersey District of Columbia North Carolina Colorado Michigan 40 State-level energy consumption per Capita, 2006 (kW) CC Vermont Hawaii Maryland Florida Arizona Connecticut New Hampshire California Massachusetts New York 50 Rhode Island 2ENERGYliteracy.com
• Per capita power use 2003 Per Capita Energy Use 2003 30 16 Belgium 17 Saudi Arabia 18 Singapore 19 Gibraltar 20 Netherlands 21 Oman 1 Qatar 22 France 23 Russian Federation 25 2 Iceland 24 New Zealand 3 United Arab Emirates 25 Korea, Rep 26 Czech Rep 4 Bahrain 27 Germany 28 Austria 5 Luxembourg 29 Japan 6 Netherlands Antilles 30 United Kingdom 31 Denmark 7 Kuwait 32 Ireland 20 8 Trinidad and Tobago 33 Switzerland 34 Estonia 9 Canada 35 Turkmenistan 36 Slovenia 10 United States 37 Slovakia 11 Brunei Darussalam 38 Kazakhstan 39 Cypruskilowatts 12 Finland 40 Spain 41 Libyan Arab Jamahiriya 13 Norway 15 42 Israel 14 Sweden 43 Italy 44 Ukraine 15 Australia 45 Greece 46 Belarus 47 Lithuania 48 South Africa 49 Hungary 50 Bulgaria US Average. 10 5 Global Average 0 10 20 30 40 50
• Energy Use by Region energy by region [NorAmer-Eur-MiddEast + NorAfr-CenAme & Car+SouAme+Asia(ex MidEst) ] Power Watts/person 12000 north america 11400 Watts 10000Average Per Person Power in Watts 8000 Europe 5400 Watts 6000 Middle-east & North Africa 2300 Watts 4000 Central America & the Carribean 1800 Watts South America Asia (excluding middle east) 2000 1580 Watts 1450 Watts 0 0 1000 2000 3000 4000 5000 6000 Population in Millions.
• 12000 3.5US POWER CONSUMPTION PER CAPITA (Watts) US POWER CONSUMPTION (Terrawatts) 3 10000 2.5 8000 2 6000 1.5 4000 1 2000 0.5 0 0 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 "The Game Plan" slideset release 1.01, March 21 2008 203
• 2200GLOBAL POWER CONSUMPTION, TW 15 2100 PER CAPITA POWER, Watts 2000 10 1900 1800 5 1700 1600 0 1500 1965 1970 1975 1980 1985 1990 1995 2000 2005 "The Game Plan" slideset release 1.01, March 21 2008 205
• World Power Consumption by Country, 1965-2005 USA Canada Mexico Argentina 15 Brazil Chile Colombia Ecuador Peru Venezuela Other S. & Cent. America Austria Azerbaijan Belarus Belgium & Luxembourg Bulgaria Czech Republic Denmark Finland France Germany Greece Hungary Iceland 10 Republic of Ireland Italy Kazakhstan Lithuania Netherlands Norway Polandterawatts Portugal Romania Russian Federation Slovakia Spain Sweden Switzerland Turkey Turkmenistan Ukraine United Kingdom Uzbekistan Other Europe & Eurasia 5 Iran Kuwait Qatar Saudi Arabia United Arab Emirates Other Middle East Algeria Egypt South Africa Other Africa Australia Bangladesh China China Hong Kong SAR India Indonesia Japan Malaysia New Zealand Pakistan 0 Philippines Singapore South Korea 1970 1980 1990 2000 Taiwan Thailand Other Asia Paciﬁc
• US energy consumption (TeraWatts) LOCAL STEP 1 My Lifestyle 3.5 Renewables Biomass Hydroelectric 3 NuclearUS Energy Consumption (Terawatts) Albert Einstein Petroleum 2.5 Wright Brothers Henry Ford 2 Nikolai Tesla Thomas Edison James Joule 1.5 Carnot Natural Gas James Watt Isaac Newton 1 Coal 0.5 0 1650 1700 1750 1800 1850 1900 1950 2000
• US Power consumption by source, 1900-2005 3.5 3 coal natural gas petroleum 2.5 nuclear hydro biomass Renewables:geo/sol/wind 2TeraWatts 1.5 1 0.5 0 1900 1920 1940 1960 1980 2000 Year
• Historical US electricity production, by generation source. Energy source (GW) 1400 1200 Coal Petroleum Natural Gas Other Gas Nuclear 1000 Hydroelectric Wood Waste Geothermal Solar/PV WindGigaWatts 800 Other Net Imports 600 400 200 0 1950 1960 1970 1980 1990 2000 Year CC ENERGYliteracy.com 2
• Historical US Electricity consumption (GW), By Sector. Retail is usable energy for end user. Lost is the losses in conversion from primary energy to end user energy during generation and transmission. Electricity consumption (GW) 1400 Residential retail Residential lost Commerical retail Commerical lost Industrial retail 1200 Industrial lost Transportation retail Transportation lost 1000GigaWatts 800 600 400 200 0 1950 1960 1970 1980 1990 2000 Year CC ENERGYliteracy.com 2
• US TOTAL Energy Flow, 2008 (Gigawatts) R 6 6 E OTH ND N GE A CK CHA STO M 126 OLEU PETR COAL S7 110 OTHER EXPORT 798 EXPORTS 236 AL 12 D ENTI COAL RESI 23 NATUR 7 A GAS 7 L 750 FOSSIL FUELS FOSSIL AL1 2 07 CI 1937 DOMESTIC FUELS10 COMMERCRUDE OIL1 PRODUCTION 2464 NATURAL GAS8 2790 620 352 SUPPLY 797NGPL 81 2 CTRIC 2 83 3562 INDUSTRIAL12 EAR ELE CONSUMPTION 11 NUCL 3 245 PETROLEUM9 3321 1043 E ABL RE NEW 1242 4 EUM IMPORTS TRANSP PE TROL 1098 NUCLEAR ELECTRIC POWER 283 ORTATIO 921 N 7 RENEWABLE ENERGY3 244 933 5 17 TS OR I MP HER OT 1 9 Includes lease condensate. Petroleum products, including natural gas plant liquids, and crude oil burned as fuel. 2 10 Natural gas plant liquids. Includes 0.04 quadrillion Btu of coal coke net imports. 3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind. 11 Includes 0.11 quadrillion Btu of electricity net imports. 4 Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve. 12 Primary consumption, electricity retail sales, and electrical system energy losses, which are 5 Natural gas, coal, coal coke, fuel ethanol, and electricity. allocated to the end-use sectors in proportion to each sector’s share of total electricity retail 6 Adjustments, losses, and unaccounted for. sales. See Note, “Electrical Systems Energy Losses,” at end of Section 2. 7 Coal, natural gas, coal coke, and electricity. Notes: • Data are preliminary. • Values are derived from source data prior to rounding for 8 publication. • Totals may not equal sum of components due to independent rounding. Natural gas only; excludes supplemental gaseous fuels. Sources: Tables 1.1, 1.2, 1.3, 1.4, and 2.1a. MODIFIED FROM: Energy Information Administration / Annual Energy Review 2008 CC ENERGYliteracy.com 2
• US Electricity Flow, 2008 (GW) CO AL 68 8 CONVERSION LOSSES FOSSIL FUELS 863 942 ENERGY CONSUMED TO NAT URA GENERATE ELECTRICITY L GA 1360 S 2 35 PLANT USE4 28 PETROLEUM 16 TRANSM’N & DISTRIB’N OTHER GASES1 3 LOSSES5 35 GROSS GENERATION 3 C. 28 OF ELECTRICTY EA R ELE NET GENERATION RESIDENTIAL 157 NUCL 497 OF ELECTRICTY END USE 469 442 COMMERCIAL 154 130 A BLE EW INDUSTRIA REN L 112 UNACCOUNTED 4 3 TRANSPORTATION 1 OTHER2 3 NET IMPORTS 4 DIRECT USE6 17 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from generation and delivery to the customer) are estimated as 7 percent of gross generation. 6 fossil fuels. Use of electricity that is 1) self-generated, 2) produced by either the same entity that 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, mi scellaneous technologies, consumes the power or an afﬁliate, and 3) used in direct support of a service or industrial and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived process located within the same facility or group of facilities that house the generating equip- fuels). ment. Direct use is exclusive of station use. 3 Data collection frame differences and nonsam pling error. Derived for the diagram by Notes: • Data are preliminary. • See Note, “Electrical System Energy Losses,” at the subtracting the “T & D Losses” estimateom “T & D Losses and Unaccounted for” derived from fr end of Section 2. • Values are derived from source data prior to rounding for publication. Table 8.1. • Totals may not equal sum of components due to independent rounding. 4 Electric energy used in the operation of power plants. Sources: Tables 8.1, 8.4a, 8.9, A6 (column 4), and Energy Information Administration, 5 Form EIA-923, "Power Plant Operations Report." Transmission and distribution losses (electricity losses that occur between the point of MODIFIED FROM : Energy Information Administration / Annual Energy Review 2008 CC ENERGYliteracy.com 2
• Electricity Grid; Generation by source, Consumption by Sector, 2008 1400 1200 Lost in Source Sector generation 1000 Coal Residential retail transmission Petroleum Residential lost Natural Gas Commerical retail Other Gas Commerical lost NuclearGigaWatts Industrial retail 800 Hydroelectric Wood Industrial lost Transportation retail Waste Transportation lost Geothermal Solar/PV Wind Usable 600 Other Net Imports end user energy 400 200 0 Primary Energy CC ENERGYliteracy.com 2
• Energy (TW) 0 1 2 3 4 5 Ele c tri city Ge n Tra n sp ort ati on Ind us try Co o kin g Air H ea tin Ind g us triAg al St ric ea ult m ure &F ore str y Wa te rH ea ti ng Oil Lig Bio ht Coal Tidal Wind Solar Hydro Dis Nuclear tri bu tio n Geothermal Natural Gas Mi nin g 2007 Energy Consumption - Primary use by fuel type
• Historic Atmospheric CO concentration 2 400CO concentration (ppm) 350 300 250 2 200 150 -400000 -300000 -200000 -100000 0 year
• CO2 concentrations last 1000 years 380 Mauna Loa Direct Measurement Hawaii 360 340CO Level (ppm) CO2 Level (ppm) 320 Ice Core 20 year Average Law Dome Antarctica 300 Ice Core 75 year Average Law Dome Antarctica 280 260 1000 1200 1400 1600 1800 2000 2200 time Year
• 380 370 360CO2 Level (ppm) CO concentration (ppm) 350 340 Mauna Loa Direct Measurement Hawaii 330 320 Ice Core 20 year Average Law Dome Antarctica 310 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 year Year
• Cumulative National CO2 Emissions from Fossil-Fuel Burning, Cumulative national CO2 emissions from fossil-fuel burning, ce- ment manufacture, andand Gas Flaring: 1751-2004 Cement Manufacture, gas flaring: 1751-2004 90 80 1 UNITED_STATES_OF_AMERICA 16 AUSTRALIA 17 CZECHOSLOVAKIA 2 USSR 18 BELGIUM 3 CHINA_MAINLAND 19 SPAIN 4 GERMANY_COMBINE 20 BRAZIL 5 JAPAN_COMBINE 21 REPUBLIC_OF_KOREA 70 6 UNITED_KINGDOM 22 NETHERLANDS 23 ISLAMIC_REPUBLIC_OF_IRANgiga metric tons of carbon 7 YUGOSLAVIA_COMBINE 24 SAUDI_ARABIA 8 FRANCE_INCLUDING_MONACO 25 INDONESIA 26 ROMANIA 9 INDIA 27 DEMOCRATIC_PEOPLES_REPUBLIC_OF_KOREA 60 10 CANADA 28 ARGENTINA 11 POLAND 29 VENEZUELA 12 RUSSIAN_FEDERATION 30 TURKEY 31 UKRAINE 13 ITALY_INCLUDING_SAN_MARINO 32 TAIWAN 14 SOUTH_AFRICA 33 AUSTRIA 50 15 MEXICO 34 SWEDEN 35 HUNGARY 36 THAILAND 37 DENMARK 38 ALGERIA 39 BULGARIA 40 40 EGYPT 41 GREECE 42 SWITZERLAND 43 NIGERIA 44 MALAYSIA 45 FINLAND 30 46 UNITED_ARAB_EMIRATES 47 KAZAKHSTAN 48 IRAQ 49 COLOMBIA 50 PAKISTAN 20 10 0 10 20 30 40 50
• Out of equilibrium Atmosphere Atmosphere ~700 GtC to Ocean +2 / yr 2 GtC/year Soils Carbon to 3000 GtC Atmosphere 8 GtC/year Oceans 40000 GtC Accessible Fossil Fuels 1600 GtC Vegetation 700 GtC
• Temperature Changes around the worldin the last quarter of the 20th centuryTrends in °C per decade -1 - 0.8 - 0.6 - 0.4 - 0.2 0 + 0.2 + 0.4 + 0.6 + 0.8 +1 -1 -0.8 -0.6 -0.4 -0.2 0 +0.2 +0.4 +0.6 +0.8 +1
• We need to commit to thetemperature we want... ? ? ? ? ?
• What tools do we have to do that ?Climate models:Physics and chemistry-based computer models of planet.More than a dozen competing models...Scenarios:Guesses at humanitys reactions: "business as usual vs.change"Typically dont have feedbacks like population...Impact Studies:Ecosystem, geopolitical, and other impacts, as predicted byclimate models and scenarios.Make the most headlines, have the least accuracy...
• Climate models: Physics and chemistry-based computer models of planet 1000 ppm 750 ppm 6.0 650 5.5 ppm 5.0Temperature Rise, degrees Celsius 4.5 550 Entire cities and countries lost to sea level ppm 4.0 500 ppm 3.5 20-50% Species Lost 3.0 450 1-4 Billion people face water shortages ppm 2.5 400 15-40% Species Lost ppm 2.0 2.0 1.5 10% Species Lost 1.0 0.5 Scenarios A1B 0.0 A1T A1FI -0.5 A2 B1 -1.0 B2 IS92a 1700 1800 1900 2000 2100
• Scenarios: Guesses at humanitys reactions: "business as usual vs. change" 1000 ppm 750 ppm 6.0 650 5.5 ppm 5.0Temperature Rise, degrees Celsius 4.5 550 Entire cities and countries lost to sea level ppm 4.0 500 ppm 3.5 20-50% Species Lost 3.0 450 1-4 Billion people face water shortages ppm 2.5 400 15-40% Species Lost ppm 2.0 1.5 10% Species Lost 1.0 0.5 Scenarios A1B 0.0 A1T A1FI -0.5 A2 B1 -1.0 B2 IS92a 1700 1800 1900 2000 2100
• Impact Studies: Ecosystem, geopolitical, and other impacts, as predicted by climate models and scenarios. 1000 ppm 750 ppm 6.0 650 5.5 ppm 5.0Temperature Rise, degrees Celsius 4.5 Entire cities and countries lost to sea level 550 ppm 4.0 500 ppm 3.5 20-50% Species Lost 3.0 450 1-4 Billion people face water shortages 400 ppm Resource wars 2.5 IRREVERSIBLE ppm 15-40% Species Lost 2.0 2.0 90% Coral Reefs Lost FEEDBACKS 10% Species Lost 1.5 1.0 0.5 Scenarios A1B 0.0 A1T A1FI -0.5 A2 B1 -1.0 B2 IS92a 1700 1800 1900 2000 2100
• Climate Wars:- China backed Pakistan vs US backed India, over the Indusriver glacial melt and catchment area.- China and Russia over climate refugees crossing over intoSiberia (note the severe drought at present in north centralChina)- Persian Gulf countries sending in troops to enforce theirproperty rights after land theyd brought in East Africancountries to feed their own populations gets overun by lo-cals desperate for their own land- Tidal surges flood the Nile Delta forcing millions to try andcross borders into Lybia, Sudan, and Israel- Civil War in Nigeria (again) as the densely populated deltaturns saline after regular flooding- Gunboat diplomacy in the Arctic as Russia and Canada tryto enforce economic exclusion zones against the US and EU.
• "Business As Usual" : 800+ ppm Stern Report / EU : 550 ppm This material : 450 ppmWhere we are today : 385 ppmJames Hansen, NASA : 350 ppm ! Pre - Industrial : 290 ppm
• Target Atmospheric CO2: Where Should Humanity Aim? James Hansen, Makiko Sato, Pushker Kharecha, David Beerling, Valerie Masson-Delmotte, Mark Pagani, Maureen Raymo, Dana Royer, James C. ZachosPaleoclimate data show that climate sensitivity is ~3°C for doubled CO2, including only fast feedback processes.Equilibrium sensitivity, including slower surface albedo feedbacks, is ~6°C for doubled CO2 for the range of cli-mate states between glacial conditions and icefree Antarctica. Decreasing CO2 was the main cause of a coolingtrend that began 50 million years ago, large scale glaciation occurring when CO2 fell to 425±75 ppm, a level thatwill be exceeded within decades, barring prompt policy changes. If humanity wishes to preserve a planet similarto that on which civilization developed, paleoclimate evidence and ongoing climate change suggest that CO2will need to be reduced from its current 385 ppm to at most 350 ppm. The largest uncertainty in the targetarises from possible changes of non-CO2 forcings. An initial 350 ppm CO2 target may be achievable by phasingout coal use except where CO2 is captured and adopting agricultural and forestry practices that sequester carbon. Ifthe present overshoot of this target CO2 is not brief, there is apossibility of seeding irreversible catastrophic effects.to preserve a planet similar to that on which civilizationdeveloped...... CO2 will need to be reduced from its current 385 ppmto at most 350 ppm.
• Which would be nicebut...
• Time taken to reach The time is now equilibrium CO emissions peak 0 to 100 years CO stabilisationMagnitude of response CO emissions Today 100 years 200 years 300 years
• Unfortunately results wont be seen on the timescale of necessary actions. Magnitude of response Time taken to reach Sea-level rise from thermal equilibrium expansion and ice melt Centuries to several millenia C0 emissions peak 0 to 100 years Temperature stabilisation: A few centuries CO stabilisation: 100 to 300 years COToday 100 year 200 years 300 years Long-term trends and planetary risks
• IMAGINE YOU COMMITTED TO THIS SCENARIO : 650 550 450ppm +2oC (year2000) 368 Preindustrial 280
• What is implied by a 450ppm CO² target? Atmosphere Atmosphere 600 Gt. to Ocean +0 1-2 GtC/year Soils Carbon to 3000 Gt. Atmosphere 1-2 GtC/year Oceans 40000 Gt. Accessible Fossil Fuels 1600 Gt Vegetation 700 Gt. This is the naive model offered by "% reduction" analysis....
• Effect on CO2 PPM 1 Billion Tons Carbon +0.261 Terawatt Year (COAL) +0.198 1 Terawatt Year (OIL) +0.155 1 Terawatt Year (GAS) +0.112 60 PPM to go (to 450) ... 400 TW years of fossil fuel burning ... 40 years at 10TW, 20 years at 20TW ...
• NATURE | Vol 458 | 30 April 2009 LETTERS A1B a 100% B2 A1T A2 A1FI Very unlikely 90% Scenarios: SRES A1FI 6 Illustrative SRES Unlikely B1 80% 35 SRES 7 EMF reference 14 EMF reference Probability of staying below 2 °C 70% 3 Stern / EQW Probability of exceeding 2 °C 948 EQW More likely Less likely HALVED-BY-2050 than not 60% Climate uncertainties: 2 816 Diff. CS priors 50% Illustrative default CMIP3 and C4MIP than not emulation 12 40% 30% 15 8 Likely 7 11 14 20% 17 6 13 4 16 19 10% 9 3 Very 10 5 2 likely 1 18 0% 0 500 1,000 1,500 2,000 2,500 b Cumulative total CO2 emissions 2000–49 (Gt CO2) L Land use CO2 emissions 2000 to 2006 Gas Oil Coal Total proven fossil fuel reserves e 0 500 1,000 1,500 2,000 2,500 Emitted, available carbon (Gt CO2)Figure 3 | The probability of exceeding 2 6C warming versus CO2 emitted in model emulations exceeding 2 uC is shown as black dashed line. Colouredthe first half of the twenty-first century. a, Individual scenarios’ areas denote the range of probabilities (right) of staying below 2 uC in AR4probabilities of exceeding 2 uC for our illustrative default (dots; for example, terminology, with the extreme upper distribution (12) being omitted.for SRES B1, A2, Stern and other scenarios shown in Fig. 2) and smoothed b, Total CO2 emissions already emitted3 between 2000 and 2006 (grey area)(local linear regression smoother) probabilities for all climate sensitivity and those that could arise from burning available fossil fuel reserves, anddistributions (numbered lines, see Supplementary Information for data from land use activities between 2006 and 2049 (median and 80% ranges,sources). The proportion of CMIP3 AOGCMs26 and C4MIP carbon-cycle8 Methods).
• a Idealized CO2 emission profiles b Composition response to benchmark c Temperature response to benchmark 25 6 800 5 Gigatonnes of carbon per year 20 CO2 concentration (p.p.m.) CO2-induced warming (°C) Likelihood 700 4 15 600 3 10 500 2 400 5 1 300 0 0 2000 2020 2040 2060 2080 2100 1900 2000 2100 2200 2300 2400 2500 1900 2000 2100 2200 2300 2400 2500 Year Year YearFigure 1 | Idealized carbon dioxide emission scenarios and response to distributed quantity, with black line showing 5–95% (horizontal tickmarks:benchmark scenario. a, Emissions, including zero emissions after 2000 17–83%) confidence interval. The dotted red line shows best-fit response to(dotted black line). Solid red and orange lines show scenarios with stabilization scenario. c, Temperature response to benchmark scenario fromcumulative emissions 1750–2500 within 1% of 1 Tt C. Solid red line shows simple model: best fit in red and likelihood profile in grey. Bar on right showsbenchmark case and dotted red line shows the ‘490 p.p.m. stabilization’ likelihood profile for peak warming response to ‘490 p.p.m. stabilization’scenario. b, CO2 concentration response to benchmark scenario with best-fit emissions scenario: in cases where temperatures are still rising in 2500,combination of simple climate model parameters (solid red line) and with equilibrium warming response to 2500 CO2 concentration is plotted.random parameter combinations shaded by likelihood (grey plume). The Diamonds in b and c show observed CO2 concentrations and temperaturesvertical scale bar shows the corresponding likelihood profile for a normally (relative to 1900–1920), respectively.
• We need to stop the talk about "% reductions". It impliesif we only use some % of todays fossil fuel use that we willstabilise the climate. Thats wrong. Theres a known andreasonably predictable amount of carbon left to burn:CO2ppmfuture = CO2ppmcurrent + 0.55 * (0.36*TWyrcoal +0.28*TWyroil + 0.204*TWyrgas)+ GTCdeforestation 1 TWyr = 1 Terawatt Year = 3.16 x 1019 Joules.
• Energy production HumanityUnits shown in Terawatts (TW) 18 TW Gas: 3.2 Coal: 3.6 Nuclear: 0.37 Hydro: 0.36 Wind: 0.06 Solar: 0.016Geothermal: 0.03 Tidal: 0.0005 Plants: 5.2 Oil:5
• Global Energy ConsumptionGlobal Exergy Consumption HumanityUnits shown in Terawatts Units shown in Terawatts (TW) 18 TW Agriculture 3.8 Electricity 1.7 Manufacturing & Industrial 3 Forestry 3 Other 2.5 Chemicals Metabolism Lighting Heating Road Refrigeration & Cooking 2.3 & Rail 2.1
• Known Sources of Energy 18 TWSolar 162 000 TWGravity 3.7 TWHeat 32 TWNuclear 1¹º ZJ
• 18 TW162,000 TW Solar Nuclear fusion radiated to earth. e Renewable Until sun burns out (~5bn years)
• 18 TW3.7 TW Gravity Movement of celestial bodies creates tides. Ocean tides : 3.5 TW Solid earth tides : 0.2 TW e Renewable
• 18 TW32 TW Heat ‘geothermal’ Nuclear materials decaying in earths core + Original heat from gravitational collapse of early earth + Tidal forces. e Renewable
• 18 TW1¹º ZJ Nuclear Earthbound fissionable and fusionable materials. Leftover from formation of universe. e Non-renewable Uranium = 10³ years Thorium = 10² years Deuterium = 10¹º years Lithium = 10⁴ years
• 18 TW 162 000 TWSolar Flux Incident Solar Radiation 38 000 TW Land & Water Heating 5 000 TW Scattering 5 000 TW 41 000 TW Surface Reflection Evaporation 31 000 TW Atmospheric Absorbtion 42 000 TW Atmospheric Reflection
• Global consumptionSources of renewable energy. 18 TW 85 000 TW Surface Solar 3.5 TW Tidal 41 000 TW 38 000 TW 31 000 TW Evaporation Land & Water heating Atmospheric Absorption 300 TW Hydro Clouds3600 TW Wind 25 TW Hydro Land 32 TW Geo thermal 7.2 TW Hydro Rivers 62 TW Ocean surface waves 90 TW Photosynthesis 25 TW Ocean 65 TW Land 3 TW Coastal waves 100 TW Ocean thermal gradient
• What is the challenge?Current Demand:16 TW (IEA)Fossil Fuel:2-3 TWExisting non-carbon:1.5 TWNew Clean Energy:16-(3+1.5) = > 11.5 TW
• 2033 Energy Mix 16 TWUnits shown in Terawatts (TW) (carbon-free) Nuclear: 3 ear Other 2 Geothermal New Nu cl Biofuels: 0.5 0.5 TW Ne w W 3T s uel 2 lF ssi Fossil Fuels: 2TW Fo Existing Nuclear: 1 other m w Ge Ne 2TWExisting Hydro / cl ear Renewables: 0.5 Exi sting Nu 1TW s a ble enew /R Photo Voltaic ydr H o ng 0. Ex isti 5TW Solar 2 Ne wW ind ola r 2TW S ltaic o-Vo ma l hot r Solar Thermal: 2 Wind:2 P The w Ne olar 2TW wS Ne 2TW
• 2 TW New Photo Voltaic Photo Voltaic 100m² 100m² 100m² ² ² 100m m² 100m m ² ² m² 0m 100 100 m² m² 0 10 ² 00 10 0m 0 ² m 10 1 ² 0 m 10 ² 10 m 0 ² ² 0 10 m 10 m 0 . 0 10 sec ² ² 10 0m m 1 00 m² 10 m² 1 00 00 1 1 ² ² 0m 0m 10 10 m² m² 100 100 ²² 100m 100m 100m²100m²100m² 100m² 100 m² of solar cells 100m²100m²² 100m 100m ² every second for the next 100 100 m m ² 25 years. 15% efficiency, ² 10 10 0 0 m² m² 10 10 0 0 m² well sited. m² 10 10 0 0 10 m m 10 ² ² 0 0 m m 10 ² 10 ² 0 1 0 m 10 00 m 1 ² 10 00 0 ² m 10 10 m ² 100 0 100 m² ² 100m 0m 100m m² 100m² 100m² 100m² 0m² m² ² ² m ² ²
• 2 TW New Solar Thermal Solar Thermal 50m² 50 m ² 50 m ² ² ² 50 m ² 50 m ² 50 m 50 m m² m² ² 50 m² m 50 ² 50 m ² 50 m 50 ² 50 m ² m 0 ² ² 0 . 5 m sec m 5 0 0 5 ² ² 5 0m 1 m 50 5 m² m² 50 50 m² m² 50 50 ² ² 50 m50 m ² ² 50 m 50 m 50 m ²50 m ²50m²50 m ² 50m² 50 m ²  25 years 50 m² of solar thermal² 50 m 50 m ² mirrors every second for 50 m 50 m ² ² 50 the next 25 years. 30% 50 m² m² 50 50 m² m² 50 efficiency, well sited. 50 m m 5 ² ² 5 0 0 m m ² 5 ² 5 0 0 m 50 50 m ² 50 ² m 50 m 50 ² 50 m² ² 50 m m² 50 m 50 m 50 m m² 50 m ² 50 m ² 50m² m² ² ² ² ²
• 2 TW New Wind Wind ter er met me Dia Dia m m 100 100 er et er et am Di am Di m 0 m 10 0 10 . 6 min100m Diameter 100m Diameter 10 10 0 12 3MW wind turbines in m m 0 Di great locations every hour. Di am am et et er er Or one 100m diameter 100 100 m m Dia Dia turbine every 5 minutes … me met ter er
• 3 TW New Nuclear NuclearMarchSUN MON TUE WED THU FRI SAT 12 3 4 5 6 7 89 10 12 13 14 15 16 1x 3GW Nuclear plant17 18 19 20 21 22 23 every week for the next 25 years.24 25 26 27 28 29 3031
• 2 TW Geothermal GeothermalMarchSUN MON TUE WED THU FRI SAT 12 3 4 5 6 7 8 3x 100MW steam turbines9 10 12 13 14 15 16 every day for17 18 19 20 21 22 23 next 25 years.24 25 26 27 28 29 3031
• 0.5 TW carbon (net zero) biofuels? Biofuel 1250m² 1250m² 1250m² m² m² ² ² 0m 0m ² 1250 1250 m² 0m m² 125 m² 125 50 25 ² 50 0m 50 ² 12 m 1 12 ² 50 12 5 m ² m 12 0 ² 12 0 25 ² m 25 m 0 1 0 25 ² . 1 25 sec ² 0m m 1 1 50 512 m² 12 m² 1 50 50 12 12 m² ² 50 0m 12 1 25 m² ² 250 0m 125 1 m² m² 1250 1250 1250m²1250m²1250m² 1250m² 1250 m² or 1 olympic 1250m²1250m²m² 1250 1250 m² swimming pool of algae 125 125 0m 0m ² every second for the next ² 12 12 50 50 m² m² 12 12 50 50 12 m² 25 years. 12 m² 50 50 1 1 25 m 25 m ² ² 0 0 1 m m 1 25 ² ² 25 12 12 0 0 12 m 50 12 m 50 ² 12 12 ² 5 m 125 50 125 m 0m 1250 ² 50 1250 1250m² 1250m² 1250m² 50 ² m² ² m² 0m m² 0m m² m² ² ²
• 110 bn cans / year...= 200 GW solar thermal / year.
• 9 Nokia phones every second.Nokia + INTEL + AMD + + for solar PV?
• GM = 1 car every 2 minutes.GM + FORD = 1 wind turbine every 5minutes?
• Retooling for WWII.More than 300 000 aircraftwere built in the US between1939 and 1945.
• GLOBAL POWER CONSUMPTION, TW 15 10 10 TW in last 40 years! 5 0 1965 1970 1975 1980 1985 1990 1995 2000 2005
• Renewable Power Density MapsPhotosynthesis Precipitation (ultimately hydro electic) PhotosynthesisSolar Radiation Wind - 50m Precipitation (ultimately hydro-electric) 80 240 400 560 720 W/m^2 80 240 400 560 720 W/m^2 Solar radiation Solar radiation 80 240 400 560 720 W/m^2 80 240 400 560 720 W/m^2
• Renewable Power Density Maps (compared to wind) Photosynthesis Precipitation (ultimately hydro electic) Solar Radiation Wind - 50m 80 240 400 560 720 W/m^2 80 240 400 560 720 W/m^2 20 40 60 80100120140160 80 240 400 560 720 W/m^2180 50 100 150 200 250 300 350 80 240 400 560 720 W/m^2
• SOLAR CONSTANT = 2 1366 Watts / m . ATMOSPHERIC LOSSES. DAY / NIGHT LOSSES. CLOUD / WEATHER LOSSES. GEOGRAPHY (LATITUDE). INSOLATION = 2 90-300 Watts / m . TECHNOLOGY EFFICIENCY 10 - 40%. PV : 50% CST : 25% LAND AREA COVERAGEACTUAL SOLAR PHOTONS TO ELECTRONS = 10-20 Watts / m2.
• 100m diameter = 3MW rated.33% capacity factor = 0.33 x 3 = 1MWSpacing = 10 diameters apart.Actual power density by land area = 1MW / 1km21-2W/m2 of land.
• Hydroelectricity:Lake Mead : 639km2Hoover Dam : 1860MW1860000000 / 639 000 000 = 2.9 W/m2
• Bio-fuelsLake Mead : 639km2Algae, 3% efﬁcient photo-conversion.2-3 W/m2
• Land area by country represented as scaled stripes
• 1TW Bio 2TW PV 1TW Hydro 2TW Solar Thermal 2TW Wind
• biofuels 1TWChile
• hydro 1TWMontana
• photo voltaicsItaly 1TW 1TW
• solar thermalNew Zealand 1TW 1TW
• wind 1TW 1TWSouth Africa
• 1 Joule of fossil energy used produces 4.9x10 -21 ppm increase.How many ppm to replace every gasoline car in the world (1bN) with a1000kg electric vehicle? = 0.49 ppmHow many ppm for 250 million new green homes? = 8.9 ppmHow many ppm for installing :5TW solar = 6.1 ppm3TW wind = 0.55 ppm2TW geothermal = 0.49 ppmSo there is + 19 ppm right there. Scary.Might be good to ask questions of form:How many ppm for 6 bN new laptops? = 0.05 ppm6 bN cellphones? = 0.03 ppm6 bN 100 Watt lightbulbs burning for 1 year? = 0.2ppm
• Put yourself back into the picture :16 000 000 000 000 Watts = 2 400 Watts per person. 6 650 000 000 People
• SFO TO LHR 41 W W W 60 LHR- 3W 4 SF 30 TS 29 SF O ER ATL HE 3 O-A H TH DS LIG ED SFO L-A -ATL 60 W O -SF A TL T NT O W W O EE 1 M R -CP A 4 OU S- 410 W O1 K- TR A 160 AT O E W 0W S AS H5 CC G IC 4 L- N G ST GY S -H W N-A W 10 JU ER W FO O 4 W 3 N N ER W 3 W NO -O 57 E H S A 1 S IR W OT S LE FA 0 SF K W 5 W 56 2 C F BO O- BO 0 HH A E HI S-A ICE W S V V S- S G V. AN R W SF 21 O ER -SE 0 OA O 21 0 W G T L 10 OA K DC -DC V E TA E K-O 0W 8W S NS RD -O 18 S PO FE -M ON AK 18 W 0 OD 40 W E -QU GO 3 D QU E-D E2 0W ITE ION TW 10 WH UCAT 60 W -SF W ED ANCE O2BUR-O SFO 10 W FIN AK 20 -JFK 80 W W OAK-BUR 200 RE 6 20 W JFK-SFO W HCA 200 W H EALT SFO-BO W BOS-ORD S 210 W TION 110 70 W RECREA ORD-SFO 14 0W HOUSE 260 W SFO-JFK 200 W JFK-SFO 200 W 230 W MISCSTU SJC-SJO FF1000 W 0W JC 23 SJO-S 0W BOO IJ 28 KS S JC-V W WA 130 80 STE W C2 BIK DIS -SJ NE ES PO TEXT VIJ WS 6 WW SA L 9 ILES EL 18 A EC 0 W TER 1 W T 90 W TR 60 RAN W ON W SPO 1 40 CO IC S2 RTT OM D1 M PU 50 E 4 SY W 0W O- TE SF RS BO W 70 0 AT 0 CA 31 W W S RS R 0 50 0W WO -D 31 56 W W O WO ERTI 28 FO SF RK 0W AG IN 0 80 HILU 150 W -S TE W 0W RK K HE W 0W O2 .F OA SHOWERS GAS 70 W 0W COOKING GAS 30 W DR RN 31 EL AT 100 X 16 ET O- F MA 24 HT EC 20 TAXIORRENTAL 47 K-S W SF 70 SIG LIZ TER 0W TR YV OA W IC ER A IN UGG A TACO PRIN 41 OTA 50 ND 0W EB GE S W TOY HO DUN TOYOT AG AG PEST 0 W 0 W DOD . FO CTR ES AG .E CO . BE SS LE ICID FF SU ER CE ILF OTHER EE LIGHTS GA STERE FR LAPTOP COMPU &W W RE FRIDGE DA UE 0 W HEATIN IC R UIT 50 W S 3 2 FA AL IRY LS ME INE 20 4 TS ,V S& ELEC 8 O ELEC AT 80 ELEC 7 EG AN GGS 10 6 TER EL ELEC 1 G GAS 4 GR TS 9 ELEC 3 &E W DO &N W AIN U IL 0W W S 1W EC 10 16 0W 10 00 W W 0W 0W 0W W W
• My New Life LOCAL STEP 4 My New Life air travel: 983 2291 Watts car: 258 food: 376 stuff: 254 bike ferry: 158 home heating: 25 home electric: 90 work heat: 25 work electric: 100 society: 22
• Saul Griffith. 2010: LOCAL STEP 4 13,777 Mi. 2,000 kg CO2 My New LifeSaul Griffith. 2010 : 13,777 Miles. 983 Watts Watts 2,000 kg CO2 983 equivalent. Previous Air Travel
• Sauls new driving habits LOCAL STEP 4 My New Life 258 Watts Previous Driving6 Trips / yearin-Laws,SebastopolHybrid Honda55 MPG 2 Trips / Month Alameda Hybrid Honda 55 MPG 1 Trips / Month Mountain View Diesel Sprinter 18 MPG 2 Trips / year Waddell Creek, Surfing Dune Buggy 25 MPG
• Saul’s new life LOCAL STEP 4 My New Life 376 Watts Previous Food Milk Cheese: 15 W 772 Watts Fertilizer: 31 W Meat & Fish: 32 W Wine: 38 W Farming: 50 WTransportation: 60 W Vegetables: 150 W
• Sauls stuff, old life vs. new life LOCAL STEP 4 My New Life1/10th as much stuff lasting 10 times as long. Old stuff: 2500 W New stuff: 250 W 369
• Consumption FactsContainer Mass 1.58oz (44.9g)Components per container 3Embodied Energy Per ContainerTotal 4,609,420 JoulesPETE 38.81g 3,962,400 JoulesHDPE 4.83g 497,500 JoulesCellulosic 1.34g 149,520 JoulesRecycle rate 23%Landfill rate 43%Energy recovery rate 16%Lost to environmental waste 18%Personal Energy Footprint % Daily Value*Total 4.54%Transport (avg.estimated) 0.69%Manufacture 0.46%Embodied Energy 2.67%Refrigeration (avg.estimated) 0.71%* Personal Energy Footprint is based on a recommended 2000Watt lifestyle.The average US consumer has a 11400 Watt lifestyle.! Consuming this product daily is equivalent to increasing yourenergy footprint by 90 Watts.Also contains per bottlePlasticizers 43mg†Estrogen 0.12mg†Carcinogenic Dye 0.19mg†† Safe daily values not yet established.
• Item and material 1960 1965 1970 1975 1980 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998MILLIONS OF TONNESWaste generated 87.8 103.4 121.9 128 151.5 164.4 170.7 178.1 184.2 191.4 205.2 204.6 208.9 211.8 214.2 211.4 209.2 216.4 220.2 Per person per day (lb.). 2.7 3 3.3 3.3 3.7 3.8 3.9 4 4.1 4.2 4.5 4.4 4.5 4.5 4.5 4.4 4.3 4.4 4.5Materials recovered 5.9 6.8 8.6 9.9 14.5 16.4 18.3 20.1 23.5 29.9 33.6 37 40.6 43.8 50.8 54.9 57.3 59.4 62.2 Per person per day (lb.). 0.18 0.19 0.23 0.25 0.35 0.38 0.42 0.45 0.52 0.7 0.7 0.8 0.9 0.9 1.1 1.1 1.2 1.2 1.3Combustion for energy recovery (NA) 0.2 0.4 0.7 2.7 7.6 9.6 16 24.5 27.1 29.7 30.1 30.5 30.9 31.2 34.5 36.1 36.7 37 Per person per day (lb.). (NA) 0.01 0.02 0.02 0.06 0.17 0.22 0.36 0.59 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8Combustion without energy recovery. 27 26.8 24.7 17.8 11 4.1 3 2 1 2 2.2 2.2 2.2 1.6 1.3 1 -1 -1 -1 Per person per day (lb.). 0.82 0.75 0.66 0.45 0.27 0.1 0.07 0.05 0.02 0.04 0.05 0.05 0.05 0.03 0.03 0.02 -1 -1 -1Landfilled, other disposal. 54.9 69.6 88.2 99.7 123.3 136.4 139.8 140 135.1 132.4 139.7 135.3 135.7 135.5 130.9 120.9 115.8 120.4 121.1 Per person per day (lb.). 1.7 2.1 2.4 2.5 3 3.13 3.18 3.15 3.02 2.9 3.1 2.9 2.9 2.9 2.8 2.5 2.4 2.5 2.5PERCENT CHANGE FROMPRIOR YEARWaste generated (NA) 15.1 15.2 4.8 15.5 7.8 3.7 4.2 3.3 3.8 6.4 -0.3 2.1 1.4 1.1 -1.3 -1 3.5 1.8 Per person per day . (NA) 11.3 8.3 -0.3 10.7 3.2 2.8 3.2 2.7 2.8 8.1 -1.4 1 0.3 0.2 -2.2 -1.9 2.5 0.8Materials recovered (NA) 13.2 20.9 13.1 31.7 11.6 10.4 9 14.5 21.4 8.3 10.3 9.5 8 15.9 8.2 4.4 3.6 4.7 Per person per day . (NA) 5.3 17.4 8 28.6 7.9 9.5 6.7 13.5 21.2 2.8 9.1 8.3 6.9 14.8 7.2 3.4 2.6 3.7Combustion for energy recovery (NA) (NA) 50 42.9 74.1 64.5 20.8 40 34.7 9.6 2.8 1.5 1.4 1.1 1.1 10.7 4.5 1.7 0.8 Per person per day . (NA) (NA) 50 0 66.7 64.7 22.7 38.9 39 1.7 6 0.4 0.3 0 0.1 9.7 3.5 0.7 -0.1Combustion without energy recovery. (NA) -0.7 -8.5 -38.8 -61.8 -168 -36.7 -50 -100 50 10.1 -1.8 -1.8 -24.5 -20.2 -23.1 -1 -1 -1 Per person per day . (NA) -9.3 -13.6 -46.7 -66.7 -170 -42.9 -40 -150 50 17.1 -2.9 -2.9 -25.3 -21 -23.8 -1 -1 -1Landfilled, other disposal. (NA) 21.1 21.1 11.5 19.1 9.6 2.4 0.1 -3.6 -2 3 -3.2 0.3 -0.2 -3.4 -7.6 -4.2 3.9 0.6 Per person per day . (NA) 18.5 13.5 6.7 14.5 5.1 1.6 -1 -4.3 -3.1 4.6 -4.2 -0.8 -1.2 -4.3 -8.5 -5.1 2.9 -0.4Percent distribution of generation: Paper and paperboard.. 34.1 36.8 36.3 33.6 36.1 37.4 38.4 39.1 38.9 37.6 35.4 34.7 35.5 36.6 37.7 38.6 38.1 38.5 38.2 Glass.. 7.6 8.4 10.4 10.5 9.9 8 7.6 6.9 6.8 6.7 6.4 6.2 6.3 6.4 6.2 6.1 5.9 5.5 5.7 Metals. 12 10.7 11.6 11.2 9.6 8.6 8.5 8.3 8.3 8.2 8.1 8.1 7.7 7.5 7.6 7.5 7.7 7.7 7.6 Plastics.. 0.5 1.4 2.5 3.5 5.2 7.1 7.2 7.5 7.8 8 8.3 8.7 8.8 9 9 8.9 9.4 9.9 10.2 Rubber and leather.. 2.3 2.5 2.6 3 2.8 2.3 2.5 2.5 2.5 2.4 2.8 2.9 2.8 2.7 2.9 2.9 3 3 3.1 Textiles 1.9 1.8 1.6 1.7 1.7 1.7 1.6 2.1 2.1 2.9 2.8 3 3.2 3.2 3.4 3.5 3.7 3.8 3.9 Wood. 3.4 3.4 3.3 3.4 4.4 5 5.3 5.5 6.1 6.1 6 6.2 5.9 5.8 5.3 4.9 5.2 5.3 5.4 Food wastes.. 13.9 12.3 10.5 10.5 8.7 8 7.7 7.4 7.2 6.9 10.1 10.2 10.1 10 10 10.3 10.4 10.1 10 Yard wastes.. 22.8 20.9 19 19.7 18.2 18.2 17.7 17.4 17.2 18.1 17.1 17.1 16.8 15.7 14.7 14 13.3 12.8 12.6 Other wastes 1.6 1.8 2.2 2.9 3.4 3.6 3.4 3.3 3.1 3.1 3 3.1 2.9 3 3.2 3.3 3.3 3.4 3.3
• Item and material 1960 1965 1970 1975 1980 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998MILLIONS OF TONNES Waste generated, total. 87.8 103.4 121.9 128.1 151.5 164.4 170.7 178.1 184.2 191.4 205.2 204.6 208.9 211.8 214.2 211.4 209.2 216.4 220.2Paper and paperboard . 29.9 38 44.2 43 54.7 61.5 65.6 69.6 71.7 71.9 72.7 71 74.3 77.4 80.8 81.7 79.7 83.3 84.1Ferrous metals . 9.9 10.1 12.6 12.3 11.6 10.9 11.1 11.3 11.6 12 12.6 12.7 12.1 11.9 11.8 11.6 11.8 12.3 12.4Aluminum . 0.4 0.5 0.8 1.1 1.8 2.3 2.4 2.4 2.5 2.5 2.8 2.8 2.9 2.9 3 3 3 3 3.1Other nonferrous metals. 0.2 0.5 0.7 0.9 1.1 1 1 1.1 1.1 1.2 1.1 1.1 1.1 1.1 1.4 1.3 1.3 1.3 1.4Glass . 6.7 8.7 12.7 13.5 15 13.2 13 12.3 12.5 12.9 13.1 12.6 13.1 13.6 13.4 12.8 12.3 12 12.5Plastics . 0.4 1.4 3.1 4.5 7.9 11.6 12.2 13.4 14.4 15.4 17.1 17.7 18.4 19 19.3 18.9 19.8 21.5 22.4Yard waste. 20 21.6 23.2 25.2 27.5 30 30.2 31 31.6 34.7 35 35 35 33.3 31.5 29.7 27.9 27.7 27.7Other wastes. 20.3 22.6 24.6 27.6 31.9 33.9 35.2 37 38.8 40.8 50.7 51.7 52.1 52.5 53.1 52.4 53.5 55.3 56.7PERCENT CHANGE FROMPRIOR YEAR Waste generated, total. (NA) 15.1 15.2 4.8 15.4 7.8 3.7 4.2 3.3 3.8 6.7 -0.3 2.1 1.3 1.1 -1.3 -1 3.3 1.7Paper and paperboard . (NA) 21.3 14 -2.8 21.4 11.1 6.2 5.7 2.9 0.3 1.1 -2.5 4.4 4.1 4.2 1 -2.5 4.3 1Ferrous metals . (NA) 2 19.8 -2.4 -6 -6.4 1.8 1.8 2.6 3.3 5.1 0.1 -4.8 -1.4 -1.2 -1.2 1.6 4.1 0.3Aluminum . (NA) 20 37.5 27.3 38.9 21.7 4.2 0 4 0 11 1.2 0.9 2.1 3.5 -2.7 -0.3 2 2.3Other nonferrous metals. (NA) 60 28.6 22.2 18.2 -10 0 9.1 0 8.3 -9.1 2.6 -0.8 -0.9 17.8 -7.1 0 0.8 8Glass . (NA) 23 31.5 5.9 10 -13.6 -1.5 -5.7 1.6 3.1 1.6 -4.1 4.1 3.6 -2 -4.1 -4.4 -2.3 3.5Plastics . (NA) 71.4 54.8 31.1 43 31.9 4.9 9 6.9 6.5 10.1 3.3 3.8 3 1.5 -1.9 4.4 8 4Yard waste. (NA) 7.4 6.9 7.9 8.4 8.3 0.7 2.6 1.9 8.9 0.9 0 0 -5.3 -5.6 -6.1 -6.3 -0.7 0Other wastes. (NA) 10.2 8.1 10.9 13.5 5.9 3.7 4.9 4.6 4.9 19.5 2 0.6 0.9 1 -1.2 2.1 3.3 2.5 Materials recovered, total . 5.9 6.8 8.6 9.9 14.5 16.4 18.3 20.1 23.5 29.9 33.6 37 40.6 43.8 50.8 54.9 57.3 59.4 62.2Paper and paperboard . 5.4 5.7 7.4 8.2 11.9 13.1 14.8 16.3 18.4 19.1 20.2 22.5 24.5 25.5 29.5 32.7 33.2 33.6 35Ferrous metals . 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.4 0.7 1.5 2.6 3.1 3.4 3.9 4 4.1 4.4 4.7 4.3Aluminum . 0 0 0 0.1 0.3 0.6 0.6 0.7 0.8 0.9 1 1 1.1 1 1.2 0.9 0.9 1 0.9Other nonferrous metals. 0 0.3 0.3 0.4 0.5 0.5 0.6 0.6 0.7 0.8 0.7 0.7 0.7 0.7 1 0.8 0.8 0.8 0.9Glass . 0.1 0.1 0.2 0.4 0.8 1 1.1 1.3 1.5 2.5 2.6 2.6 2.9 3 3.1 3.1 3.2 2.9 3.2Plastics . 0 0 0 0 0 0.1 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1 1.1 1.1 1.2Yard waste. 0 0 0 0 0 0 0 0 0.5 3.5 4.2 4.8 5.4 6.9 8 9 10.4 11.5 12.6Other wastes. 0.3 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 1.3 1.8 1.9 2 2.1 3.1 3.2 3.3 3.8 4.1 Percent of generation recovered, total. 6.7 6.6 7.1 7.7 9.6 10 10.7 11.2 12.8 15.6 16.4 18.1 19.4 20.7 23.7 26 27.4 27.4 28.2Paper and paperboard . 18.1 15 16.7 19.1 21.8 21.3 22.6 23.4 25.6 26.6 27.8 31.7 33 32.9 36.5 40 41.6 40.3 41.6Ferrous metals . 1 1 0.8 1.6 3.4 3.7 3.6 3.5 5.8 12.6 20.4 24.1 27.7 32.8 33.9 35.5 37.2 38.4 35.1Aluminum . 0 0 0 9.1 16.7 26.1 25 29.2 31.7 35.5 35.9 35.5 38.7 35.7 37.8 31.4 31.5 31.6 27.9Other nonferrous metals. 0 60 42.9 44.4 45.5 50 60 54.5 65.1 68.3 66.4 65.5 63.4 63.1 73.3 64.3 66.7 65.4 67.4Glass . 1.5 1.1 1.6 3 5.3 7.6 8.5 10.6 12 19.5 20 20.3 22 22.1 23.3 24.5 25.8 24.3 25.5Plastics . 0 0 0 0 0 0.9 0.8 0.7 1.1 1.7 2.2 2.5 3.3 3.5 4.9 5.2 5.4 5.2 5.4Yard waste. 0 0 0 0 0 0 0 0 1.6 10 12 13.7 15.4 20.8 25.4 30.3 37.2 41.4 45.3Other wastes. 1.5 2.7 2.4 2.2 1.9 2.1 2 1.9 1.8 3.2 3.6 3.7 3.9 4 5.9 6.1 6.2 6.8 7.3
• If the average Americanwere to leave home eachmorning with a backpackfull of the fuel they need-ed for their day:Oil = 31 kg, 67 lb.Coal = 29 kg, 64 lb.Gas = 6 kg, 12 lb.
• US Oil Use Per Day : 20 730 000 barrels = 870 660 000 Gallons / Day443 000 000 + 441 000 000 = 884 000 000 Gallons in Twin Towers.We burn this much oil every day. Barrel Of Oil 42 Gallons.
• What if I wanted togenerate my ownpower?\$40 000 ?
• Land area per person in USA 160 140 equal land area per person globally represented as square Land area per person globally 120 100meters 80 60 Average US of land required land required for watts by solar sauls squarecitizen square of for his watts generatedgenerated by solar 40 Land area required to produce my power consumption with solar. Land area for average US citizen by solar. 20 global average persons square of land to generate their energy with renewables Land area for average global citizen by solar. 0 0 20 40 60 80 100 120 140 160 meters
• USA Per Capita Power consumption vs. Year 12000 10000 8000Watts 6000 4000 2000 0 1800 1850 1900 1950 2000 Year
• 2400 Watt thinking: 100 mpg ?20 Miles per day. 500Watts.
• 55 100mph kph
• 90 80 70 Honda Insight 60 MPG 50 40 30 20 10 20 25 30 35 40 45 50 55 60 65 70 75 MPH25mph 35 mph 45 mph 55 mph 65 mph 75 mph 85 mph
• TRAVEL IN A VACUUM. MAKE IT SMALL. MAKE IT FISH SHAPED. MAKE IT SLOW.
• MAKE IT INSULATE. MAKE IT COLD. MAKE IT SMALL. MAKE THICK WALLS.
• US energy consumption (TeraWatts)3.5 Sep.11.2001.3 Recession.2.5 Oil Crises.21.5 Depression.10.50 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 "The Game Plan" slideset release 1.01, March 21 2008 67
• 3 important questions: 3.5 How much energy should Sep.11.2001. the US use? 3 The world use? Renewables. Recession. 2.5 Oil Crises. What should be the mix of Nuclear. that energy? 2 Carbon vs. non-carbon. Oil. ? 1.5 1 How do you keep a working economy (or Gas. any economy), or a high 0.5 quality of life while doing Coal. that? 01970 1980 1990 2000 2010 2020 2030 2040