Learning Analytics@UC3M     Carlos Delgado Kloos, Abelardo Pardo (U. Sydney),  Pedro J. Muñoz-Merino, Israel Gutiérrez, De...
Education?       Just knowledge transfer?       One way process?                             Teaching                 K ...
Feedback!       Feedback is needed to          Control that learning occurs          Take adequate measures if not     ...
Assessment       Simplest form of feedback          Formative: to support learning          Summative: also grading fun...
Analytics       Another form of feedback          Recollection of educational information          Can be done especial...
5 Developments       1. Capturing events (CCOLAB)       2. Visualization (LearnGlass)       3. Abstracting out data (Ge...
1. Capturing Events       CCOLAB system          Capture raw events generated          Use virtual machine             ...
Virtualizing the environment                                                     Datacdk@it.uc3m.es            EDUCON, Ber...
Virtual Machinecdk@it.uc3m.es         EDUCON, Berlin, Germany, 2013-03-12--15
Events captured       Power up and shutdown of virtual machine       Commands used in the command line interface (bash) ...
Experimentcdk@it.uc3m.es    EDUCON, Berlin, Germany, 2013-03-12--15
References       A. Pardo, C. Delgado Kloos:        “CCOLAB UC3M: Events recorded in an undergraduate        collaborativ...
2. Visualization       LearnGlass: Platform to facilitate the creation        of visualizations of learning events      ...
14     LearnGlass Dashboard3 variationsof the samevisualizationcdk@it.uc3m.esBerlin, Germany       EDUCON, Berlin, Germany...
15     Modular Architecture       LearnGlass can be extended        through the installation of modules       Each modul...
16     View of a module interfacecdk@it.uc3m.esBerlin, Germany       EDUCON, Berlin, Germany, 2013-03-12--15              ...
References       D. Leony, A. Pardo, L. de la Fuente Valentín,        D. Sánchez de Castro, C. Delgado Kloos:        “GLA...
3. Abstracting Out Data       Genghis project at UC3M       Khan Academy platform        deployed locally Aug 2012     ...
Low-level analytics provided       Progress summary       Daily activity report       Skill progress over time       A...
Higher-level analytics inferred       Time distribution       Correct progress on the platform       Efficiency in lear...
Example: Efficiency in learningcdk@it.uc3m.es            EDUCON, Berlin, Germany, 2013-03-12--15
References       P.J. Muñoz-Merino, J.A. Ruipérez, C. Delgado Kloos:        “Inferring Higher Level Learning Information ...
4. Just-in-Time Teaching       ClassON system (in-CLass Analytics        for aSSessment and OrchestratioN)       Use of ...
Student component       Web-based       Integrated in the problem assignment       Monitor student interactions        ...
Teacher component       Web app for tablets or smartphones       Information attached to the physical space       Teach...
Teacher component interface                                   BUSY                 2   3                 5   2cdk@it.uc3m....
References       I. Gutiérrez Rojas, R.M. Crespo, C. Delgado Kloos:        “Orchestration and feedback in lab sessions:  ...
5. Gamification       ISCARE system       Analytics for motivation and joy: Adaptation of the Swiss-        system of co...
ISCARE Systemcdk@it.uc3m.es       EDUCON, Berlin, Germany, 2013-03-12--15
Analytics in ISCARE       Evolution of scores for each student in each round       The difficulty of the opponents      ...
Analytics in ISCAREcdk@it.uc3m.es             EDUCON, Berlin, Germany, 2013-03-12--15
References       M. Fernández Molina, P.J. Muñoz-Merino,        M. Muñoz-Organero, C. Delgado Kloos:        “Educational ...
Conclusion       In all important processes, the behaviour is monitored        (Quality control)       Assessment is not...
Upcoming SlideShare
Loading in...5
×

2013 03-14 (educon2013) emadrid uc3m learning analytics uc3m

418
-1

Published on

2013 03-14
(educon2013)
emadrid
uc3m
learning analytics uc3m

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
418
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

2013 03-14 (educon2013) emadrid uc3m learning analytics uc3m

  1. 1. Learning Analytics@UC3M Carlos Delgado Kloos, Abelardo Pardo (U. Sydney), Pedro J. Muñoz-Merino, Israel Gutiérrez, Derick Leony Universidad Carlos III de Madrid www.it.uc3m.es/cdk www.emadridnet.org
  2. 2. Education?   Just knowledge transfer?   One way process? Teaching K K’>Kcdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  3. 3. Feedback!   Feedback is needed to   Control that learning occurs   Take adequate measures if not K K’ K’>K?cdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  4. 4. Assessment   Simplest form of feedback   Formative: to support learning   Summative: also grading function Teaching Assessmentcdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  5. 5. Analytics   Another form of feedback   Recollection of educational information   Can be done especially well in the digital world Teaching Analyticscdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  6. 6. 5 Developments   1. Capturing events (CCOLAB)   2. Visualization (LearnGlass)   3. Abstracting out data (Genghis)   4. Just-in-Time teaching (ClassON)   5. Gamification (ISCARE)cdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  7. 7. 1. Capturing Events   CCOLAB system   Capture raw events generated   Use virtual machine Capture of datacdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  8. 8. Virtualizing the environment Datacdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  9. 9. Virtual Machinecdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  10. 10. Events captured   Power up and shutdown of virtual machine   Commands used in the command line interface (bash)   Execution of the compiler and errors obtained (gcc)   Execution of the debugger and commands used (gdb)   Execution of the editor and IDE (kate & kdevelop resp.)   Execution and outcome of the memory profiler (valgrind)   Pages visited with the browser (Firefox)cdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  11. 11. Experimentcdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  12. 12. References   A. Pardo, C. Delgado Kloos: “CCOLAB UC3M: Events recorded in an undergraduate collaborative C Programming Course”. In: DataTel 2010   V.A. Romero, A. Pardo, D. Burgos, C. Delgado Kloos: “Monitoring Student Progress Using Virtual Appliances: A Case Study”. Computers & Education 58: 4, May 2012, 1058–1067   Lead researcher: Abelardo Pardocdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  13. 13. 2. Visualization   LearnGlass: Platform to facilitate the creation of visualizations of learning events   Implements generic requirements:   User and permission management   Data filters   Visualization dashboard Visualizationcdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  14. 14. 14 LearnGlass Dashboard3 variationsof the samevisualizationcdk@it.uc3m.esBerlin, Germany EDUCON, Berlin, Germany, 2013-03-12--15 EDUCON, 2013-03-12--15
  15. 15. 15 Modular Architecture   LearnGlass can be extended through the installation of modules   Each module provides:   Visualization interface   An optional light visualization for the dashboard   There are currently two modules available:   Activity report   Learners with most and least eventscdk@it.uc3m.esBerlin, Germany EDUCON, Berlin, Germany, 2013-03-12--15 EDUCON, 2013-03-12--15
  16. 16. 16 View of a module interfacecdk@it.uc3m.esBerlin, Germany EDUCON, Berlin, Germany, 2013-03-12--15 EDUCON, 2013-03-12--15
  17. 17. References   D. Leony, A. Pardo, L. de la Fuente Valentín, D. Sánchez de Castro, C. Delgado Kloos: “GLASS: A Learning Analytics Visualization Tool”. In: International Conference on Learning Analytics and Knowledge. ACM New York, USA, 2012, 162-163   Lead researchers: Abelardo Pardo, Derick Leonycdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  18. 18. 3. Abstracting Out Data   Genghis project at UC3M   Khan Academy platform deployed locally Aug 2012   Flipping the classroom in remedial course in Physics   Analyse online student behaviour online Visualization Capture of datacdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  19. 19. Low-level analytics provided   Progress summary   Daily activity report   Skill progress over time   Activity by day   Badges earned   Activity on exercisescdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  20. 20. Higher-level analytics inferred   Time distribution   Correct progress on the platform   Efficiency in learning   Gamification habits (influence of badges)   Exercise solving habits (hint abuse, hint avoidance, …)   Activity habits (explorer or recommendation follower)cdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  21. 21. Example: Efficiency in learningcdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  22. 22. References   P.J. Muñoz-Merino, J.A. Ruipérez, C. Delgado Kloos: “Inferring Higher Level Learning Information from Low Level Data for the Khan Academy Platform”. In: LAK2013: 3rd Conf. Learning Analytics and Knowledge, 8-12 Apr. 2013, Leuven (Belgium)   Lead researcher: Pedro Muñoz-Merinocdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  23. 23. 4. Just-in-Time Teaching   ClassON system (in-CLass Analytics for aSSessment and OrchestratioN)   Use of learning analytics in face-to-face sessions   awareness of students activity   information to orchestrate in a better way face-to-face Visualization Capture of datacdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  24. 24. Student component   Web-based   Integrated in the problem assignment   Monitor student interactions   progression   questions   timingcdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  25. 25. Teacher component   Web app for tablets or smartphones   Information attached to the physical space   Teacher is aware of student’s   location   name and photo   Progression   questions   waiting times   And (s)he’s more informed to make decisions!cdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  26. 26. Teacher component interface BUSY 2 3 5 2cdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  27. 27. References   I. Gutiérrez Rojas, R.M. Crespo, C. Delgado Kloos: “Orchestration and feedback in lab sessions: improvements in quick feedback provision”. In: EC-TEL 2011: 6th European Conf. of Technology Enhanced Learning, 20-23 Sep. 2011, Palermo (Italy), Proc. LNCS 6964. Springer 2011   Lead researcher: Israel Gutiérrezcdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  28. 28. 5. Gamification   ISCARE system   Analytics for motivation and joy: Adaptation of the Swiss- system of competition (used eg. in chess) to education   Motivating and fair system:   Different rounds. No elimination   For each round, pairings of 2 people that compete   Assign each person an opponent with close scoring   Active learning: solving exercises   Evaluation   Interoperability: IMS QTIcdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  29. 29. ISCARE Systemcdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  30. 30. Analytics in ISCARE   Evolution of scores for each student in each round   The difficulty of the opponents the student competed against   Exercises assigned to each student and if (s)he answered them correctly or not   Information about each exercise: number of times it was presented or solved correctlycdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  31. 31. Analytics in ISCAREcdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  32. 32. References   M. Fernández Molina, P.J. Muñoz-Merino, M. Muñoz-Organero, C. Delgado Kloos: “Educational Justifications for the Design of the ISCARE Computer Based Competition Assessment Tool”. In: Internat. Conf. Web Based Learning, 2011, 289-294   P.J. Muñoz-Merino, M. Fernández Molina, M. Muñoz-Organero, C. Delgado Kloos: “An Adaptive and Innovative Question-driven Competition- based Intelligent Tutoring System for Learning”. Expert Systems with Applications, 39(8), 2012, 6932-6948   Lead researcher: Pedro Muñoz-Merinocdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  33. 33. Conclusion   In all important processes, the behaviour is monitored (Quality control)   Assessment is not enough   Prerequisite for scaling: MOOCs   Definitely helps in improving education   Privacy concerns have to be taken care ofcdk@it.uc3m.es EDUCON, Berlin, Germany, 2013-03-12--15
  1. ¿Le ha llamado la atención una diapositiva en particular?

    Recortar diapositivas es una manera útil de recopilar información importante para consultarla más tarde.

×