Gdp2 2013 14-7
Upcoming SlideShare
Loading in...5
×
 

Gdp2 2013 14-7

on

  • 963 views

 

Statistics

Views

Total Views
963
Slideshare-icon Views on SlideShare
342
Embed Views
621

Actions

Likes
0
Downloads
6
Comments
0

21 Embeds 621

http://educationcognitionbrain.blogspot.it 218
http://educationcognitionbrain.blogspot.fr 149
http://compasetc.blogspot.fr 116
https://compasetc.blogspot.com 41
http://educationcognitionbrain.blogspot.com 39
http://educationcognitionbrain.blogspot.ru 15
http://educationcognitionbrain.blogspot.com.br 8
http://educationcognitionbrain.blogspot.com.au 7
http://educationcognitionbrain.blogspot.co.uk 5
http://educationcognitionbrain.blogspot.in 4
https://www.blogger.com 3
http://educationcognitionbrain.blogspot.com.es 3
http://educationcognitionbrain.blogspot.kr 2
http://educationcognitionbrain.blogspot.gr 2
http://educationcognitionbrain.blogspot.co.il 2
http://educationcognitionbrain.blogspot.de 2
http://educationcognitionbrain.blogspot.hu 1
http://educationcognitionbrain.blogspot.mx 1
http://educationcognitionbrain.blogspot.co.at 1
http://educationcognitionbrain.blogspot.ch 1
http://compasetc.blogspot.ca 1
More...

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment
  • Social learning mechanisms“Child development is today conceptualized as an essentially social process, based on incremental knowledge acquisition driven by cultural experience and social context. We have “social” brains.” (Goswami, 2008, p. 1)Apprendre par les autres « Les humains ne se limitent pas à interagir socialement avec leurs co-spécifiques, comme le font d’autres espèces animales, mais s’engagent entre eux sur des tâches collaboratives complexes, comme produire un outil, préparer un repas, créer un repaire ensemble, jouer un jeu coopératif, collaborer scientifiquement, et ainsi de suite. » La science est une conquête de l’humanité, pas une invention individuelle ; elle n’est pas simplement la conséquence de la puissance extraordinaire de notre cerveau, mais aussi le fruit de cerveaux connectés à travers l’espace et le temps, grâce à des formes de coopération et de transmission qui, ensemble, forment le squelette de notre culture. Quelles capacités naturelles rendent nos cerveaux aptes à la coopération, à la transmission du savoir, à la culture ? Des mécanismes faisant partie de la cognition humaine dotent l’enfant, dès son plus jeune âge, de la capacité d’apprendre ce que d’autres savent ou savent faire - en les observant faire, en les imitant, en leur posant des questions, en écoutant leurs témoignages, en coopérant avec eux. Chez l’humain, l’aptitude et l’attitudeàapprendre des autres (àprofiter des connaissances, d’autrui, àcombler son manque de connaissance grâce au savoir détenu par autrui) sembles’accompagner, réciproquement, d’une motivation et capacitéàenseigner - àrépondre aux questions, àraconter des témoignages, àmontrer comment faire. Contrairement à la nature qui se laisse découvrir, les êtres humains ne se contentent pas de se laisser imiter, ils se mettent au contraire volontairement et activement dans une posture pédagogique : il se font passeurs de connaissances, médiateurs, éducateurs. La capacité d’apprendre des autres et celle d’enseigner aux autres pourraient donc être comme les deux faces d’une même médaille, deux aspects d’une même prédisposition cognitive à transmettre et à s’approprier une culture. L’idée que la transmission culturelle une caractéristique fondamentale de la cognition humaine corrige éventuellement l’impression qu’on a pu avoir à la lecture des des paragraphes précédents : celle de l’enfant qui apprend, seul, comme un petit Robinson Crusoé, à connaître le monde par ses explorations. La capacité d’apprentissage social est l’indispensable complément pour le petit Robinson Crusoé dans l’acquisition et le développement de connaissances scientifiques. Sans cette composante sociale, chaque enfant serait obligé à apprendre par l’expérience tout ce qu’il y a à savoir concernant son environnement matériel et social - y compris des connaissances pour lesquelles son cerveau n’est pas prédisposé, comme les acquisitions de la culture humaine : la fabrication des outils, l’écriture, les principes gui guident l’investigation dans la science avancée, ou les règles de conduite qui s’appliquent à différents groupes sociaux.  Or ce n’est évidemment pas le cas. Chaque génération hérite de la précédente et bâtit sur ses avancées, qu’elle transforme, fait avancer et lègue à son tour à la génération à venir.  De l’imitation à la pédagogie  Cit. Imiter l’autre est un mécanisme d’apprentissage qui se manifeste assez tôt chez le bébé. Suite à des expériences conduites dans les années 1980 il semblerait que même des bébés de 4 jours puissent reproduire les gestes d’un adulte qui ouvre la bouche ou tire la langue - des gestes qui sont dans son répertoire et qui seraient donc activés par le fait que l’autre les produit avec insistance devant lui. Mais les enfants n’en restent pas là : entre 9 et 12 mois, en observant un certain effet, ils savent distinguer si l’adulte l’a fait volontairement ou involontairement (par hasard ou par accident) ; face à un « effet manqué » ils savent reconnaître que l’adulte a essayé de produire un certain résultat, sans le réussir. Peu de temps après, ils manifestent l’aptitude de répondre à la question : « pourquoi il ou elle a fait ça ? ». Cette capacité ouvre la porte à l’imitation « rationnelle » : celle qui ne se limite pas à copier les gestes observés, mais qui cherche à en découvrir le but, même quand celui-ci est caché.  Prenez le cas suivant. Un enfant de 14 mois voit un adulte presser un bouton avec la tête. Va-t-il copier le geste ? Oui, mais seulement si l’adulte a les mains libres. Si les mains de l’adulte sont occupées, l’enfant ne reproduira pas le geste peu naturel de la tête, et il pressera le même bouton avec ses mains. Il montre ainsi qu’il a compris que la forme du geste ne compte pas : l’adulte y a eu recours seulement parce qu’il ne pouvait pas faire autrement. Dans le cas des mains libres, par contre, rien ne permet à l’enfant d’expliquer le recours au geste accompli avec la tête, et l’enfant reproduit tant le fond que la forme de ce qu’il a pu observer.  Le jeune enfant manifeste donc une compréhension de quelque chose comme l’existence d’un plan d’action, du fait que plusieurs façons d’agir sont possibles pour réaliser le même but, et que buts et plans d’action doivent être analysés ensemble. Il manifeste également la compréhension qu’une action est motivée et réalisée d’une certaine manière en raison des intentions de celui qui la mène. Enfin, les jeunes enfants sont capables d’imiter dans des situations particulièrement difficiles, par exemple lorsque l’information à transmettre et à apprendre n’est pas présente de manière évidente. Prenons le cas d’un objet qui a du poser des problèmes d’apprentissage à nos ancêtres : la fabrication et l’utilisation d’une pierre débitée ; ou celui d’un outil dont le but est de permettre la construction d’un autre outil. La pierre ou l’outil sont gardés dans un endroit qui n’a rien à voir avec leur lieu d’utilisation : comment savoir à quoi ils servent, quel est leur but, domaine et manière utilisation ? Regarder l’objet, le manipuler, regarder quelqu’un en fabriquer un analogue ou l’utiliser ne permet pas nécessairement de répondre à ces questions, de savoir quels aspects il est important d’observer et d’imiter. L’objet est opaque, cognitivement, et cette opacité représente une difficulté pour l’apprentissage. Il existe une variété d’acquisitions culturelles – successives à l’invention des pierres débitées, ou à celle des outils instrumentaux - qui sont opaques cognitivement et qui donc demandent un apprentissage de type social particulier. Elles peuvent concerner les moyens pour obtenir un certain effet, la fabrication ou usage d’objets complexes, des traditions à pratiquer d’une certaine manière, des conventions, des normes, l’usage de systèmes de symboles, notamment : le langage, la coopération orchestrée autour d’une tâche commune, dans un but partagé. Il est possible que, sous la pression des problèmes d’apprentissage créés par la production d’artefacts technologiques opaques, les premiers humains aient évolué des mécanismes spéciaux d’apprentissage social pour faire face à des situations où la simple observation des gestes d’autrui n’est pas suffisante à garantir qu’un apprentissage se fasse. Des chercheurs ont mis en évidence l’existence de mécanismes d’apprentissage de type social, très précoces, qui pourraient en effet répondre aux nécessités et difficultés posées par ces situations. Ils consisteraient en mécanismes dédiés de communication, mis en place par l’adulte et auxquels le bébé humain serait naturellement sensible. Par exemple : l’adulte regarde l’enfant, et il attend que celui-ci le regarde ; puis il dirige les yeux sur un objet particulier et il interagit avec celui là, en continuant de temps à autre à regarder l’enfant. Ceci signalerait à l’enfant que l’adulte n’est pas en train d’interagir instrumentalement avec un objet, ni de s’engager dans n’importe quel échange avec l’enfant, mais qu’il a une attitude particulière : pédagogique - qu’il veut lui faire comprendre quelque chose concernant l’objet en question. D’autres mécanismes de communication mobilisés lors des interactions pédagogiques adulte-enfant incluraient une certaine utilisation du langage et de l’intonation (les anglais utilisent le terme « motherese » pour décrire l’intonation et attitudes particulières que peut adopter l’adulte qui parle avec un bébé), les gestes de pointage. Ce genre de geste pédagogique n’est pas « réfléchi » et on ne s’étonnera donc pas de le retrouver dans les relations adulte-enfant qu’on peut observer au quotidien : il n’y a point besoin d’un psychologue cognitif pour les mettre en place (juste pour les décrire et chercher à en comprendre la valeur cognitive), car chacun de nous est, au quotidien, psychologue. Les enfants, réciproquement, répondent à ces signaux en formant des attentes, et, de façon observable, en orientant le regard vers l’objet pointé ou visé par l’adulte. Ces systèmes de signalisation et réponse - permettant la transmission du savoir et à l’apprentissage social en situations complexes (opaques) - ont été décrits comme une forme de « pédagogie naturelle » : une forme d’enseignement pour laquelle à la fois adultes et enfants sont naturellement préparés. Lors des toutes dernières années, a grandi l’intérêt des chercheurs (anthropologues, psychologues du développement, cognitifs, et évolutionnistes, chercheurs en éducation) pour les mécanismes de l’apprentissage social, les aspects cognitifs de la pratique de l’enseignement et le « cerveau qui enseigne ». Il a été proposé que notre cerveau pourrait être naturellement prédisposé pour enseigner. L’enseignement est en effet une forme de comportement complexe (composé d’autres fonctions cognitives, coûteux en termes d’effort), mais bien adapté à la solution d’une classe précise de problèmes : la transmission des connaissances et compétences culturellement développées. Tous les humains, indépendamment de leur culture, déploieraient en outre une forme ou une autre de pédagogique volontaire face aux membres plus jeunes de leur groupe ou famille. Et, selon certains, même les enfants enseigneraient spontanément – par exemple, les règles d’un jeu à leurs camarades. Apprendre par le témoignage des autres (ou : le contrat de confiance et ses limites) « Une fois qu’on admet que les enfants font confiance aux témoignages des autres il devient clair que la direction du développement cognitif est nécessairement ouverte. Nous devons abandonner l’idée que les enfants avancent fermement vers une vision objective et illuminée. Même s’ils construisent un ensemble de vérités plus ou moins universelles et objectives concernant le monde physique, biologique, le cycle de la vie, le mental, les enfants en arrivent aussi à accepter des affirmations on ne peut plus exotiques et non vérifiables. » Apprendre des autres ne se limite point au fait de les imiter, ou à celui d’apprendre ce que les autres ont à nous montrer, mais consiste aussi de formes d’apprentissage explicites - dont l’éducation formelle fournie par l’école est un exemple relativement moderne. Aussi visible que l’apprentissage qui passe par des gestes, ostensifs ou démonstratifs, est celui où l’adulte fournit explicitement à l’enfant – par le dire, notamment - des informations que ce dernier ne possède pas, et où l’enfant, explicitement et volontairement, demande des informations à l’adulte - ou écoute ce que l’adulte dit, et change son comportement en conséquence. Plusieurs études témoignent de la ténacité avec laquelle les enfants, à partir de leur deuxième année de vie, posent des questions à leurs parents et proches dans le but d’obtenir des informations – ne faisant ainsi que confirmer un constat bien trop facile à faire lorsque l’on vit avec des enfants. Des études qualitatives semblent aussi témoigner du fait que les enfants prennent en compte les réponses données, par exemple pour décider si poser une nouvelle question. L’enfant est donc capable d’un apprentissage vertical, a un penchant naturel pour apprendre par ce moyen. Au point que certains ont opposé à la vision du bébé scientifique en herbe celle de l’enfant disciple crédule. D’un point de vue évolutif être « crédule » peut avoir des avantages : notamment celui de permettre de suivre l’autorité de l’adulte lorsque celui-ci informe l’enfant de l’existence d’un danger. Un enfant qui n’aurait autre capacité d’apprendre que celle d’explorer se mettrait plus souvent en danger que l’enfant qui a hérité de la capacité de se fier aux conseils de l’adulte. D’un point de vue éducatif plus large, écouter les témoignages des adultes et leurs démonstrations permet d’apprendre même lorsque l’exploration directe et la collecte de données sont impossible – par exemple, parce que les objets ou processus en question sont éloignés ou invisibles. C’est le cas pour le nom des capitales du monde, pour le fait que, il y a des millions d’années, les dinosaures ont arpenté la Terre, ou pour la connaissance du cerveau en tant qu’organe, caché, de la pensée. Entre 6 et 7 ans, apparemment les enfants commencent à avoir une connaissance des fonctions du cerveau, qu’ils ne peuvent certainement pas avoir observé de manière directe. Seul les autres, adultes ou enfants plus grands, peuvent avoir fourni ce genre d’information - de façon plus oumoinsexplicite et « professorale » - quel’enfant a retenu et compris. L’apprentissage relève dans ce cas d’une sorte de contrat de confiance entre l’adulte qui transmet verticalement son savoir et l’enfant qui est prédisposé à s’en saisir – non sans avoir évalué l’opportunité de faire confiance à l’adulte en question. Comme l’adulte, l’enfant semble en effet avoir la capacité d’évaluer la fiabilité de ses sources, et donc de choisir entre deux adultes qui fournissent des informations contraires, à partir d’une série de critères qui varient avec la situation.  Par exemple, les enfants entre 4 et 5 ans savent que les adultes ont des connaissances qu’ils ignorent (comme la signification du mot « hypocondriaque » et choisissent de se fier à eux plutôt qu’à d’autres enfants. Ils savent aussi résister aux affirmations des adultes et objecter qu’elles sont fausses - lorsqu’elles s’opposent à l’évidence. Si l’évidence est cachée ou ambiguë (par exemple, s’il s’agit de classer un animal hybride entre un poisson et un oiseau) les enfants d’âge préscolaire peuvent accepter le témoignage des adultes, même s’il va dans la direction opposée à celle prise de manière autonome par l’enfant.  Cependant, la crédulité des enfants semble être tout sauf indiscriminée : les enfants choisissent à qui demander des informations et qui choisir parmi des sources d’information qui ne seraient pas en accord entre elles. Ils savent que les adultes possèdent des aires d’expertise : les médecins plutôt sur comment on remède à un bras cassé, le mécanicien à une voiture en panne.  Si un enfant de 5 ans entend des opinions différentes sur qui a gagné une certaine compétition, il préférera croire à la version de celui qui a perdu la course (une assertion qui va contre l’intérêt personnel) plutôt qu’à celui qui dit l’avoir gagnée (une assertion qui va dans la direction de l’intérêt personnel) – en montrant ainsi de posséder un certain cynisme ou bon sens quant à la fiabilité des récits des gagnants. Mais on a pu mettre en évidence aussi l’existence d’autres mécanismes d’évaluation de la fiabilité des sources d’information. Jusqu’à 3 ans, la familiarité semble être le paramètre le plus important de la confiance. Après, d’autres paramètres sont de plus en plus pris en compte, comme la conformité entre les connaissances de l’adulte et celles de l’enfant, l’opinion majoritaire et l’existence de consensus autour des connaissances proposées par l’adulte. Lors d’une expérience on a montré plusieurs objets « mystérieux » à deux groupes d’enfants entre 3 et 5 ans. Des adultes nomment les objets ou en montrent l’usage, mais leurs opinions sont discordantes ; par exemple, un certain adulte appelle un crochet en métal « slod », l’autre l’appelle « linz ». Invités à choisir un nom pour l’objet ils adoptent celui utilisé par l’adulte qui leur est plus familier (les enfants appartiennent à deux groupes et les deux adultes enseignent dans le jardin d’enfance de l’un ou de l’autre groupe d’enfants). Une deuxième phase de l’expérience permet de mettre en contraste familiarité et exactitude. Cette fois, les deux enseignantes nomment aussi des objets que les enfants connaissent : une bouteille, une cuillère, une brosse. Une enseignante dit les noms corrects, l’autre a tout faux. Les enfants de 3 ans ne semblent pas être affectés les erreurs de la deuxième enseignante, et continuent à choisir sur la base de la familiarité ; à partir de 4 ans les enfants préfèrent l’enseignante familière seulement si elle dit les choses justes, mais pas si elle se trompe régulièrement (aucune préférence) ; et à 5 ans ils choisissent de suivre la personne qui s’est montrée « compétente », même s’ils ne la connaissent pas. Les enfants d’âge préscolaire sont aussi susceptibles à la pression de « l’opinion majoritaire » et à l’existence d’un consensus entre adultes. Reprenons la situation de désaccord entre deux adultes décrite ci-dessus ; cette fois, deux personnes se trouvent débout derrière les deux femmes assises qui proposent des noms différents pour un même objet  : l’une l’appelle « feppin » par exemple, l’autre « merval ». Les deux personnes debout sourient et font oui avec la tête quand ils entendent « feppin » et froncent les sourcils en hochant la tête au mot « merval ». Si on demande à des enfants de 4 ans quel est le nom de l’objet mystérieux, ils auront tendance à choisir celui qui semble faire le plus de consensus. Si les deux personnes qui étaient debout laissent la pièce, les enfants continuent - même si de manière moins fiable - à suivre l’opinion de la femme qui avait reçu plus d’approbation. Ce n’est pas juste une question de suivre la personne qui suscite le plus de consensus (qui plait plus), mais, apparemment, d’une vraie sensibilité pour le consensus : si trois personnes pointent vers le même objet mystérieux lorsqu’elles entendent un nom inventé, et une seule pointe vers un autre objet, les enfants choisissent le premier nom pour l’objet. Naturellement le rôle du témoignage des adultes dans la formation des connaissances de l’enfant ne se limite pas aux contenus de la science ou à la classification et utilisation d’objets familiers : les idées enfantines concernant l’existence d’enfer et paradis, de papa Noël et de la petite souris qui échange argent contre dents de lait, reposent sur la confiance que l’enfant fait à l’adulte – dans le bien comme dans le moins bien. Vice versa, Il y a plus dans l’apprentissage social que la simple acquisition de nouvelles procédures et connaissances. Comme le montrent les études sur l’iper-imitation (l’imitation de gestes totalement inutiles et déconnectés de la tâche), les enfants savent avoir des égards pour l’adulte qui leur apprend quelque chose : s’ils comprennent que les gestes de l’adulte sont intentionnels, ils les copient même s’ils ne comprennent pas à quoi ils peuvent bien servir. C’est comme s’ils se disaient : je ne comprends pas pourquoi il fait cela, mais il doit avoir ses bonnes raisons. Ceci s’explique si les enfants assument que l’auteur de la démonstration détient un savoir culturel sur ce qu’il faut et ce qu’il ne faut pas faire et que apprendre ce qu’il faut faire dans un contexte social et culturel est au moins aussi important que l’efficacité dans une action (c’est comme ça qu’on fait). En d’autres mots, observer et imiter les actions des autres ne serait pas seulement une manière d’apprendre « comment faire », mais aussi d’apprendre ce qu’on est supposés faire dans certaines circonstances. Dans l’apprentissage d’un jeu il y aurait alors autant d’apprentissage de la dextérité et du savoir faire qui amène au succès, que d’apprentissage des règles en tant que conformité aux normes locales. Vice versa, dans l’enseignement il y aurait autant de transmission de connaissances de nature culturelle et d’informations utiles pour la survie, l’adaptation, la réussite dans une tâche que de transmission de valeurs et normes d’une certaine culture, afin de permettre au jeune représentant d’une société de s’y conformer et donc d’entrer à en faire partie. La transmission culturelle est aussi instrument d’adaptation culturelle.C’est ainsi – par iper-imitation - que même des pratiques culturelles qui n’ont aucune valeur pratique ou technique, ni valeur sociale, peuvent et sont activement passées d’une génération à l’autre avec un effet de transmission et complexification. En effet, les enfants se fient aux adultes au point qu’ils transforment les informations que ces derniers leurs fournissent en normes : non seulement ils apprennent que l’adulte a fait une certaine chose d’une certaine manière, mais ils supposent que c’est comme ça qu’il faut faire. Des enfants de 3 ans auxquelles on enseigne à utiliser un objet d’une certaine manière, sont contrariés de voir une poupée qui s’y prend différemment et objectent que la poupée ne fait pas bien. Nous sommes donc prêts, précocement, à adopter les produits culturels, les connaissances, les pratiques, les règles de ceux qui nous précèdent, et ceci via l’imitation et d’autres formes d’apprentissage explicite qui permettent la transmission des acquis de la culture humaine (artefacts, capacités, pratiques, connaissances) d’une génération à l’autre. Si l’enfant est un scientifique, il est aussi un anthropologue de terrain qui observe le comportement des populations « natives », les interroge, apprend à qui se fier pour obtenir des informations plus correctes.  Faire et apprendre avec les autres « en plus de la compréhension des autres en tant que agents intentionnels et rationnels, les humains possèdent aussi une quelque forme d’une capacité plus spécifiquement sociale, qui leur donne la motivation et les habilités cognitives pour sentir, faire des expériences, agir ensemble avec d’autres. »  Entre 9 et 14 mois, en même temps qu’ils mettent en place leurs capacités relatives à la compréhension des intentions et des buts des autres, les enfants s’engagent avec les adultes dans des dialogues qui passent par les yeux (on parle de regard mutuel) - en des pseudo-conversations où il est beaucoup question d’émotions : ils respectent des tours, comme dans une vraie conversation, en remplissant les vides quand l’adulte se tait avec leurs vocalisations, regards, sourires et en devenant plus passifs lorsque l’adulte agit. Puis, cette relation s’enrichit d’un troisième élément : un élément externe, sur lequel les yeux se posent alternativement, en suivant la direction du regard de l’un et de l’autre. Aux alentours de 12 mois, enfant et adulte partagent leur attention sur un objet, et l’enfant pointe son doigt vers des objets pour attirer l’attention de l’adulte non sur lui même mais sur ce qu’il est en train de regarder. Avec cette capacité surviennent aussi la possibilité et l’intérêt pour faire des choses ensemble, pour partager des activités : jouer, faire semblant de manger ou boire avec une dinette, se passer des cubes pour construire une tour. La perception aussi est partagée car elle porte sur un même objet. Finalement, autour de 14 mois, adulte et enfant peuvent se coordonner pour réaliser un but commun : lorsqu’il s’agit de construire une tour, l’un peut tenir la boite et passer les pièces que l’autre utilise, ou maintenir la tour en équilibre pendant que l’autre la fait grandir. De nouveau, l’enfant humain montrerait de posséder non seulement des aptitudes pour ce genre de coopération mais aussi une motivation pour la coopération que leurs cousins les plus proches – les grands singes - ne partagent pas dans la même mesure. Cette capacité est appelée « intentionnalité partagée » et elle est considérée comme étant une clé pour la création culturelle - la production d’objets culturels, d’institutions, de science en tant qu’entreprises collectives. Combinée avec une compréhension de plus en plus sophistiquée des intentions d’autrui – d’une capacité de lecture de l’esprit d’autrui – cette motivation naturelle, biologiquement intrinsèque à l’être humain, produit un saut qualitatif dans la cognition humaine ; alors que les seules capacités « intellectuelles », la puissance de calcul ou même les capacités causales et de raisonnement, ne seraient pas suffisantes à expliquer les différences en termes de culture entre Homo sapiens et les autres espèces animales. Même le langage, tout en constituant une capacité cruciale pour l’évolution de la cognition humaine, pourrait ne pas être une faculté primitive parce qu’il dépendrait, pour son développement, de capacités sociales liées et de la volonté de coopération.Si nous voulons rechercher les bases naturelles de ce qui nous rend spécifiquement humains, nous devons alors rechercher du côté des capacités cognitives liées à la vie au sein de groupes culturels : la capacité d’établir un certain type de coopération, qui permet la production collaborative de produits culturels, celle d’apprendre des autres et celle de transmettre son propre savoir à d’autres membres de l’espèce, de manière à perpétrer les connaissances à travers le temps et l’espace. Grâce à ces capacités les humains ont bâti une culture sur laquelle les nouvelles générations apportent chacun à leur tour de nouvelles modifications, dans une accumulation continue. Grâce à cette culture, les humains sont la seule espèce à occuper aujourd’hui toute sorte de niche écologique, et peuvent viser l’espace extra-terrestre.  Le prolongement de l’enfance « Du bébé à l’âge scolaire, les enfants ont besoin souvent d’acquérir de nouvelles habilités ; leur capacité d’apprendre est très importante. »  Même si l’apprentissage constitue une fonction cognitive fondamentale qui habite toute notre vie, l’enfance est le moment où il y a le plus à apprendre. Premièrement, en bonne mesure, ce que l’on apprend en tant qu’adultes affine, complète et corrige les compétences et les connaissances existantes. Deuxièmement, la vie d’adultes nous pousse à bien faire, à perfectionner nos expertises, à être performants, plus qu’à apprendre. Les enfants, au contraire, ont besoin de nouvelles capacités. Si l’on accepte ce lien fort entre enfance et apprentissage, l’enfance peut donc être considérée, aujourd’hui, se prolonger jusqu’à l’âge où se termine la formation obligatoire, car ce terme indique que les apprenants sont encore en train d’acquérir les capacités qui leur serviront dans leur vie d’adultes et ne sont pas encore censés fonctionner en modalité « performance » mais en modalité apprentissage. Avec sa dotation de départ, sa curiosité et les adultes pour l’aider à survivre et pour lui apprendre ce qu’ils savent, l’enfant humain a beaucoup de temps devant lui avant que son cerveau ne soit mature. La longue durée de l’enfance (la période qui suit le sevrage, mais pendant laquelle l’animal dépend encore des adultes pour sa protection et nutrition, donc pour sa survie) constitue aussi l’un des grands changements biologiques qui ont touché l’espèce humaine au cours de son évolution, peut-être apparue au cours de l’évolution de homo habilis, il y a environ 2 millions d’années. L’évolution de l’enfance, avec un cerveau déjà de grandes dimensions, mais en développement continu, aurait fourni au genre homo une dotation de temps extra pour l’apprentissage, lui donnant ainsi aussi plus d’opportunités de transmission culturelle. Notamment au niveau des régions préfrontales, ce processus de développement ne serait pas complet avant environ 25 ans. Il est possible que cette maturation lente soit aussi un point de force pour le « petit scientifique ». Certains chercheurs considèrent par exemple que l’immaturité du cerveau de l’enfant – notamment au niveau des régions pré-frontales, est loin de représenter un handicap pour le déploiement d’une cognition de type scientifique. Ces régions ont en effet, parmi d’autres tâches, celle d’inhiber pensées et actions non pertinentes. Les enfants seraient donc, dans ce sens, plus dis-inhibés. Ceci leur donnerait un avantage pour explorer plus librement, explorer de manière créative, apprendre de manière flexible. Naturellement, ces caractéristiques ne sont pas suffisantes à faire un bon scientifique. L’adulte a développé la capacité à planifier et à agir de manière efficace, des automatismes qui permettent de réagir de manière rapide ; les connexions entre les neurones de son cerveau (les synapses) ont subi un processus important de sélection qui en a progressivement réduit la redondance. Il est possible que le prix de l’efficacité soit une perte de flexibilité dans l’apprentissage.  «  Les qualités qui sont requises pour agir efficacement – comme des processus automatiques rapides et un cerveau où les connections entre neurones ont subi un processus important de sélection – pourrait être intrinsèquement antithétique aux qualités qui sont nécessaires pour apprendre, comme la flexibilité. » Dans un sens, les enfants pourraient donc être des meilleurs scientifiques que les adultes - du moins en rapport aux composantes de la découverte scientifique qui ont trait à l’ouverture d’esprit, à la flexibilité, à la liberté à prendre en considération n’importe quelle idée, même si apparemment « folle », et n’importe quelle donnée, même si elle contredit ses théories. Néanmoins, la science est l’entreprise qui consiste à reconnaître comment les choses sont, indépendamment de comment elles devraient être ou comment elles pourraient être. Dans cette formulation minimaliste se cache une clause très restrictive : pour faire de la science il est nécessaire de « se plier à l’évidence ». A la « liberté d’esprit » doit donc s’associer l’adhésion à une méthode rigoureuse, qui permet de séparer le bon grain de l’ivraie et sélectionne les idées qui méritent d’être retenues. (Si le jeune enfant est un scientifique en herbe, créatif et flexible, il n’est certainement pas un scientifique rigoureux.) Cette adhésion demande une dose significative d’inhibition. Notes au Chapitre 1. Apprendre par les autres De l’imitation à la pédagogie  Sur l’imitation comme mécanisme d’apprentissage précoce chez le nouveau-né, voir : Meltzoff & Moore (1983), Meltzoff & Prinz (2002). Même s’il n’est pas facile de provoquer l’imitation chez des nouveaux nés - et que seulement un petit nombre de gestes est imité et pas de manière régulière - les résultats concernant la capacité et la tendance du bébé et puis de l’enfant à imiter l’adulte sont robustes car elles ont été répliquées à plusieurs reprises, par plusieurs chercheurs. Il a été proposé que ce genre d’imitation reposerait sur un réseau de neurones dits « neurones miroir » parce qu’ils s’activent aussi bien lorsque l’animal observe un autre animal qui accomplit un geste commun et simple, comme celui de porter un objet à la bouche, que lorsque l’animal accomplit le même mouvement. Les neurones miroir s’activent en effet aussi bien quand l’animal accomplit une certaine action que lorsqu’il observe un autre animal l’accomplir. Il a été suggéré que ces neurones pourraient jouer un rôle dans la capacité d’éprouver empathie pour les autres (du moins celle irréfléchie) et aussi de comprendre les intentions qui se cachent derrière les gestes d’autrui, donc, dans la capacité d’apprendre en imitant les autres. On sait encore très peu sur ces neurones pour pouvoir se prononcer quant à leur rôle dans l’apprentissage et la relation à autrui. Mais ce qu’on sait est qu’ils s’activent aussi chez le singe macaque, chez qui ils ont été étudiés bien plus largement que chez l’humain ; vu que les singes n’imitent pas comme les humains, les corrélats neuraux de l’imitation humaine ne peuvent pas être limités à l’activation des neurones miroir. Voir à ce propos : Meltzoff & Decety (2003), Ramachandran (2000), Rizzolatti & Craighero (2004).L’imitation est considérée comme un mécanisme fondamental de la transmission culturelle, chez l’homme et ses cousins. En effet, non seulement les humains mais aussi d’autres primates tendent à transmettre certaines de leurs acquisitions - comment pêcher des termites avec un bâton, comment casser des noix en les appuyant sur une pierre et en les battant avec une autre - via un mécanisme d’imitation ; puisque ces acquisitions se transmettent aux autres membres du même groupe - et notamment d’une génération à l’autre - sans que des mécanismes de transmission génétique soient à l’œuvre, on parle de culture et de transmission culturelle (ou d’apprentissage social). Voir : Gergely & Csibra (2006), Whiten et al. (1999). Le débat est néanmoins encore ouvert quant à la nature de l’imitation chez les animaux non humains : il n’y a pas d’accord concernant le fait que celle montrée par les autres primates soit une forme authentique d’imitation ou plutôt une forme d’émulation -  seul le résultat obtenu, le comportement des autres est imité, mais pas les intentions - ou de « priming » – l’action du premier animal attire l’attention du deuxième sur un certain objet et le deuxième animal agit comme le premier, mais sans pour cela l’imiter, seulement parce que l’objet en question « active » l’action correspondante. Les primatologues tendent à souligner la nature réellement culturelle de plusieurs comportements observés chez les singes non humains, les psychologues du développement au contraire soulignent la discontinuité entre culture chez les humains et culture chez les autres animaux. Voir : Whiten (2005) ; Whiten & vonSchaik (2007) ; de Waal (2001) ; Tomasello (1999, 2009). Ce qui semble être sûr est que les humains sont capables d’imitation aussi dans des cas assez difficiles - et sans se limiter à copier les gestes accomplis par l’autre, mais en faisant attention et en s’interrogeant à propos de ce que l’adulte veut faire par son geste. Sur l’imitation rationnelle des intentions, voir : Gergely & Csibra (2006), Tomasello et al. (2005). Sur la pédagogie naturelle, voir : Csibra & Gergely (2009), Gergely & Csibra (2006). GergelyCsibra et GyuryGergely, conduisent leurs recherches et enseignement à la Central EuropeanUniversity de Budapest. Ils sont à l’origine du concept de pédagogie naturelle et de beaucoup d’études sur les bébés et enfants, notamment concernant leur capacité de lire les intentions d’autrui en observant leurs gestes. Les recherches sur les aspects sociaux de l’apprentissage sont en cours, pour établir par exemple si celle d’enseigner est – comme celle d’apprendre – une habilité naturelle, installée dans le patrimoine génétique et dans la structure de notre cerveau ; quelle relation elle entretiendrait avec d’autres capacités sociales - comme celle à imiter, ou à coopérer, ou à la sensibilité à certains types d’information - ; si seulement les adultes ou même les enfants enseignent, si d’autres espèces sont naturellement « enseignantes ». Nous savons en effet que d’autres animaux possèdent des formes d’apprentissage social : certains imitent – mais l’animal imité ne fait rien pour faciliter la tâche de l’imitateur ; d’autres transmettent des informations par la communication, mais ces informations ont une portée locale et pas généralisable - par exemple un signal de risque immédiat - ; d’autres encore montrent à leurs petits « comment faire », mais il n’engagent pas nécessairement en même temps une relation communicative. Par contre, la pédagogie naturelle serait présente à travers les différentes cultures humaines. Elle serait donc apanage de l’espèce humaine, et presque limitée à celle-ci. La compréhension du cerveau qui enseigne fait ses premiers pas, mais représente l’une des lignes de recherche les plus intéressantes à la convergence des études sur la cognition et de ceux sur l’éducation. Beaucoup de questions restent à poser ou à développer. Voir  en particulier : Battro (2012), Cosmides & Tooby, n.d. ; Strauss (2005), Strauss & Ziv (2012). Sidney Strauss a proposé une théorie évolutionniste de l’enseignement selon laquelle enseigner pourrait être une fonction cognitive naturelle, une adaptation. L’enseignement présenterait en effet les caractéristiques d’autres fonctions cognitives naturelles : universalité, spécificité par rapport à d’autres espèces, complexité, précocité, réponse à un problème fonctionnel. Strauss  Apprendre par le témoignage des autres (ou : le contrat de confiance et ses limites) Sur l’apprentissage des normes et le contrat de confiance, voir : Tomasello & Hermann (2010), Dawkins (2006), Harris (2012), Corriveau & Harris (2009). Paul Harris – professeur à la Harvard GraduateSchool of Education – a proposé l’image de l’enfant crédule, anthropologue plus que scientifique en herbe pour souligner l’importance revêtue par l’apprentissage social, par le témoignage, dans la construction des connaissances de l’enfant. Il a réalisé et décrit les expériences sur l’utilisation du témoignage et l’iper-imitation et proposé l’idée que l’imitation et la transmission culturelle sont autant des formes de transmission de savoir que de conformité aux normes du groupe. Voir aussi : Bloom (2004) et Bloom & Weisberg (2007). Paul Bloom – professeur de psychologie et sciences cognitives à Yale University – étudie en particulier les enfants et leur compréhension du monde, notamment social et moral, la relation entre réalité et fantaisie, le langage et les croyances comme celles religieuses ou essentialistes qui s’opposent à une vision scientifique des phénomènes physiques et biologiques.  Faire et apprendre avec les autres A propos de la relation de coopération qui s’instaure entre êtres humains, et de l’intentionnalité partagée, voir en particulier : Tomasello (2009). Pour des études comparées sur les capacités cognitives des êtres humains et des autres grands singes, notamment au niveau de la cognition sociale, voir : Tomasello, Carpenter, Call, Behne, Moll (2005), Tomasello & Rakoczy (2003), Tomasello & Herrmann (2010).Michael Tomasello, psychologue du développement, co-directeur du Max Planck Institute for Cognitive Anthropology, défend une vision fortement sociale et culturelle de ce qui nous rend humains. Si on pouvait imaginer un enfant né et ayant grandi sur une île déserte, ses capacités cognitives d’adulte ne différeraient pas beaucoup de celles des autres grands singes (nos cousins les plus proches du point de vue évolutif) : « Cette personne n’inventerait certainement pas à elle toute seule un langage naturel, l’algèbre ou le calcul, la science ou le gouvernement. Et donc c’est peut être vrai que les capacités cognitives spécifiques aux êtres humains qui font le plus la différence sont ceux qui permettent aux individus de l’espèce Homo sapiens de mettre en commun leurs ressources cognitives. C’est-à-dire, de créer des produits culturels et de participer à des activités culturelles collectives. » (Tomasello & Rakoczy, 2003, p. 122)Quoique différents sous plusieurs points de vue, tous les groups culturels humains ont des technologies complexes, des systèmes symboliques et linguistiques, des institutions complexes. A travers les différentes cultures, l’être humain est producteur de culture. On pourrait, en première approximation, penser que ce succès évolutif est le produit d’un cerveau mieux adapté à comprendre le monde ; mais ceci ne semble pas être le cas. Nos cousins les plus proches (les grands singes, et en particulier chimpanzés et bonobos, que seul 6 millions d’années séparent de l’évolution de notre espèce) raisonnes sur le monde physique d’une manière fondamentalement semblable à la nôtre : « leur » monde aussi est composé d’objets permanents, à leur tour divisés en catégories et quantifiés, prenant partie dans des événements qui sont liés par des relations causales. Les grands singes se rappellent les événements passés, anticipent, imaginent, infèrent. Même les relations sociales ne diffèrent pas radicalement des nôtres : les autres grands singes vivent aussi en groupe, établissent des liens de différents type, s’engagent dans des actions complexes de résolution du conflit, interprètent le buts des actions d’autrui et traitent les autres comme des agents intentionnels. Les résultats d’une batterie de tests à laquelle ont été soumis chimpanzés, orang-outangs et humains de deux ans ont confirmé que les deux espèces partagent les mêmes capacités cognitives fondamentales pour faire face au monde physique ; les différences se font remarquer quand on s’attaque au monde social, et notamment à la capacité de lecture des intentions d’autrui, à la communication et à l’apprentissage social. Le prolongement de l’enfance Il existe plusieurs hypothèses évolutives concernant l’origine de l’enfance humaine. On attribue souvent sa valeur au fait de créer une plage de temps pour l’apprentissage culturel, et on la lie donc au constat de la majeure plasticité structurelle du cerveau à cette époque de la vie. Mais d’autres hypothèses sont possibles. Voir par exemple : Bogin (1997) qui en donne une vision d’ensemble. Barry Bogin est professeur d’anthropologie biologique à LoughbourghUniversity. Il a proposé un modèle selon lequel l’évolution de l’enfance serait une adaptation liée à des avantages pour la reproduction et la recherche de nourriture. L’enfant peut en effet être nourri et pris en charge par le père et d’autres membres de la famille (les grands-mères, notamment) et ceci libère la mère et la rend disponible pour al reproduction. Pour des études en imagerie cérébrale concernant la maturation cérébrale au cours de l’enfance et de l’adolescence, voir : Paus (2004) ; Toga, Tompson, Sowell (2006). Pour l’idée selon laquelle l’enfant serait, plus que l’adulte, un scientifique en herbe, grâce à l’immaturité même de son cerveau – ou vice versa, que le scientifique serait un adulte spécial, qui a gardé certaines caractéristiques du fonctionnement cognitif de l’enfant - voir Gopnik (2010).    Tomasello, Carpenter, Call, Behne, Moll (2005), p. 675.Harris (2012), p. 3.Tomasello, Carpenter, Call, Behne, Moll (2005), p. 687.Siegel (2000), p. 26-27.Gopnik (2010).
  • One of the social learning mechanims that is more studied is is learning by imitationLearning by imitation is present in the human baby by the age of at least 9 months (Meltzoff, 1988)At 14 months, babies imitate with a delay (1 week) and rationally:They imitate certain features of the action if and only if they consider that they are functional to the reaching of the goal, not if they are contingent to the situation(Meltzoff, 2005)(Gergely, et al., 2002)Different interpretation of the role of imitation and mind reading or the theory of mind:1. The like-me hypothesis states that infants grow to understand others in three stages:Imitation: babies come to understand (or experience) the intrinsic connection between observed and executed acts, as manifest by newborn imitation First-person experience: Infants experience the regular relationship between their own acts and underlying mental states.Understanding Other Minds: Others who act "like me" have internal states "like me.” (Meltzoff, 2005)Among the studies on social cognition, mirror neurons have gained lot of attentionMirror neurons are involved in the representation of an actionMirror neurons are activated when observing an action, independently from the specific motor realization of the actionMirror neurons are related to the goal, and the agentMirror neurons could be involved in the understanding of others’ intentions and to imitationSpeculatively, in empathy (Iacoboni, et al., 2005)2. From mind reading to imitationInfants understand and imitate adults’ intentions, not only their behaviorsLearning by imitation seems to require the understanding of others’ intentions (Tomasello, 1990)Three levels of understanding others’ actions & reading of intentions)Perceiving others as actors that produce their actions (6 months old children)Perceiving others as having goals for their actions (9 months)Perceiving others as making plans for reaching their goal, and choosing the most rational action (14 months)(Tomasello, et al. 2005)3 levels of engagement in shared intentions:Dyadic engagement: face to face interactions and protoconversations with shared emotionsTryadic engagement: doing things together, but without assigning roles for the reaching of the goal; sharing perception and goals (9-12 months)Collaborative engagement = sharing action plans (12-15 months)At the origin of human culture and cognition stand two capacities:- mind reading, and in particular: the capacity of perceiving and understanding others’ intentions- a motivation for engaging in shared intention activitiesSo: shared intentionality is what makes humans special in the animal reign(Tomasello, 2005)This is called: Culturallintelligence hypothesis3. Natural pedagogyThe cultural intelligence hypothesis shares many elements with the Natural Pedagogy hypothesis that starts with the observation of the capacity of reading other’s intentions and imitating rationally and of the capacity of sharing attention. These capacities are related to the capacity of learning from others
  • http://www.cognitionandculture.net/home/news/59-publications/2464-paul-harris-on-how-children-learn-from-othersChildren learn by others by listening to them, asking questions, accepting their explanations.They have mechanisms for evaluating the information provided by others and decide who they will trustPau Harris in particular has studied these mechanisms and how children learn from testimony, and criticized the image of the child as a solitary scientist or Robinson Crusoe.
  • (Whiten 2000)The opening of milk-bottle tops by blue-tits, the spread of which in the UK was carefully documented, was one of the first of many examples (Hinde & Fisher, 1951). Studies with captive birds showed that social enhancement, in which the results of the expert bird’s actions (opened containers) drew the attention of novices to the new food source, would be sufficient to cause the spread of such a behavior in the population (Sherry & Galef, 1984). Stimulus enhancement may be the main way in which young primates learn about what foods to eat and how to find them (Fragaszy & Visalberghi, 1996; Whiten, 1989; Visalberghi, 1994).
  • (Whiten 2000)One of the important ways in which primates exploit these complex social worlds is to selectively tap the expertise already acquired by others, either directly, by scrounging resources from them, or more indirectly, by learning from them (Russon, 1997).The key adaptation is one that enables individuals to understand other individuals as intentional agents like the self. …The most thorough way in which an animal may learn from the actions of another is to imitate or copy it. Such a copying process operating across a whole community could lead to population-level similarities of behavior—a ‘culture’ or ‘tradition’ in biologists’ terminology.… First is a category (nonsocial processes) that includes all those cases that do not even require social interaction between A and B: for example, two apes who never meet but who are faced with similar fruits in their environments, may learn by their own individual efforts (individual learning) how to peel the fruit in the same, perhaps optimal, fashion. By contrast, in the category of social influence B does affect A in some way: however, unlike in the third category, social learning, B does not learn any part of the similarity in acts from A: in the case of exposure, for example, by simply tending to be with A, B gets exposed to a similar environment which it learns to respond to in a matching fashion.
  • (Whiten 2000)…However, there is clearly more to human culture than this kind of process. Galef (1992) suggested that since human culture rests upon sophisticated social learning processes that include imitation and teaching, it is misleading to talk of animal ‘culture’ unless trans- mission occurs through mechanisms this complex. If the mechanisms operative in pri- mates are no more than, say, stimulus enhancement, it might be more proper to say that we have an analogy of human culture, rather than any homologous processes that would give a real insight into evolutionary origins. Galef suggested that if we have only an analog we might be best to refrain from talk of ‘culture’ and simply refer to ‘traditions’. Of course, which actual terms we use to highlight this distinction is arbitrary (one could make a similar argument about the ‘corruption’ of the anthropomorphic term, ‘tradition’!), but Galef is making a significant point about the distinction itself. Accordingly we are back to issues of cognition: the nature of the cognitive process of transmission matters in understanding what kinds of traditions, or cultures, really operate among nonhuman primates.Tomasello, Kruger, and Ratner (1993) also emphasized the special nature of what they called ‘cultural learning’ in humans, suggesting that even in young children, true imitation rests upon abilities to recognize the intentional structure of actions in others in a way that other apes do not naturally do. Again, then, what apes have to tell us about the origins of culture is argued to hinge crucially on the cognitive underpinnings of how social learning actually takes place.
  • Recently, and starting from these studies, a new domain of research has made its appearance: the investigation of teaching as a natural cognitive ability. GyorgyGergely and GergelyCsibra suggest that some aspects of human communication might be especially suited (and have indeed developed in the course of human evolution) for facilitating the transfer of generic knowledge to children (2008). In the hypothesis of Natural Pedagogy many animals imitate for learning or communicate about non-generalizable information; but only humans have a system that implies the fact of learning from an adult who, at the same time, shows an action and uses communication cues for informing the child that the information is general and not only local. Natural pedagogy would be universal in the human species.  We propose that human communication is specifically adapted to allow the transmission of generic knowledge between individuals. Such a communication system, which we call ‘natural pedagogy’, enables fast and efficient social learning of cognitively opaque cultural knowledge that would be hard to acquire relying on purely observational learning mechanisms alone. We argue that human infants are prepared to be at the receptive side of natural pedagogy (i) by being sensitive to ostensive signals that indicate that they are being addressed by communication, (ii) by developing referential expectations in ostensive contexts and (iii) by being biased to interpret ostensive-referential communication as conveying information that is kind-relevant and generalizable.(Gergely & Csibra 2008) Michael Tomasello (1999) has developed a theory of how human culture differs from other primates’ culture, and of how human cognition differs from other primates’ and even great apes cognition. The solution resides in social abilities, namely: the capacity of reading others’ minds and of adopting a “like me” perspective on other’s minds plus the capacity of viewing one’s own actions as guided by intentions. In this way, intentions become attributed to others, and others’ intentions become readable. The human species can now develop a new form of imitation that differs from that of other primates because it implies an understanding of the importance of copying the gesture with precision: the specificity of human imitation consists in the fact of copying the form of the action, not just the final result, thus in being interested in how and why co-specifics perform certain actions in a certain way. Also, in human transmission the new techniques that are socially transmitted are also successively ameliorated: it is called “cultural ratchet”. Through cultural ratchet new inventions give rise to further progress because attention to the action allows actions are refined. Human beings are biologically adapted for culture in ways that other primates are not, as evidenced most clearly by the fact that only human cultural traditions accumulate modifications over historical time (the ratchet effect). The key adaptation is one that enables individuals to understand other individuals as intentional agents like the self. This species-unique form of social cognition emerges in human ontogeny at approximately 1 year of age, as infants begin to engage with other persons in various kinds of joint attentional activities involving gaze following, social referencing, and gestural communication. Young children’s joint attentional skills then engender some uniquely powerful forms of cultural learning, enabling the acquisition of language, discourse skills, tool-use practices, and other conventional activities. These novel forms of cultural learning allow human beings to, in effect, pool their cognitive resources both contemporaneously and over historical time in ways that are unique in the animal kingdom. (Tomasello 1999bis).Whiten (2000) summarizes the several forms of imitations that can be found among primates (primates are not the only species that have developed imitation or forms of social learning in general: e.g. social insects such as termites, ants, bees have developed some). One of the important ways in which primates exploit these complex social worlds is to selectively tap the expertise already acquired by others, either directly, by scrounging resources from them, or more indirectly, by learning from them (Russon, 1997). (Whiten 2000, p. 478)Imitation is the most thorough way by which animals learn from other animals, and imitation gives rise to culture as a shared set of behaviors that are transmitted socially rather than genetically: The most thorough way in which an animal may learn from the actions of another is to imitate or copy it. Such a copying process operating across a whole community could lead to population-level similarities of behavior—a ‘culture’ or ‘tradition’ in biologists’ terminology. (Whiten 2000, p. 479)However, there is not necessarily an accord among evolutionary biologists, primatologists, cognitive anthropologists about what is imitation (what does it take for imitation to happen) and who, in the animal kingdom, imitates. Many forms of imitation have been described, and selectively ascribed; see Whiten’s taxonomy of mimetic processes, highlighting the cognitive differences that underlie several forms of social and non social mimicry: First of all, co-specifics can present similar solutions to the same problem because they learn to deal with the problem in the same way, individually; secondly, one can change one’s own behavior because of others’ behavior, thus by being affected by others behavior, without learning or understanding the similarity in acts. Mimetic processes can thus be nonsocial, based on social influence and based on social learning. First is a category (nonsocial processes) that includes all those cases that do not even require social interaction between A and B: for example, two apes who never meet but who are faced with similar fruits in their environments, may learn by their own individual efforts (individual learning) how to peel the fruit in the same, perhaps optimal, fashion. By contrast, in the category of social influence B does affect A in some way: however, unlike in the third category, social learning, B does not learn any part of the similarity in acts from A: in the case of exposure, for example, by simply tending to be with A, B gets exposed to a similar environment which it learns to respond to in a matching fashion. (Whiten 2000, p. 480)One of the forms of social learning is stimulus enhancement, e.g. as in A showing a feeding site to B, and it is the kind of social learning that is mostly attributed to non-humans (like birds learning from others to peck into milk bottles left on the front door, see Pagel 2012). Another form is observational conditioning, such as when monkeys learn to react with fear after seeing other monkeys’ reactions with fear to a certain stimulus. In all these cases animals adopt behaviors that are part of their habitual set of skills and connect them with a certain locus, stimulus situation and result, they do not need to develop new forms of skill or ability (they peck, they react with fear). Emulation consists in reproducing the effects of a co-specific action without copying the actions, and probably involves an understanding of the affordances of a certain object (a tool, like a stick, used by a co-specific for attaining an objective), rather than the understanding of what’s in the co-specific’s mind. Imitation requires the animal to copy not only the result, but the form of the co-specific’s action – or at least some part of it. Emulation/imitation distinctions are debated, as it is the definition of culture. Sperber (1996) defines culture as “the cumulative effect of countless processes of interindividual transmission through imitation” (p. 3)If culture is defined as the spreading and sharing of behaviors maintained by nongenetic means, then the notion of culture can be extended to several species:If culture is defined in the most general way as behavioral conformity spread or maintained by nongenetic means, then these means must involve either social learning or social influence of the types indicated in Figure 1. Social influence and stimulus enhancement appear to be widespread among birds and mammals (see Heyes & Galef, 1996), and thus so do cultures, defined in this way. The opening of milk-bottle tops by blue-tits, the spread of which in the UK was carefully documented, was one of the first of many examples (Hinde & Fisher, 1951). Studies with captive birds showed that social enhancement, in which the results of the expert bird’s actions (opened containers) drew the attention of novices to the new food source, would be sufficient to cause the spread of such a behavior in the population (Sherry & Galef, 1984). Stimulus enhancement may be the main way in which young primates learn about what foods to eat and how to find them (Fragaszy & Visalberghi, 1996; Whiten, 1989; Visalberghi, 1994). (Whiten 2000, p. 484)Human culture is however considered more complex than that, and this because of the kind of imitation humans present and because of teaching – both originating in special cognitive features due to mutations.However, there is clearly more to human culture than this kind of process. Galef (1992) suggested that since human culture rests upon sophisticated social learning processes that include imitation and teaching, it is misleading to talk of animal ‘culture’ unless trans- mission occurs through mechanisms this complex. If the mechanisms operative in primates are no more than, say, stimulus enhancement, it might be more proper to say that we have an analogy of human culture, rather than any homologous processes that would give a real insight into evolutionary origins. Galef suggested that if we have only an analog we might be best to refrain from talk of ‘culture’ and simply refer to ‘traditions’. Of course, which actual terms we use to highlight this distinction is arbitrary (one could make a similar argument about the ‘corruption’ of the anthropomorphic term, ‘tradition’!), but Galef is making a significant point about the distinction itself. Accordingly we are back to issues of cognition: the nature of the cognitive process of transmission matters in understanding what kinds of traditions, or cultures, really operate among nonhuman primates.Tomasello, Kruger, and Ratner (1993) also emphasized the special nature of what they called ‘cultural learning’ in humans, suggesting that even in young children, true imitation rests upon abilities to recognize the intentional structure of actions in others in a way that other apes do not naturally do. Again, then, what apes have to tell us about the origins of culture is argued to hinge crucially on the cognitive underpinnings of how social learning actually takes place. (Whiten 2000, p. 484)These descriptions leave behind another apparently crucial feature of human learning. Humans do not simply learn from others: they teach to others. New skills are not simply borrowed from co-specifics, but intentionally transmitted and sometimes enforced in co-specifics. If we go back to the concept of Natural Pedagogy, humans are not simply endowed with a system for understanding the communicative intentions of others and for paying attention to ostensive gestures and interpreting their general meaning: they are also endowed with the motivation for addressing others for communicating new information and filling-in their information gap; moreover, with the capacity of doing the right thing for making others knowledgeable. This capacity is shared at different degrees by human adults and children. During their development, children engage more and more in teaching: e.g. they teach other children how to play a game (Strauss 2005).The goal of teaching is to pass on one’s knowledge to someone who knows less in an attempts to close the gap in knowledge. (Strauss 2005, p. 274)Sidney Strauss has thus pointed at the necessity of studying human teaching as a natural cognitive ability. Convincing elements for teaching for being considered as a natural cognitive ability, are: the fact that human teaching seems to be universal, but species-specificcomplex, and to follow an ontogenetic path of development (Strauss 2005). In broad terms, a natural cognitive ability is species-specific, universal and young children effortlessly learn the domain in question without instruction. …First … teaching with ToM may be species-typical. The cognition underlying teaching among some species of animals and human beings has not been thoroughly examined. There is little controversy that chimpanzees, our closest relatives, and other primates do not teach with a theory of mind… A second motivation for teaching as a natural cognitive ability is that although other primates do not seem to teach with a ToM, it is incontrovertible that teaching with a ToM is universal among human beings. This means that, with few exceptions, every person in every society has taught (toddlers and some autistic individuals may be exceptions here) and has been taught by others… These are universal activities that take place in everyday life in the home, the streets, the workplace, and the fields. There is considerable cross-cultural variation concerning the amount of teaching that takes place … and the content of what is taught … The importance of the claim of universality is twofold. It means that everyone is exposed to teaching, which is to say that everyone has the possibility to learn to teach by virtue of that exposure, and that very universality suggests that is may be a characteristic of human’s biological and cultural endowments. Third, teaching is an extraordinarily complex enterprise that has much to do with mind, emotions, and motivation-reading. …Fourth is the poverty of the stimulus argument. One of the many remarkable aspects of teaching is that so much of it is invisible to the eye. The visible part is the external acts of teaching… the visible part of teaching is quite impoverished in comparison to the depth of what underlies it, the part that is not revealed to the eye, and what is invisible is the inferences teachers make and the mental processes that lead to these inferences…Fifth, teaching is a specialized social interaction, unlike others. Yet it shares some aspects of other kinds of social interaction…. What stands at the heart of these social interactions is the intentionality of the individuals involved in the social interactions…Sixth, although teaching is universal among human beings, it seems to be learned without formal education, or even education of the informal kind. A sliver of the 6 billion inhabitants of planet earth has been taught how to teach; yet all know how to teach. All have been exposed to pedagogy; they have been taught but, with few exceptions, they have had no instruction about how to teach. … The fact that people have not been taught how to teach does not mean it is not learned. Seven, very young children teach. There are two kinds of evidence that bear on this matter: Toddlers may request teaching and youngsters teach. (Strauss 2005, 374-377)According to Strauss, teaching is as natural and as learned as language (as described by Pinker): there is a learnability condition which prepares the organism to learn to teach and to adapt to any kind of teaching it is exposed to, and there is a characteristic timing and developmental pattern. Teaching skill would thus exist in the form of folk pedagogy, sustained by intuitions not only about others’ minds but also about how to fill-in their knowledge gap, and by the motivation to fill it in. Teaching, or folk pedagogy, the social transformation of knowledge from one person to another or the attempt to engender it in others, is one of the most remarkable of human enterprises. I propose that teaching, which is central to education in the broad sense of that term, can also be seen as an essential domain of inquiry for the cognitive sciences. This is also because, as I attempt to show, teaching may be a natural cognitive ability and is essential to what it means to be a human being. Furthermore, I believe that a search for the cognitive underpinnings of teaching may lead to a description of some of the fundamental building blocks of human cognition and its development. (Strauss 2002, p. 368)This view leads to a program not only in research about education, but in cognitive science, and shows the way to an interdisciplinary integrated field of research in applied cognitive science:A broad view of teaching includes at least four levels of explanation for the cognitive machinery in the mind associated with teaching: an evolutionary adaptive problem that machinery solved, the cognitive programs that solve that problem, the neurophysiological infrastructure that serves as a base for the cognitive program, and the cultural underpinnings that are deigned by and support the above. (Strauss 2005, p. 371)Strauss-view has meaningful consequences both for teaching and for research in education and the cognitive science in integration.

Gdp2 2013 14-7 Gdp2 2013 14-7 Presentation Transcript

  • Teaching THE TEACHER EFFECT IMPACT OF TEACHER TRAINING ON TEACHER QUALITY RESEARCH ON EFFECTIVE TEACHING: TUTORING, PEER TEACHING, COOPERATIVE LEARNING SOCIAL LEARNING MECHANISMS IS TEACHING A NATURAL COGNITIVE ABILITY?
  • The teacher effect • Studies show that primary education has a long-term impact on pupils, which goes beyond school results • It seems to be the case that the quality of the teacher plays a role in this impact BUT • The impact of teachers is difficult to evaluate • The characteristics of the teacher that might account for the effect are not clearly identified
  • Chetty et al. (2011) HOW DOES YOUR KINDERGARTEN CLASSROOM AFFECT YOUR EARNINGS? EVIDENCE FROM PROJECT STAR • • Follow up study 1985-1989 Tennessee 11571 pupils – Random distribution into classes (K3) • Link experimental data with administrative records (tax returns) – Control for family socio-economic level: age mother had 1st child, retirement savings – Search correlations between classroom indicators (number of pupils per class/teacher quality/classroom quality) & socioeconomic indicators when adults (earnings at 27, college attendance, homeownership, retirement savings) • Increase in tests scores at end of K is positively associated with earnings at 27, college attendance, house ownership, savings • Small class size (small classes = 13-17) positively correlates with college attendance, but not with earnings • More experienced teacher positively correlates with earnings • Classroom quality positively correlates with college attendance, earnings & other criteria
  • Chetty et al. (2011) THE LONG-TERM IMPACTS OF TEACHERS: TEACHER VALUEADDED AND STUDENT OUTCOMES IN ADULTHOOD – 2,5 M students – Grades 3-8 – 18 M tests (English+Mathematics) – 20 years (1989-2009) – Control for family socioeconomic level: age mother had 1st child, retirement plan • Teacher VA is predictive of the students’ results – Once the family effect is controlled, the effect of the teacher on school results remains • Teacher VA is predictive of long-term results in life – Students assigned to teachers with high VA (1DS) for at least 1 year, at age between 9 and 14 show positive correlation with • • • • College attendance Salary, Savings Quality of neighborhoods Negative association with teenage pregnancy
  • Teacher Value-Added = evaluation of the quality of teaching by measuring the teacher’s impact upon students’ tests’ scores • The arrival of a new teacher with high VA (top 5%) in a school correlates with better results of the school at the tests as compared to previous years; the leaving of a teacher with high VA correlates with less good results that previous years • The teacher value-added effect is present in situations in which teachers do not receive primes and other forms of incitation for results • The risk is otherwise that of teaching for the test
  • Teacher VA seems to have an impact both on the students immediate results at tests and long-term extraacademic effects • • Some bizarre facts – Once the teacher changes, results at the tests of the successive years are not affected – They become visible again only at the level of the extra-academic long-term impact! Maybe – Impact on non-cognitive aspects that are significant for success in adulthood but not for tests’ scores in following years (?) • difficulties in evaluating teacher impact upon pupils, even in the short term
  • • Pupils, Classroom, School: how to distinguish whether the effect is produced by the one or the other? • One needs to check the results of the same teacher with different classrooms and of the same classroom with different teachers • It is not the case in France, at least simultaneously, only on a sequence of years • Is there a real effect? • How to evaluate pupils’ performance? • Test results are not enough: they do not take into account the progression of the student What causes the effect? • Studies are mostly not experimental (excluded the one cited above) • Children are not necessarily randomly assigned to classes • Even if some variables are controlled for (such as family socio-economic level), other variables aren’t (such as pupils’ motivation) • It can be the case in the USA, but not in France • One cannot easily infer the existence of a causal effect
  • • Once these difficulties are taken into account • There still seems to be something like a teacher effect • Teacher quality might account for 10%-15% of the variance between the results of pupils assigned to different teachers • This effect is greater than the school effect and the reduction of the size of the classrooms • It drops down quickly when the teacher changes, but is present at adulthood • It is not equal for any discipline: more relevant for mathematics than for language
  • Cusset (2011) Que disent les recherches sur l’“effet enseignant”  ? Chetty et al. 2001 Chetty et la 2011 Nye et al (2004) • Depuis quatre décennies, un ensemble de recherches menées dans le domaine de l’éducation a pu confirmer l’intuition de nombreux parents : les progrès de leurs enfants dépendent de manière significative du talent et des compétences de leurs professeurs. • En tenant compte de l'influence des autres variables explicatives, notamment le niveau initial et la catégorie professionnelle des parents, 10 % à 15 % des écarts de résultats constatés en fin d’année entre élèves s’expliquent par l’enseignant auquel l’enfant a été confié. • Ces études livrent d’autres résultats intéressants :
  • Cusset (2011) Que disent les recherches sur l’“effet enseignant”  ? • l’ampleur de l’“effet enseignant” est supérieure à celle de l’“effet établissement” : le professeur a davantage de poids sur la progression des élèves au cours d’une année donnée que l’établissement dans lequel ces derniers sont scolarisés ; • la portée d’une augmentation de l’efficacité pédagogique d’un enseignant est aussi potentiellement supérieure à celle d’une diminution de la taille des classes ; • l’effet de l’enseignant qu’a eu un élève une année donnée s’estompe assez vite une fois que l’élève change d’enseignant ; mais les impacts des enseignants successifs peuvent se cumuler.
  • • Cusset (2011) Que disent les recherches sur l’“effet enseignant”  ? Si l’existence de “l’effet enseignant” est aujourd’hui solidement étayée, il reste que l’efficacité d’un enseignant ne se laisse pas prédire par des éléments aisément objectivables tels que son niveau de formation initiale ou son ancienneté. C’est dans l’interaction avec les élèves que se joue l’essentiel des différences. Which teachers’ characteristics are predictive of teachers’ impact upon pupils?
  • Yoon et al. (2007) Reviewing the Evidence On How Teacher Professional Development Affects Student Achievement Good studies are rare • Experience? Certification, training? • • • Selection effect Only 9 out of 1300 studies selected, of which – 3 non-published PhD theses – 5 experimental studies Effects concern teacher training, not teacher trainers Positive effects exist only for training actions > 14 hours Training actions are varied (length, contents, modalities): it is difficult to say what works even when it works – no regularities can be extracted
  • Bressoux et al. (2008) Teachers’ Training, Class Size and Students’ Outcomes: Learning from Administrative Forecasting Mistakes. • Experience? Certification, training? An administrative forecasting mistakes (in France) has allowed to compare the differential impact of teachers with and without certification – Experience • Only limited to the first years of teaching, after which no more difference – Certification, training • Only limited to the first years of teaching, and in particular to certain disciplines such as mathematics • The impact of teachers’ training seems to be limited
  • • Need better measures – MET : Measures of Effective Teaching – (2009 – ) – 3000 teachers (primary/secondary) – 5 measures of the impact of teachers • Students’ results at standardized evaluations + reasoning & conceptual understanding tests • Classroom observations • Adoption of specific scales e.g. Quality Science Teaching, Stanford Unviersity http://scale.stanford.edu/teaching/qst, UTeach Teacher Observation Protocol (UTOP), University of Texas-Austin • Evaluation of pedagogical capacities • Students’ evaluation of the classroom & teacher • Teachers’ evaluation of the environment and support
  • Teaching THE TEACHER EFFECT IMPACT OF TEACHER TRAINING ON TEACHER QUALITY RESEARCH ON EFFECTIVE TEACHING: TUTORING, PEER TEACHING, COOPERATIVE LEARNING SOCIAL LEARNING MECHANISMS IS TEACHING A NATURAL COGNITIVE ABILITY?
  • Bloom (1984) 2-sigma problem Comparison of: - Conventional teaching - Mastery learning (conventional + formative tests) - Tutoring + formative tests
  • Slavin (1996) Cooperative learning Research on cooperative learning is one of the greatest success stories in the history of educational research. Hundreds of studies have compared cooperative learning to various control methods on a broad range of measures, but by far the most frequent objective of this research is to determine the effects of cooperative learning on student achievement. Further, coop- erative learning is not only a subject of research and theory, but it is also used at some level by millions of teachers. While there is a growing consensus among researchers about the positive effects of cooperative learning on student achievement as well as a rapidly growing number of educators using cooperative learning at all levels of schooling and in many subject areas, there is still a great deal of confusion and disagree- ment about why cooperative learning methods affect achievement and, even more importantly, under what conditions cooperative learning has these effects.
  • Slavin (1996) Cooperative learning • What works? • It is not the case that any kind of cooperation works • Group goals and individual accountability • But the presence of both conditions might be unnecessary in • Structured controversy, Solving complex problems • Presence of external goals • Structured reciprocal tutoring • .. Research is needed Research is needed • Why it works? • Motivation • Social cohesion • Mental processing of information • Zones of proximal development partially overlap • Explaining a concept to others helps understanding through elaboration
  • Hole in the wall http://www.hole-in-the-wall.com/index.html
  • Palincsar & Brown (1984) Reciprocal teaching Peer-teaching Peer education Peer tutoring Peer tutoring is an opportunity for you to connect with a student who has previously done well in your course. Among the reasons students seek peer tutoring are the chance to work through problem sets, develop a better understanding of concepts, prepare for an exam, and build confidence in understanding course materials in a supportuve environment with a fellow student. Most tutoring is one-on-one, but occasionally tutors also work with groups of students. Over 5,100 hours of peer tutoring take place under the Bureau's auspices each academic year. Last academic year, approximately 400 peer tutors fulfilled requests from more than 600 tutees in over 175 courses. http://bsc.harvard.edu/icb/icb.do?keyword=k7 3301&tabgroupid=icb.tabgroup141100
  • Goldin Meadow Cook, Duffy, Fenn (2013) Gestures Children who observe gesture while learning mathematics perform better than children who do not, when tested immediately after training. How does observing gesture influence learning over time? Children (n = 184, ages = 7-10) were instructed with a videotaped lesson on mathematical equivalence and tested immediately after training and 24 hr later. The lesson either included speech and gesture or only speech. Children who saw gesture performed better overall and performance improved after 24 hr. Children who only heard speech did not improve after the delay. The gesture group also showed stronger transfer to different problem types. These findings suggest that gesture enhances learning of abstract concepts and affects how learning is consolidated over time.
  • Baumard (2013) Cahuc & Algan () Horizontal/Vertical Teaching Les auteurs ont comparé l’effet de l’enseignement dit « vertical », où l’enseignant fait cours du haut de l’estrade et garde une distance importante avec les élèves, et l’effet de l’enseignement « horizontal », où la distance entre l’enseignant et les élèves est moindre, et la part de travail en groupes plus importante. L’étude montre que plus l’enseignement est horizontal, plus les enfants font confiance aux autres élèves, aux membres de leur société, ainsi qu’aux différentes institutions. We use several data sets to consider the effect of teaching practices on student beliefs, as well as on organization of firms and institutions. In student level data, teaching practices (such as teachers lecturing versus students working in groups) exert a substantial influence on student beliefs about cooperation both with each other and with teachers. In cross‐ country data, teaching practices shape both beliefs and institutional outcomes. The relationship between teaching practices and student test performance is nonlinear. The evidence supports the idea that progressive education promotes social capital.
  • Teaching THE TEACHER EFFECT IMPACT OF TEACHER TRAINING ON TEACHER QUALITY RESEARCH ON EFFECTIVE TEACHING: TUTORING, PEER TEACHING, COOPERATIVE LEARNING SOCIAL LEARNING MECHANISMS IS TEACHING A NATURAL COGNITIVE ABILITY?
  • FROM LESSON 2 Social learning mechanisms “Child development is today conceptualized as an essentially social process, based on incremental knowledge acquisition driven by cultural experience and social context. We have “social” brains.” (Goswami, 2008, p. 1)
  • FROM LESSON 2 Imitation
  • FROM LESSON 2 Cooperation Testimony
  • Humans Primates Other animals Lessons from animal teaching Hoppitt et al. (2008) Thornton & Raihani (2008) What does evolution have to say about social learning & teaching? • Some forms of social learning are recognized to be present in several species • Nevertheless, some continue to consider that humans are special in what concerns social learning In particular: • • Teaching has often been considered as being specific to humans • Teaching has been considered as being related to the intention to teach • A flexible, generalizable ability facilitated by the ability to make assumptions about others’ knowledge (mind) This consideration is under revision, but in a surprising way
  • Blue tits Japanese macaques Chimpanzees Several social learning mechanisms can be observed in many taxa
  • Whiten (2000) If culture is defined in the most general way as behavioral conformity spread or maintained by nongenetic means, then these means must involve either social learning or social influence. Social influence and stimulus enhancement appear to be widespread among birds and mammals (see Heyes & Galef, 1996), and thus so do cultures, defined in this way
  • Social learning mechanisms Observed in several taxa Situation: In a similar situation, animal A does the same thing than primate B What has happened? Individual learning Non social process: A & B have Independently found the same solution Social influence: e.g. exposure - Because B tends to be with A B is exposed to the same to the same situation Social learning: e.g. stimulus enhancement/observational conditioning – A’s action draws B’s attention on the situation e.g imitation/emulation - B learns the FORM/CONTENT from A’s behavior The solution is prompted by the situation & available in the cognitive kit of primates: social interaction not required The solution is prompted by the presence of another individual of the same species Whiten (2000)
  • Social learning & the Evolution of culture Whiten (2000) Humans are social animals. But one can go further than that: there are ways in which we are more deeply social than any other species on earth in our cognitive makeup. This distinctive social ‘depth’ in human cognition includes extensive penetration of each other’s minds (‘mindreading’ or ‘theory of mind’), learning major swathes of what we know and do from the culture we inherit (cultural learning), exploiting cooperation to achieve much greater things than we could individually, and communicating through language … In these zoologically extraordinary social achievements may lie key explanations for the heights human intellect reaches and the particular ways in which our cognitive system functions.
  • Whiten (2000) But distinctive as they are, these human abilities have evolved from prehuman primate foundations
  • The cultural intelligence hypothesis Herrmann et al. (2007) Humans have many cognitive skills not possessed by their nearest primate relatives. The cultural intelligence hypothesis argues that this is mainly due to a species-specific set of social- cognitive skills, emerging early in ontogeny, for participating and exchanging knowledge in cultural groups. We tested this hypothesis by giving a comprehensive battery of cognitive tests to large numbers of two of humans’ closest primate relatives, chimpanzees and orangutans, as well as to 2.5-year-old human children before literacy and schooling. Supporting the cultural intelligence hypothesis and contradicting the hypothesis that humans simply have more “general intelligence,” we found that the children and chimpanzees had very similar cognitive skills for dealing with the physical world but that the children had more sophisticated cognitive skills than either of the ape species for dealing with the social world.
  • Debate about cultural learning in humans and other primates Human cultural learning Can exploit true imitation = recognize intentions Mind reading Can other primates Mind read, share intentions? Shared attention/inte ntions Human cultural learning Can exploit motivation for cooperation Motivation for cooperation Are they motivated for cooperation? Tomasello, Kruger, Ratner (1993) Tomasello & Herrmann (2010), Tomasello et al (2005), Jherrmann et al. (2007)
  • Natural pedagogy Csibra (2007) It has been suggested that there are two main classes of behaviour that accomplish the transfer of these cultural forms across individuals: imitation (or, more generally, observational social learning), in which the recipient is solely responsible for the successful acquisition of knowledge, and teaching, in which the donor has an active role in the transmission of cultural information [1]. Although various forms of observational social learning are widespread in non-human animals [2], it is generally assumed that teaching is a human-specific activity [3–5]. However, this consensus has now been brought into question.
  • Humans Primates Other animals Lessons from animal teaching Hoppitt et al. (2008) Thornton & Raihani (2008) Why teaching is considered to exist in different taxa? • Revision of the definition of teaching • Hauser & Caro (1992) have proposed a functional definition of teaching, based on observational criteria • Before: • teaching requires intention to teach (Difficult to ascertain on animals other than humans) • Flexible & generalizable, adjustment to the learner’s change in knowledge Hauser & Caro (1992) Olson & Bruner (1996) Galef (1992) Premack & Premack (1996) Tomasello (1994)
  • Is there teaching in non-human animals? Hauser & Caro (1992) Functional criteria for teaching: 1. It occurs only in the presence of a naïve observer 2. It is costly and does not provide any immediate benefit to the teacher 3. It facilitates knowledge acquisition or skill learning in the observer Multiple forms of teaching in animals. E.g: • information donation via scaffolding or opportunity teaching • information donation via punishment / reward or coaching Do these criteria satisfy what we would call human teaching? Is there something specific to human teaching?
  • Babbling birds Tandem Ants Meerkats … Animals of certain taxa are considered to teach
  • Animal vs Human teaching Csibra (2007) What the ants and the babblers do could be considered as charitable information donation, whereas the meerkat helpers’ behaviour seems to be a good example of what is called ‘scaffolding’ (modifying the environment to sup- port individual learning) in developmental psychology. However, the prototypical human teaching is neither pure expression of episodic information nor just environmental scaffolding but a type of social learning that transmits generalizable (semantic) knowledge from the teacher to the pupil through (not necessarily linguistic) communication. Typical examples of human teaching are demonstrations of useful means actions, or expressions of information about hidden properties of objects (e.g. unpalatability of food). By contrast, the ants and the birds in these studies provided information about an episodic fact … this information does not enable them to find food sources more efficiently in the future and is unlikely to be worth passing on to the next generation …
  • Natural pedagogy Csibra & Gergely (2006) We propose that humans are adapted to transfer knowledge to, and receive knowledge from, conspecifics by teaching. This adaptation, which we call 'pedagogy', involves the emergence of a special communication system that does not presuppose either language or high-level theory of mind, but could itself provide a basis for facilitating the development of these human-specific abilities both in phylogenetic and ontogenetic terms. We speculate that tool manufacturing and mediated tool use made the evolution of such a new social learning mechanism necessary. However, the main body of evidence supporting this hypothesis comes from developmental psychology. We argue that many central phenomena of human infant social cognition that may seem puzzling in the light of their standard functional explanation can be more coherently and plausibly interpreted as reflecting the adaptations to receive knowledge from social partners through teaching.
  • Natural pedagogy Csibra & Gergely (2009) We propose that human communication is specifically adapted to allow the transmission of generic knowledge between individuals. Such a communication system, which we call ‘natural pedagogy’, enables fast and efficient social learning of cognitively opaque cultural knowledge that would be hard to acquire relying on purely observational learning mechanisms alone. We argue that human infants are prepared to be at the receptive side of natural pedagogy (i) by being sensitive to ostensive signals that indicate that they are being addressed by communication, (ii) by developing referential expectations in ostensive contexts and (iii) by being biased to interpret ostensive-referential communication as conveying information that is kind-relevant and generalizable.
  • Culture & the ratchet effect Tomasello (1999) Human beings are biologically adapted for culture in ways that other primates are not, as evidenced most clearly by the fact that only human cultural traditions accumulate modifications over historical time (the ratchet effect). The key adaptation is one that enables individuals to understand other individuals as intentional agents like the self. This species-unique form of social cognition emerges in human ontogeny at approximately 1 year of age, as infants begin to engage with other persons in various kinds of joint attentional activities involving gaze following, social referencing, and gestural communication. Young children’s joint attentional skills then engender some uniquely powerful forms of cultural learning, enabling the acquisition of language, discourse skills, tool-use practices, and other conventional activities. These novel forms of cultural learning allow human beings to, in effect, pool their cognitive resources both contemporaneously and over historical time in ways that are unique in the animal kingdom.
  • Debate about cultural learning in humans other primates & other animals Human cultural learning Can exploit teaching Why we teach? Can other primates teach? Close primates? Can other animals teach? What is teaching? Which capacities are involved/req uired for teaching? Is teaching an adaptation? Whiten (1999) Strauss (2005) Teaching Hoppitt et al. (2008) Caro & Hauser (1992) Csibra (2007), Csibra & Gergely (2006, 2009, 011), Gergely & Csibra (2008)
  • Teaching with cues Information donation Social capacities Scaffolding Some form of Adjustment e.g. coaching Capacity to detect naïves Special reaction to naïves Capacity to adjust to the learner on the basis of specific cues Teaching (S) Adaptation for social interactions Maybe for passing information Not especially flexible
  • Social capacities Teaching with (basic) ToM Active teaching Intentional teaching Instructive learning Information sharing Teaching (S) Motivation to share information With adjustments based on mind reading Basic Mind reading skills Teaching with demonstration-imitation Attentional skills (Joint attention) Intentional imitation skills Adaptation for social interactions flexible
  • Social capacities Teaching with (higher-level) ToM Selective information sharing Teaching (S) Detection of knowledge gap With smooth adjustments Detection of mistakes (false beliefs) based on motivation for filling another’s knowledge-gap Empathy (cognitive) Adaptation for social interactions flexible Altruism
  • Social capacities Teaching with ToM & with natural pedagogy Teaching (S) Transmission of generalizable knowledge That is worth passing from one generation to another Adaptation for teaching? Teaching with language Special forms of communication On both sides/learner & teacher
  • Humans Primates Other animals Lessons from animal teaching Hoppitt et al. (2008) Teaching might not be the same in different taxa • Teaching have evolved from the different forms of social learning & inadvertent teaching that exist in different taxa (but not all taxa) • Teaching introduces a new dimension (the dimension of the tutor) in the function of learning from others (the dimension of the naïve) • Several taxa teach, but teaching is not based on one and the same kit of capacities • Different taxa teach with different sets of capacities, according to the social learning kit they have evolved • Humans might be the only one to teach with ToM/imitation & other mechanisms
  • The evolution of teaching Thornton & Raihani (2008) Some forms of teaching, variously referred to as ‘active teaching’ (Caro & Hauser 1992), ‘intentional teaching’ (Byrne 1995) and ‘instructive learning’ (Tomasello et al. 1993) may require mental state attribution. This may alter the nature of teaching in humans, for example, by allowing greater flexibility, but simpler mechanisms based on responses to behavioural cues from pupils may suffice in many contexts (Thornton & McAuliffe 2006). Indeed, many forms of human tuition do not require teachers to impute mental states to pupils. Parents, for example, pro- mote learning of motor skills in children by encouraging and supporting infants’ attempts, modifying their behav iour in response to behavioural cues from the child rather than an awareness of the child’s changing knowledge about the world (Whiten & Milner 1984). Similarly, as Barnett (1968) pointed out, university lecturers may simply use one set of lectures for first-year undergraduates and an- other for advanced classes without being aware of what individual students know.
  • Lessons from animal teaching Hoppitt et al. (2008) In summary, instead of being seen as a separate set of mechanisms for information transfer, teaching can use fully be regarded as introducing another dimension to social learning, corresponding to whether the role of the demonstrator is active or passive. Because many of the processes thought to underlie social learning in animals do not rely on human-like mechanisms, such as intentional- ity, the same should hold for teaching. This categorisation helps us to understand how teaching could evolve; teaching will often arise as signals, or responses, given by tutors that take advantage of pre-existing social learning mechanisms.
  • Lessons from animal teaching Hoppitt et al. (2008) Our hypothetical evolutionary pathway from inadver- tent social learning to teaching leads us to predictions regarding the taxonomic distribution of different types of teaching: we expect teaching to have evolved only where the relevant social learning mechanism was already in place, a prediction that can be tested using comparative statistical methods. This reasoning provides a guide for future research. For instance, we would not expect to find teaching by imitation in meerkats or other carnivores, because imitation has not been found in the Carnivora, but we might expect teaching by imitation to occur in the parrot family (Psittacidae), where there is such evidence [29,30]. By contrast, teaching by observational condition- ing, which is merely reliant on classical conditioning, is likely to be less taxonomically restricted.
  • Lessons from animal teaching Hoppitt et al. (2008) In debates over whether animals exhibit culture, sceptics have argued that human and animal culture differ qualitatively, partly because the former uniquely relies on teaching, whereas advocates of animal culture have suggested that teaching in animals is currently underestimated and have defended comparative arguments. In fact, both might be correct: teaching could be common in animals, yet reliant on completely different underlying mechanisms from human teaching. Indeed, we expect teaching in other animals not to resemble that in humans, because they will typically be unable to exploit the same learning processes.
  • Lessons from animal teaching Hoppitt et al. (2008) We do not suggest that the transition from social learn- ing through inadvertent cues to teaching by active signals is inevitable. Teaching must evolve in the tutor, but its immediate benefits, the learning of a skill or acquisition of information, are for the pupil. Because it is a costly beha- viour that benefits others, teaching can be understood in a similar way to altruism. As with altruism, we would expect teaching behaviour ultimately to benefit the tutor’s inclus- ive fitness, either through kin selection [31] or because the tutor benefits directly from the pupil learning [32]. In the case of kin selection, teaching will evolve according to Hamilton’s rule: if the fitness cost to the tutor (c) is less than the fitness benefit to the pupil (b), multiplied by the degree of relatedness between them (r), or c < br [31].
  • TEACHING EXISTS IN OTHER ANIMALS TEACHING IS ROOTED IN BIOLOGICAL EVOLUTION TEACHING IS AN EVOLVED CAPACITY TEACHING HAS EVOLVED IN A CERTAIN EVOLUTIONARY NICHE FOR HUMANS THE NICHE IS NO MORE THE SAME TEACHING IS A SPANDREL OF OTHER CAPACITIES RELATED TO THE DEVELOPMENT OF SOCIAL LEARNING AND SOCIAL COGNITION WHAT KIND OF CULTURAL ADAPTATIONS HAVE BEEN ADOPTED/ARE TO BE ADOPTED FOR MATCHING THE HUMAN NEEDS IN TERMS OF CULTURAL TRANSMISSION? WHAT KIND OF ABILITIES ARE REQUIRED/NO MORE REQUIRED/NEED TO BE DEVELOPED?
  • Teaching as a natural cognitive ability Strauss (2005) Teaching, or folk pedagogy, the social transformation of knowledge from one person to another or the attempt to engender it in others, is one of the most remarkable of human enterprises. I propose that teaching, which is central to education in the broad sense of that term, can also be seen as an essential domain of inquiry for the cognitive sciences. This is also because, as I attempt to show, teaching may be a natural cognitive ability and is essential to what it means to be a human being. Furthermore, I believe that a search for the cognitive underpinnings of teaching may lead to a description of some of the fundamental building blocks of human cognition and its development. … A broad view of teaching includes at least four levels of explanation for the cognitive machinery in the mind associated with teaching: an evolutionary adaptive problem that machinery solved, the cognitive programs that solve that problem, the neurophysiological infrastructure that serves as a base for the cognitive program, and the cultural underpinnings that are deigned by and support the above.
  • Teaching as a natural cognitive ability Strauss (2005) 1. First … teaching with ToM may be species-typical. The cognition underlying teaching among some species of animals and human beings has not been thoroughly examined. There is little controversy that chimpanzees, our closest relatives, and other primates do not teach with a theory of mind…
  • Teaching as a natural cognitive ability Strauss (2005) 2. A second motivation for teaching as a natural cognitive ability is that although other primates do not seem to teach with a ToM, it is incontrovertible that teaching with a ToM is universal among human beings. This means that, with few exceptions, every person in every society has taught (toddlers and some autistic individuals may be exceptions here) and has been taught by others… These are universal activities that take place in everyday life in the home, the streets, the workplace, and the fields. There is considerable cross-cultural variation concerning the amount of teaching that takes place … and the content of what is taught … The importance of the claim of universality is twofold. It means that everyone is exposed to teaching, which is to say that everyone has the possibility to learn to teach by virtue of that exposure, and that very universality suggests that is may be a characteristic of human’s biological and cultural endowments.
  • Teaching as a natural cognitive ability Strauss (2005) 3. Third, teaching is an extraordinarily complex enterprise that has much to do with mind, emotions, and motivation-reading. … 4. Fourth is the poverty of the stimulus argument. One of the many remarkable aspects of teaching is that so much of it is invisible to the eye. The visible part is the external acts of teaching… the visible part of teaching is quite impoverished in comparison to the depth of what underlies it, the part that is not revealed to the eye, and what is invisible is the inferences teachers make and the mental processes that lead to these inferences… 5. Fifth, teaching is a specialized social interaction, unlike others. Yet it shares some aspects of other kinds of social interaction…. What stands at the heart of these social interactions is the intentionality of the individuals involved in the social interactions…
  • Teaching as a natural cognitive ability Strauss (2005) 6. Sixth, although teaching is universal among human beings, it seems to be learned without formal education, or even education of the informal kind. A sliver of the 6 billion inhabitants of planet earth has been taught how to teach; yet all know how to teach. All have been exposed to pedagogy; they have been taught but, with few exceptions, they have had no instruction about how to teach. … The fact that people have not been taught how to teach does not mean it is not learned. 7. Seven, very young children teach. There are two kinds of evidence that bear on this matter: Toddlers may request teaching and youngsters teach.
  • Olson & Bruner (1986) Strauss (2001) Folk pedagogy Are there myths about teaching? What do teachers think about teaching? How this affects their way of teaching? How this affects students’ learning?