Your SlideShare is downloading. ×
Technical InformationProline Prosonic Flow B 200Ultrasonic flow measuring systemThe device for accurate, reliable biogas m...
Table of contents                                                                                                         ...
Proline Prosonic Flow B 200                              Document informationSymbols used                  Electrical symb...
Proline Prosonic Flow B 200                            Symbol              Meaning                                        ...
Proline Prosonic Flow B 200                                          [ft/s]      [m/s]                                    ...
Proline Prosonic Flow B 200                      InputMeasured variable     Direct measured variables                     ...
Proline Prosonic Flow B 200Input signal                  HART protocol                              To increase the accura...
Proline Prosonic Flow B 200                  Assignable measured           •   Volume flow                  variables     ...
Proline Prosonic Flow B 200                              Pulse/frequency/switch output                              Pulse ...
Proline Prosonic Flow B 200                                  Rb [W]                                                       ...
Proline Prosonic Flow B 200                              Option C                    • 4-20mA HART                   Unom ...
Proline Prosonic Flow B 200                         Option B                               4-20mA HART                    ...
Proline Prosonic Flow B 200                              HART load                         • Min. 250 Ω                   ...
Proline Prosonic Flow B 200                                     Option C 1)                      4-20 mA HART (passive)   ...
Proline Prosonic Flow B 200Electrical connection         Connecting the transmitter                                       ...
Proline Prosonic Flow B 200                      1                                                 2                      ...
Proline Prosonic Flow B 200Potential equalization        No special measures for potential equalization are required.     ...
Proline Prosonic Flow B 200Maximum measured error   In addition to the values indicated, the measured error at the current...
Proline Prosonic Flow B 200                              Temperature coefficient at         0.02 %/10 K, max. 0.35 % over ...
Proline Prosonic Flow B 200                                                                  Orientation                  ...
Proline Prosonic Flow B 200                                Two-path version: DN 100 to 200 (4 to 8")                      ...
Proline Prosonic Flow B 200                            Pressure loss                            The pressure loss for flow...
Proline Prosonic Flow B 200                              Order code for "Output", option B "4-20mA HART, pulse/frequency/s...
Proline Prosonic Flow B 200Vibration resistance            Class 4M4, in accordance with EN 60721-3-4Electromagnetic compa...
Proline Prosonic Flow B 200                              Flange connection according to ASME B16.5                        ...
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Ultrasonic flowmeter-Biogas measurement
Upcoming SlideShare
Loading in...5
×

Ultrasonic flowmeter-Biogas measurement

419

Published on

Ultrasonic flowmeter for accurate, reliable biogas measurement under variable process conditions. Email: lam.nguyen@vietan-enviro.com HP: 0945 293292

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
419
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Ultrasonic flowmeter-Biogas measurement"

  1. 1. Technical InformationProline Prosonic Flow B 200Ultrasonic flow measuring systemThe device for accurate, reliable biogas measurement undervariable process conditionsApplication Your benefits• Reliable measurement of wet biogas, digester gas and Biogas measurement for a wide range of applications landfill gas under low process pressure, low flow with optional real-time measurement of the biogas rates and varying gas compositions. methane fraction combined with genuine loop-powered• The Ultrasonic measuring principle is unaffected by technology. the gas composition. Sizing - correct product selectionDevice properties: Applicator - the reliable, easy-to-use tool for selecting• Medium temperature: 0 to 80 °C (32 to 176 °F) and sizing measuring devices for every application• Process pressure: max. 10 bar (145 psi) Installation - simple and efficient• Nominal diameter: DN 50 to 200 (2 to 8") • Short inlet and outlet runs• Accuracy: • Reduced wiring thanks to loop-powered technology – Volume flow: ±1.5 % o.r. – Methane: ±2 % abs. (optional) Commissioning - reliable and intuitive• Loop powered transmitter made of aluminum or Guided parameterization ("Make-it-run" Wizards) stainless steel Operation - increased measurement availability• Graphical local display with operation from the • Multivariable measurement: volume flow and, outside (Touch Control) optionally, methane fraction and temperature• Communication via 4-20 mA HART • No pressure loss• Ex approvals accepted worldwide: ATEX, IECEx, • Diagnostic capability CCSAUS, NEPSI (intrinsically safe or explosion proof • Automatic data restore by HistoROM design) Cost-effective Life Cycle Management by W@MTI01018D/06/EN/02.1271196568
  2. 2. Table of contents Proline Prosonic Flow B 200Table of contentsDocument information . . . . . . . . . . . . . . . . . . . . . . . . 3 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Symbols used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Medium temperature range . . . . . . . . . . . . . . . . . . . . . . . 24 Pressure-temperature ratings . . . . . . . . . . . . . . . . . . . . . . 24Function and system design . . . . . . . . . . . . . . . . . . . . 4 Flow limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Pressure loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Measuring principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 System pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Measuring system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Thermal insulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Measured variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Mechanical construction . . . . . . . . . . . . . . . . . . . . . 25 Design, dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Measuring range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Operable flow range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Process connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Output signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Operability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Operating concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Signal on alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Local operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Remote operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Ex connection data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Low flow cut off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Galvanic isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Certificates and approvals . . . . . . . . . . . . . . . . . . . . 37Protocol-specific data . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 CE mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 C-Tick symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Ex approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Pressure Equipment Directive . . . . . . . . . . . . . . . . . . . . . . 38Terminal assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Other standards and guidelines . . . . . . . . . . . . . . . . . . . . . 38Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . 39Power supply failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Application packages . . . . . . . . . . . . . . . . . . . . . . . . 39Potential equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Diagnostics functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Cable entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Cable specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Device-specific accessories . . . . . . . . . . . . . . . . . . . . . . . . 39 Communication-specific accessories . . . . . . . . . . . . . . . . . . 40 Service-specific accessories . . . . . . . . . . . . . . . . . . . . . . . . 41Performance characteristics . . . . . . . . . . . . . . . . . . . 17 System components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Reference conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Maximum measured error . . . . . . . . . . . . . . . . . . . . . . . . 18Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Standard documentation . . . . . . . . . . . . . . . . . . . . . . . . . 42Influence of ambient temperature . . . . . . . . . . . . . . . . . . . 18 Supplementary device-dependent documentation . . . . . . . . . . 42Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Registered trademarks . . . . . . . . . . . . . . . . . . . . . . . 42Mounting location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Inlet and outlet runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Special mounting instructions . . . . . . . . . . . . . . . . . . . . . . 21Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Ambient temperature range . . . . . . . . . . . . . . . . . . . . . . . 22Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Degree of protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Shock resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Vibration resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Electromagnetic compatibility (EMC) . . . . . . . . . . . . . . . . . 242 Endress+Hauser
  3. 3. Proline Prosonic Flow B 200 Document informationSymbols used Electrical symbols Symbol Meaning Direct current A0011197 A terminal to which DC voltage is applied or through which direct current flows. Alternating current A0011198 A terminal to which alternating voltage is applied or through which alternating current flows. Direct current and alternating current A0017381 • A terminal to which alternating voltage or DC voltage is applied. • A terminal through which alternating current or direct current flows. Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system. A0011200 Protective ground connection A terminal which must be connected to ground prior to establishing any other connections. A0011199 Equipotential connection A connection that has to be connected to the plant grounding system: This may be a potential A0011201 equalization line or a star grounding system depending on national or company codes of practice. Symbols for certain types of information Symbol Meaning Allowed Indicates procedures, processes or actions that are allowed. A0011182 Preferred Indicates procedures, processes or actions that are preferred. A0011183 Forbidden Indicates procedures, processes or actions that are forbidden. A0011184 Tip Indicates additional information. A0011193 Reference to documentation Refers to the corresponding device documentation. A0011194 Reference to page Refers to the corresponding page number. A0011195 Reference to graphic Refers to the corresponding graphic number and page number. A0011196 Symbols in graphics Symbol Meaning 1, 2, 3,... Item numbers , , … Series of steps A, B, C, ... Views A-A, B-B, C-C, ... Sections Flow direction A0013441Endress+Hauser 3
  4. 4. Proline Prosonic Flow B 200 Symbol Meaning Hazardous area - Indicates a hazardous area. A0011187 Safe area (non-hazardous area) . Indicates a non-hazardous area. A0011188 Function and system designMeasuring principle A Prosonic Flow inline flowmeter measures the flow rate of the passing fluid by using sensor pairs located on opposite sides of the meter body and at an angle so that one of the sensors in the pair is slightly downstream. The design is non-invasive and does not have any moving parts. The flow signal is established by alternating an acoustic signal between the sensor pairs and measuring the time of flight of each transmission. Then utilizing the fact that sound travels faster with the flow versus against the flow, this differential time (D T) can be used to determine the fluids velocity between the sensors. The volume flow rate is established by combining all the flow velocities determined by the sensor pairs with the cross sectional area of the meter body and extensive knowledge about fluid flow dynamics. The design of the sensors and their position ensures that only a short straight run of pipe upstream of the meter is required after typical flow obstructions such as bends in one or two planes. Advance digital signal processing facilitates constant validation of the flow measurement reducing susceptibility to multiphase flow conditions and increases the reliability of the measurement. T1 T1 DT » e A0015451 Direct measurement of the methane fraction (CH4) The sound velocity, temperature and chemical composition of a gas are directly related to one another. If two of these characteristic quantities are known, the third can be calculated. The higher the gas temperature or the methane fraction, the higher the sound velocity in biogas, for example. Since the measuring device accurately measures both the sound velocity and the current gas temperature, the methane fraction can be calculated directly and displayed on site without the need for an additional measuring instrument . The relative humidity of biogas is usually 100 %. Thus, the water content can be determined by the temperature measurement and can be compensated for. The measuring device is unique in its ability to measure the methane fraction directly, making it possible to monitor the gas flow and gas quality 24/7. In this way, operators of a biogas plant, for example, can react swiftly and specifically to problems in the digestion process.4 Endress+Hauser
  5. 5. Proline Prosonic Flow B 200 [ft/s] [m/s] 1600 500 1450 450 T 1300 400 1150 350 1000 300 850 250 700 200 0 10 20 30 40 50 60 70 80 90 100 [%] A0016160 å1 Calculation of the methane fraction [%] based on the sound velocity [m/s (ft/s)] and a temperature T of 40 °C (104 °F), for exampleMeasuring system The device consists of a transmitter and a sensor. One device version is available: compact version, transmitter and sensor form a mechanical unit. Transmitter Prosonic Flow 200 Materials: • Stainless steel 1.4404/316L • Aluminum coated AlSi10Mg Configuration: • External operation via four-line, illuminated local display with touch control and guided menus ("Make-it-run" wizards) for applications A0013471 • Via operating tools (e.g. FieldCare) Sensor Prosonic Flow B • Designed exclusively to measure: – Biogas Single-path version: DN 50 (2"), – Coal seam gas DN 80 (3") – Air – Methane – Nitrogen – Gas with a very high methane fraction • Range of nominal diameter: DN 50 to 200 (2 to 8") • Materials: – Sensor: Stainless steel 1.4404/316L, cold worked Stainless steel 1.4435/316L, cold worked A0015826 – Process connections: Two-path version: DN 100 to 200 (4 Stainless steel 1.4301/304, to 8") Stainless steel 1.4306/304L, Stainless steel 1.4404/316L, Steel S235JR, Carbon steel A105 A0015452Endress+Hauser 5
  6. 6. Proline Prosonic Flow B 200 InputMeasured variable Direct measured variables Volume flow Calculated measured variables • Corrected volume flow • Mass flow Optional measured variables (can be ordered) Order code for "Sensor version", option 2 "Volume flow + Biogas analysis" • Corrected methane volume flow • Energy flow • Methane fraction • Gross calorific value • Wobbe index • TemperatureMeasuring range Standard (Order code for "Calibration Flow", option 1 "Operable flow range 30 : 1") Nominal diameter Velocity Effective volume flow [mm] [in] [m/s] [ft/s] [m3/h] [ft3/h] 50 2 1 to 30 3.28 to 98.4 9 to 269 316 to 9 495 80 3 1 to 30 3.28 to 98.4 20 to 611 720 to 21 592 100 4 1 to 30 3.28 to 98.4 34 to 1 032 1 215 to 36 443 150 6 1 to 30 3.28 to 98.4 76 to 2 290 2 695 to 80 862 200 8 1 to 30 3.28 to 98.4 131 to 3 925 4 620 to 138 596 Optional (Order code for "Calibration Flow", option 2 "Operable flow range 100 : 1") Nominal diameter Velocity Effective volume flow [mm] [in] [m/s] [ft/s] [m3/h] [ft3/h] 50 2 0.3 to 30 0.98 to 98.4 3 to 269 95 to 9 495 80 3 0.3 to 30 0.98 to 98.4 6 to 611 215 to 21 592 100 4 0.3 to 30 0.98 to 98.4 11 to 1 032 363 to 36 443 150 6 0.3 to 30 0.98 to 98.4 25 to 2 290 805 to 80 862 200 8 0.3 to 30 0.98 to 98.4 43 to 3 925 1 365 to 138 596 The values in the table should only be regarded as reference values. To calculate the measuring range, use the Applicator sizing tool (® ä 41) Recommended measuring range "Flow limit" section (® ä 25)Operable flow range • 30 : 1 (standard; order code for "Calibration Flow", option 1 "Operable flow range 30 : 1") • 100 : 1 (optional; order code for "Calibration Flow", option 2 "Operable flow range 100 : 1") Flow rates above the preset full scale value do not overload the amplifier so the totalized values are registered correctly.6 Endress+Hauser
  7. 7. Proline Prosonic Flow B 200Input signal HART protocol To increase the accuracy of certain measured variables, a measured pressure value can be used instead of a fixed process pressure. For this purpose, the measuring device continuously reads in the process pressure from a pressure transmitter (e.g. Cerabar M or Cerabar S) via the HART protocol. The pressure transmitter must support the following protocol-specific functions: • HART protocol • Burst mode • Endress+Hauser recommends the use of an absolute pressure transmitter • Various pressure transmitters can be ordered from Endress+Hauser: see "Accessories" section (® ä 41) • Please comply with the special mounting instructions when using pressure transmitters (® ä 21) External pressure compensation is recommended to calculate the following measured variables: • Corrected volume flow • Corrected methane volume flow • Mass flow • Energy flow OutputOutput signal Current output Current output 1 4-20 mA HART (passive) Current output 2 4-20 mA (passive) Resolution < 1 µA Damping Adjustable: 0.07 to 999 s Assignable measured • Volume flow variables • Corrected volume flow • Corrected methane volume flow • Mass flow • Energy flow • Methane fraction • Gross calorific value • Wobbe index • Temperature Pulse/frequency/switch output Function Can be set to pulse, frequency or switch output Version Passive, open collector Maximum input values • DC 35 V • 50 mA For information on the Ex connection values (® ä 10) Voltage drop • For £ 2 mA: 2 V • For 10 mA: 8 V Residual current £ 0.05 mA Pulse output Pulse width Adjustable: 5 to 2 000 ms Maximum pulse rate 100 Impulse/s Pulse value AdjustableEndress+Hauser 7
  8. 8. Proline Prosonic Flow B 200 Assignable measured • Volume flow variables • Corrected volume flow • Corrected methane volume flow • Mass flow • Energy flow Frequency output Output frequency Adjustable: 0 to 1 000 Hz Damping Adjustable: 0 to 999 s Pulse/pause ratio 1:1 Assignable measured • Volume flow variables • Corrected volume flow • Corrected methane volume flow • Mass flow • Energy flow • Methane fraction • Gross calorific value • Wobbe index • Temperature Switch output Switching behavior Binary, conductive or non-conductive Switching delay Adjustable: 0 to 100 s Number of switching Unlimited cycles Assignable functions • Off • On • Diagnostic behavior • Limit value – Volume flow – Corrected volume flow – Corrected methane volume flow – Mass flow – Energy flow – Methane fraction – Gross calorific value – Wobbe index – Temperature – Totalizer 1 to 3 • Flow direction monitoring • Status Low flow cut offSignal on alarm Depending on the interface, failure information is displayed as follows: Current output 4-20 mA Failure mode Selectable (as per NAMUR recommendation NE 43): • Minimum value: 3.6 mA • Maximum value: 22 mA • Defined value: 3.59 to 22.5 mA • Actual value • Last valid value HART Device diagnostics Device condition can be read out via HART Command 488 Endress+Hauser
  9. 9. Proline Prosonic Flow B 200 Pulse/frequency/switch output Pulse output Failure mode Choose from: • Actual value • No pulses Frequency output Failure mode Choose from: • Actual value • Defined value: 0 to 1 250 Hz • 0 Hz Switch output Failure mode Choose from: • Current status • Open • Closed Local display Plain text display With information on cause and remedial measures Backlight Additionally for device version with SD03 local display: red lighting indicates a device error. Status signal as per NAMUR recommendation NE 107 Operating tool • Via digital communication: HART protocol • Via service interface Plain text display With information on cause and remedial measures Additional information on remote operation (® ä 36)Load Load for current output: 0 to 500 W, depending on the external supply voltage of the power supply unit Calculation of the maximum load Depending on the supply voltage of the power supply unit (US), the maximum load (RB) including line resistance must be observed to ensure adequate terminal voltage at the device. In doing so, observe the minimum terminal voltage (® ä 14) • For US = 16.0 to 16.8 V: RB £ (US - 16.0 V) : 0.0036 A • For US = 16.8 to 23.0 V: RB £ (US - 12.0 V) : 0.022 A • For US = 23.0 to 30.0 V: RB £ 500 WEndress+Hauser 9
  10. 10. Proline Prosonic Flow B 200 Rb [W] 1 1.1 1.2 600 500 400 300 220 200 100 0 14 16 18 20 22 24 26 28 30 32 34 36 Us [V] 16.8 23 35 A0018972 1 Operating range 1.1 For order code for "Output", option A "4-20 mA HART"/option B "4-20 mA HART, pulse/frequency/switch output" with Ex i and option C "4-20 mA HART, 4-20 mA" 1.2 For order code for "Output", option A "4-20 mA HART"/option B "4-20 mA HART, pulse/frequency/switch output" with non-Ex and Ex d Sample calculation Supply voltage of the power supply unit: US = 17.5 V Maximum load: RB £ (17.5 V - 12.0 V) : 0.022 A = 250 WEx connection data Safety-related values Ex d type of protection Order code for Output type Safety-related values "Output" Option A 4-20mA HART Unom = DC 35 V Umax = 250 V Option B 4-20mA HART Unom = DC 35 V Umax = 250 V Pulse/frequency/switch output Unom = DC 35 V Umax = 250 V Pmax = 1 W 1) 1) Internal circuit limited by Ri = 760.5 W Option C • 4-20mA HART Unom = DC 30 V • 4-20mA Umax = 250 V Type of protection XP Order code for Output type Safety-related values "Output" Option A 4-20mA HART Unom = DC 35 V Umax = 250 V Option B 4-20mA HART Unom = DC 35 V Umax = 250 V Pulse/frequency/switch output Unom = DC 35 V Umax = 250 V Pmax = 1 W 1) 1) Internal circuit limited by Ri = 760.5 W10 Endress+Hauser
  11. 11. Proline Prosonic Flow B 200 Option C • 4-20mA HART Unom = DC 30 V • 4-20mA Umax = 250 V Type of protection NI Order code for Output type Safety-related values "Output" Option A 4-20mA HART Unom = DC 35 V Option B 4-20mA HART Unom = DC 35 V Pulse/frequency/switch output Unom = DC 35 V Option C • 4-20mA HART Unom = DC 30 V • 4-20mA Type of protection NIFW Order code for Output type Intrinsically safe values "Output" Option A 4-20mA HART Ui = DC 35 V Ii = n.a. Pi = 1 W Li = 0 mH Ci = 5 nF Option B 4-20mA HART Ui = DC 35 V Ii = n.a. Pi = 1 W Li = 0 mH Ci = 5 nF Pulse/frequency/switch output Ui = DC 35 V Ii = n.a. Pi = 1 W Li = 0 mH Ci = 6 nF Option C • 4-20mA HART Ui = DC 30 V • 4-20mA Ii = n.a. Pi = 1 W Li = 0 mH Ci = 30 nF Intrinsically safe values type of protection Ex ia Order code for Output type Intrinsically safe values "Output" Option A 4-20mA HART Ui = DC 30 V Ii = 300 mA Pi = 1 W Li = 0 mH Ci = 5 nFEndress+Hauser 11
  12. 12. Proline Prosonic Flow B 200 Option B 4-20mA HART Ui = DC 30 V Ii = 300 mA Pi = 1 W Li = 0 mH Ci = 5 nF Pulse/frequency/switch output Ui = DC 30 V Ii = 300 mA Pi = 1 W Li = 0 mH Ci = 6 nF Option C • 4-20mA HART Ui = DC 30 V • 4-20mA Ii = 300 mA Pi = 1 W Li = 0 mH Ci = 30 nF IS type of protection Order code for Output type Intrinsically safe values "Output" Option A 4-20mA HART Ui = DC 30 V Ii = 300 mA Pi = 1 W Li = 0 mH Ci = 5 nF Option B 4-20mA HART Ui = DC 30 V Ii = 300 mA Pi = 1 W Li = 0 mH Ci = 5 nF Pulse/frequency/switch output Ui = DC 30 V Ii = 300 mA Pi = 1 W Li = 0 mH Ci = 6 nF Option C • 4-20mA HART Ui = DC 30 V • 4-20mA Ii = 300 mA Pi = 1 W Li = 0 mH Ci = 30 nFLow flow cut off The switch points for low flow cut off are user-selectable.Galvanic isolation All outputs are galvanically isolated from one another.Protocol-specific data HART Manufacturer ID 0x11 Device type ID 0x5A HART protocol revision 6.0 Device description files (DTM, Information and files under: DD) www.endress.com12 Endress+Hauser
  13. 13. Proline Prosonic Flow B 200 HART load • Min. 250 Ω • Max. 500 W Dynamic variables The measured variables can be freely assigned to the dynamic variables. Measured variables for PV (primary dynamic variable) • Volume flow • Corrected volume flow • Corrected methane volume flow • Mass flow • Energy flow • Methane fraction • Gross calorific value • Wobbe index • Temperature Measured variables for SV, TV, QV (secondary, tertiary and quaternary dynamic variable) • Volume flow • Corrected volume flow • Corrected methane volume flow • Mass flow • Energy flow • Methane fraction • Gross calorific value • Wobbe index • Temperature • Totalizer 1 • Totalizer 2 • Totalizer 3 Power supplyTerminal assignment Transmitter Connection versions 2 1 3 2 1 3 + – + – 3 4 1 2 + – + – 3 4 1 2 A0013570 A0018161 Maximum number of terminals, without integrated Maximum number of terminals, with integrated overvoltage protection overvoltage protection 1 Output 1 (passive): supply voltage and signal transmission 2 Output 2 (passive): supply voltage and signal transmission 3 Ground terminal for cable shield Order code for Terminal numbers "Output" Output 1 Output 2 1 (+) 2 (-) 3 (+) 4 (-) Option A 4-20 mA HART (passive) - Option B 1) 4-20 mA HART (passive) Pulse/frequency/switch output (passive)Endress+Hauser 13
  14. 14. Proline Prosonic Flow B 200 Option C 1) 4-20 mA HART (passive) 4-20 mA (passive) 1) Output 1 must always be used; output 2 is optional.Supply voltage An external power supply is required for each output. The following supply voltage values apply for the 4-20 mA and 4-20 mA HART current output: Order code for Minimum Maximum "Output" terminal voltage terminal voltage • Option A 1), 2): 4-20 mA HART For 4 mA: ³ DC 16 V DC 35 V • Option B 1), 2): 4-20 mA HART, For 20 mA: ³ DC 12 V Pulse/frequency/switch output Option C 1), 2): 4-20 mA HART, For 4 mA: ³ DC 16 V DC 30 V 4-20 mA For 20 mA: ³ DC 12 V 1) External supply voltage of the power supply unit with load (® ä 9) 2) For device versions with local display SD03: The terminal voltage must be increased by DC 2 V if backlighting is used. For information on the Ex connection values (® ä 10) Various power supply units can be ordered from Endress+Hauser: see "Accessories" section (® ä 41)Power consumption Transmitter Order code for Maximum power consumption "Output" Option A: 4-20 mA HART 770 mW Option B: 4-20 mA HART, • Operation with output 1: 770 mW Pulse/frequency/switch output • Operation with output 1 and 2: 2 770 mW Option C: 4-20 mA HART, 4-20 mA • Operation with output 1: 660 mW • Operation with output 1 and 2: 1 320 mW For information on the Ex connection values (® ä 10)Current consumption Current output For every 4-20 mA or 4-20 mA HART current output: 3.6 to 22.5 mA If the option Defined value is selected in the Failure mode parameter (® ä 8): 3.59 to 22.5 mAPower supply failure • Totalizers stop at the last value measured. • Configuration is retained in the device memory (HistoROM). • Error messages (incl. total operated hours) are stored.14 Endress+Hauser
  15. 15. Proline Prosonic Flow B 200Electrical connection Connecting the transmitter 2 1 A0015510 1 Cable entry for output 1 2 Cable entry for output 2 Connection examples 1 2 3 4 5 6 4...20 mA + + 7 - - A0015511 å2 Connection example for 4-20 mA HART current output (passive) 1 Automation system with current input (e.g. PLC) 2 Active barrier for power supply (e.g. RN221N) (® ä 17) 3 Observe cable specification (® ä 17) 4 Resistor for HART communication (³ 250 W): observe maximum load (® ä 9) 5 Connection for HART operating devices (® ä 36) 6 Analog display unit: observe maximum load (® ä 9) 7 Transmitter 1 2 3 + 4...20 mA + + 4 - - – A0015512 å3 Connection example for 4-20 mA current output (passive) 1 Automation system with current input (e.g. PLC) 2 Active barrier for power supply (e.g. RN221N) (® ä 14) 3 Analog display unit: observe maximum load (® ä 9) 4 TransmitterEndress+Hauser 15
  16. 16. Proline Prosonic Flow B 200 1 2 – + _ + – 3 + 12345 A0016801 å4 Connection example for pulse/frequency output (passive) 1 Automation system with pulse/frequency input (e.g. PLC) 2 Power supply 3 Transmitter: Observe input values (® ä 7) 1 2 _ + _ + _ 3 + A0016802 å5 Connection example for switch output (passive) 1 Control system with switch input (e.g. PLC) 2 Power supply 3 Transmitter: Observe input values (® ä 7) 1 2 3 4 5 4...20 mA + + + – – 7 + - – – + + + + – – 6 - 3 4 A0016029 å6 Connection example for HART input with a common negative 1 Automation system with HART output (e.g. PLC) 2 Resistor for HART communication (³ 250 W): observe maximum load (® ä 9) 3 Active barrier for power supply (e.g. RN221N) (® ä 14) 4 Observe cable specification (® ä 17) 5 Analog display unit: observe maximum load (® ä 9) 6 Pressure transmitter (e.g. Cerabar M, Cerabar S): see requirements (® ä 7) 7 Transmitter16 Endress+Hauser
  17. 17. Proline Prosonic Flow B 200Potential equalization No special measures for potential equalization are required. For devices in hazardous locations, please observe the guidelines in the Ex documentation (XA).Terminals • For device version without integrated overvoltage protection: plug-in spring terminals for wire cross- sections 0.5 to 2.5 mm2 (20 to 14 AWG) • For device version with integrated overvoltage protection: screw terminals for wire cross-sections 0.2 to 2.5 mm2 (24 to 14 AWG)Cable entries • Cable gland (not for Ex d): M20 × 1.5 with cable Æ 6 to 12 mm (0.24 to 0.47 in) • Thread for cable entry: – For non-Ex and Ex: NPT ½" – For non-Ex and Ex (not for CSA Ex d/XP): G ½" – For Ex d: M20 × 1.5Cable specification Permitted temperature range • –40 °C (–40 °F)...³ 80 °C (176 °F) • Minimum requirement: cable temperature range ³ ambient temperature + 20 K Signal cable Current output • For 4-20 mA: standard installation cable is sufficient. • For 4-20 mA HART: Shielded cable recommended. Observe grounding concept of the plant. Pulse/frequency/switch output Standard installation cable is sufficient.Overvoltage protection The device can be ordered with integrated overvoltage protection for diverse approvals: Order code for "Accessory mounted", option NA "overvoltage protection" Input voltage range Values correspond to supply voltage specifications (® ä 14) 1) Resistance per channel 2 × 0.5 W max DC sparkover voltage 400 to 700 V Trip surge voltage < 800 V Capacitance at 1 MHz < 1.5 pF Nominal discharge current (8/20 10 kA ms) Temperature range –40 to +85 °C (–40 to +185 °F) 1) The voltage is reduced by the amount of the internal resistance Imin × Ri Depending on the temperature class, restrictions apply to the ambient temperature for device versions with overvoltage protection . Performance characteristicsReference conditions • Error limits following ISO/DIS 11631 • Calibration gas: air • Temperature regulated to 24 ± 0.5 °C (75.2 ± 0.9 °F) under atmospheric pressure • Humidity regulated to < 40 % RH • Accuracy based on accredited calibration rigs that are traced to ISO 17025. To calculate the measuring range, use the Applicator sizing tool (® ä 41)Endress+Hauser 17
  18. 18. Proline Prosonic Flow B 200Maximum measured error In addition to the values indicated, the measured error at the current output is typically ±4 mA. o.r. = of reading; o.f.s. = of full scale value; abs. = absolute; 1 g/cm3 = 1 kg/l; T = medium temperature Volume flow Standard • ±1.5 % o.r. for 3 to 30 m/s (9.84 to 98.4 ft/s) Order code for "Calibration", option 1 • ±3 % o.r. for 1 to 3 m/s (3.28 to 9.84 ft/s) Optional • ±0.1 % o.f.s. for 0.3 to 1 m/s (0.98 to 3.28 ft/s) Order code for "Calibration", option 2 • ±1.5 % o.r. for 1 to 30 m/s (3.28 to 98.4 ft/s) Methane ±2 % o.f.s. = ±2 % abs. Temperature ±0.6 °C ± 0.005 × T °C (±0.9 °F ± 0.005 × (T – 32) °F) Example for max. measured error (volume flow) [%] 10.0 9.0 8.0 2 7.0 6.0 1 5.0 4.0 3.0 2.0 1.0 0 0 1 2 3 4 5 6 7 8 30 [m/s] v 0 5 10 15 20 25 100 [ft/s] A0015541 å7 Example for max. measured error (volume flow) in % o.r. 1 Standard (order code for "Calibration", option 1) 2 Optional (order code for "Calibration", option 2)Repeatability o.r. = of reading; o.f.s. = of full scale value; abs. = absolute; 1 g/cm3 = 1 kg/l; T = medium temperature Volume flow ±0.5 % o.r. Methane ±0.5 % o.f.s. = ±0.5 % abs. Temperature ±0.3 °C ± 0.0025 × T °C (±0.45 °F ± 0.0025 × (T – 32) °F)Response time • The response time depends on the configuration (damping). • Response time in the event of erratic changes in the flow: after 1 000 ms 95 % of the full scale value.Influence of ambient o.r. = of reading; o.f.s. = of full scale valuetemperature Current output Additional error, in relation to the span of 16 mA:18 Endress+Hauser
  19. 19. Proline Prosonic Flow B 200 Temperature coefficient at 0.02 %/10 K, max. 0.35 % over the entire temperature range zero point (4 mA) –40 to +60 °C (–40 to +140 °F) Temperature coefficient 0.05 %/10 K, max. 0.5 % over the entire temperature range with span (20 mA) –40 to +60 °C (–40 to +140 °F) Pulse/frequency output Temperature coefficient Max. ±100 ppm o.r. Installation No special measures such as supports are necessary. External forces are absorbed by the construction of the device.Mounting location A0015543Orientation The direction of the arrow on the sensor helps you to install the sensor according to the flow direction (direction of medium flow through the piping). • Install the measuring device in a parallel plane free of external mechanical stress. • The internal diameter of the pipe must match the internal diameter of the sensor (® ä 26). A0015895 Orientation Compact version A Vertical orientation A0015545 B Horizontal orientation, transmitter head up * A0015589Endress+Hauser 19
  20. 20. Proline Prosonic Flow B 200 Orientation Compact version C Horizontal orientation, transmitter head down * A0015590 D Horizontal orientation, transmitter head at side A0015592 * A maximum deviation of only ±3 ° is permitted for the horizontal alignment of the transducers. –3° 0° –3° +3° 0° +3° A0016534Inlet and outlet runs The sensor should be mounted upstream of assemblies such as valves, T-sections, elbows etc. where possible. As a minimum, the inlet and outlet runs shown below must be observed to achieve the specific accuracy of the device. The longest inlet run shown must be observed if two or more flow disturbances are present. Single-path version: DN 50 (2"), DN 80 (3") A B 1 2 1 2 20 × DN 3 × DN 20 × DN 3 × DN C D 1 2 1 2 20 × DN 3 × DN 20 × DN 3 × DN A0015453 å8 Single-path version: minimum inlet and outlet runs with various flow obstructions A 90 ° elbow or T-section B Pump C 2× 90 ° elbow 3-dimensional D Control valve 1 Inlet run 2 Outlet run20 Endress+Hauser
  21. 21. Proline Prosonic Flow B 200 Two-path version: DN 100 to 200 (4 to 8") A B 1 2 1 2 10 × DN 3 × DN 10 × DN 3 × DN C D 1 2 1 2 10 × DN 3 × DN 10 × DN 3 × DN A0015553 å9 Two-path version: minimum inlet and outlet runs with various flow obstructions A 90 ° elbow or T-section B Pump C 2× 90 ° elbow 3-dimensional D Control valve 1 Inlet run 2 Outlet runSpecial mounting instructions Outlet run for pressure transmitter If a pressure transmitter is installed downstream of the measuring device, make sure there is sufficient distance between the two devices. PT 3 × DN A0015901 PT Pressure transmitter Flow conditioner It is advisable to use a flow conditioner if the inlet runs cannot be observed. Using a flow conditioner reduces the inlet required as follows: Single-path version Two-path version 10 × DN 5 × DN The flow conditioner should be installed so that it divides the available inlet run by a ratio of roughly 20 : 80. Example for an inlet run of 10 × DN: 1 2 × DN 8 × DN 10 × DN A0015562 1 Flow conditionerEndress+Hauser 21
  22. 22. Proline Prosonic Flow B 200 Pressure loss The pressure loss for flow conditioners is calculated as follows: Dp [mbar] = 0.0085 · r [kg/m3] · v2 [m/s] Example for biogas p = 1 040 mbar abs. r = 1.0432 kg/m3 at t = 54 °C (129 °F) v = 7 m/s Dp = 0.0085 · 1.0432 kg/m3 · 49 m/s = 0.434 mbar --- abs.: absolute r: density of the process medium v: average flow velocity EnvironmentAmbient temperature range Transmitter –40 to +60 °C (–40 to +140 °F) Local display –20 to +60 °C (–4 to +140 °F), the readability of the display may be impaired at temperatures outside the temperature range. Sensor • Flange material carbon steel: –10 to +60 °C (+14 to +140 °F) • Flange material stainless steel: –40 to +60 °C (–40 to +140 °F) • Version without flange: –40 to +60 °C (–40 to +140 °F) ► If operating outdoors: Avoid direct sunlight, particularly in warm climatic regions. Weather protection covers can be ordered from Endress+Hauser: see "Accessories" section (® ä 39) Temperature tables The following interdependencies between the permitted ambient and fluid temperatures apply when operating the device in hazardous areas: The following applies for installations with overvoltage protection in conjunction with approval code BJ or IJ: Ta = Ta - 2 °C (Ta = Ta - 3.6 °F) Order code for "Output", option A "4-20mA HART" Ex ia, Ex d, CCSAUS IS, CCSAUS XP, CCSAUS NI SI units Nominal diameter Ta T6 T5 T4 T3 T2 T1 [mm] [°C] [85 °C] [100 °C] [135 °C] [200 °C] [300 °C] [450 °C] 50 to 200 40 60 80 80 80 80 80 50 to 200 50 – 80 80 80 80 80 50 to 200 60 – 80 80 80 80 80 US units Nominal diameter Ta T6 T5 T4 T3 T2 T1 [in] [°F] [185 °F] [212 °F] [275 °F] [392 °F] [572 °F] [842 °F] 2 to 8 104 140 176 176 176 176 176 2 to 8 122 – 176 176 176 176 176 2 to 8 140 – 176 176 176 176 17622 Endress+Hauser
  23. 23. Proline Prosonic Flow B 200 Order code for "Output", option B "4-20mA HART, pulse/frequency/switch output" Ex ia, Ex d, CCSAUS IS, CCSAUS XP, CCSAUS NI SI units Nominal diameter Ta T6 T5 T4 T3 T2 T1 [mm] [°C] [85 °C] [100 °C] [135 °C] [200 °C] [300 °C] [450 °C] 50 to 200 40 – 1) 80 80 80 80 80 2) 50 to 200 50 – 60 80 80 80 80 50 to 200 60 – – 80 80 80 80 1) Ta = 60 °C for pulse/frequency/switch output Pi £ 0.85 W 2) Ta = 80 °C for pulse/frequency/switch output Pi £ 0.85 W US units Nominal diameter Ta T6 T5 T4 T3 T2 T1 [in] [°F] [185 °F] [212 °F] [275 °F] [392 °F] [572 °F] [842 °F] 2 to 8 104 – 1) 176 176 176 176 176 2 to 8 122 – 140 2) 176 176 176 176 2 to 8 140 – – 176 176 176 176 1) Ta = 140 °F for pulse/frequency/switch output Pi £ 0.85 W 2) Ta = 176 °F for pulse/frequency/switch output Pi £ 0.85 W Order code for "Output", option C "4-20mA HART, 4-20mA" Ex ia, Ex d, CCSAUS IS, CCSAUS XP, CCSAUS NI SI units Nominal diameter Ta T6 T5 T4 T3 T2 T1 [mm] [°C] [85 °C] [100 °C] [135 °C] [200 °C] [300 °C] [450 °C] 50 to 200 40 60 80 80 80 80 80 50 to 200 50 – 80 80 80 80 80 50 to 200 60 – 55 80 80 80 80 US units Nominal diameter Ta T6 T5 T4 T3 T2 T1 [in] [°F] [185 °F] [212 °F] [275 °F] [392 °F] [572 °F] [842 °F] 2 to 8 104 140 176 176 176 176 176 2 to 8 122 – 176 176 176 176 176 2 to 8 140 – 131 176 176 176 176Storage temperature –40 to +80 °C (–40 to +176 °F), preferably at +20 °C (+68 °F)Degree of protection Transmitter • As standard: IP66/67, type 4X enclosure • When housing is open: IP20, type 1 enclosure • Display module: IP22, type 1 enclosure Sensor IP66/67, type 4X enclosureShock resistance In accordance with EN 60721-3-4Endress+Hauser 23
  24. 24. Proline Prosonic Flow B 200Vibration resistance Class 4M4, in accordance with EN 60721-3-4Electromagnetic compatibility • As per IEC/EN 61326 and NAMUR Recommendation 21 (NE 21)(EMC) • Complies with emission limits for industry as per EN 55011 Details are provided in the Declaration of Conformity. ProcessMedium temperature range Sensor 0 to +80 °C (+32 to +176 °F)Pressure-temperature ratings The following material load diagrams refer to the entire device and not just the process connection. Flange connection according to EN 1092-1 (DIN 2501) [psi] [bar] 300 20 200 100 10 0 0 0 20 40 60 80 100 [°C] 40 80 120 160 200 [°F] A0015905 å 10 With lap joint flange, stamped plate PN 10, material 1.4301/304 (DN 50 to 200 / 2 to 8") Flange connection according to EN 1092-1 (DIN 2501) [psi] [bar] 300 20 200 100 10 0 0 0 20 40 60 80 100 [°C] 40 80 120 160 200 [°F] A0015906 å 11 With lap joint flange PN 10, material 1.4306/304L (DN 200 / 8") Flange connection according to EN 1092-1 (DIN 2501) [psi] [bar] 300 20 200 100 10 0 0 0 20 40 60 80 100 [°C] 40 80 120 160 200 [°F] A0015932 å 12 With lap joint flange PN 10/16, materials S235JR (DN 50 to 200 / 2 to 8") and 1.4306/304L (DN 50 to 150 / 2 to 6"); With lap joint flange, stamped plate PN 10, material S235JR (DN 50 to 200 / 2 to 8")24 Endress+Hauser
  25. 25. Proline Prosonic Flow B 200 Flange connection according to ASME B16.5 [psi] [bar] 300 20 200 100 10 0 0 0 20 40 60 80 100 [°C] 40 80 120 160 200 [°F] A0015568 å 13 With lap joint flange Class 150, materials 1.4404/316L and A105 (DN 50 to 200 / 2 to 8")Flow limit Select the nominal diameter by optimizing between the required flow range and permissible pressure loss. For an overview of the measuring range full scale values, see the "Measuring range" section (® ä 6) • The minimum recommended full scale value is approx. 1/20 of the maximum full scale value. • In most applications, 10 to 50 % of the maximum full scale value can be considered ideal.Pressure loss There is no pressure loss.System pressure Sensor Max. 10 bar (145 psi)Thermal insulation For optimum temperature and methane fraction measurement (order characteristic for "Sensor version", option 2 "Volume flow + Biogas analysis"), make sure that heat is neither lost nor applied to the sensor. Thermal insulation can ensure that such heat transfer does not take place. Thermal insulation is particularly recommended in situations where there is a large difference between the process temperature and the ambient temperature. This can result in heat convection errors during temperature measurement. A further factor which can lead to measurement errors due to heat convection is a low flow velocity. Mechanical constructionDesign, dimensions Compact version Order code for "Housing", options C "GT20 two-chamber, aluminum coated" , S "GT18 two-chamber, stainless steel"Endress+Hauser 25

×