Your SlideShare is downloading. ×

Biomeccatronica

3,592
views

Published on

A summary of technology actually diffused to integrate human and tecnology for rehabilitation.

A summary of technology actually diffused to integrate human and tecnology for rehabilitation.

Published in: Technology

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
3,592
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
77
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Biomeccatronica
    Dario Mazza – A63000330
    Sebastiano Merlino – A63000331
    Prof. Aldo Beretta
  • 2. Cos’è la Biomeccatronica ?
    La biomeccatronica è la fusione tra l’uomo e la macchina. I tempi sono buoni, i microprocessori sono abbastanza piccoli e potenti da rendere possibile una tale fusione
    Si tratta di un campo interdisciplinare che unisce biologia, neuroscienze, meccanica, elettronica e robotica
    Dario Mazza, Sebastiano Merlino
    2
    Gli scienziati che si occupano di biomeccatronica cercano di sviluppare dispositivi che interaggiscano con i muscoli umani, le ossa ed il sistema nervoso con l’obiettivo di assistere o migliorare il controllo motorio umano, che può essere perso o ridotto a causa di un trauma, di una malattia o di un difetto di nascita
  • 3. Introduzione e Definizioni
    “I Service Robot sono automi che operano in maniera totalmente o parzialmente indipendente per fornire dei servizi utili per il benessere degli esseri umani, escludendo operazioni di produzione.”
    (Word Robotics 2000, The International Federation of Robotics,UN)
    Dario Mazza, Sebastiano Merlino
    3
    Riabilitazione:“L’insieme di strumenti medici e sociale, che hanno come obiettivo quello di ripristinare, per quanto possibile, le funzioni dei pazienti.
    (Dikke Van Dale)
    “IRehabilitation robot sono dei Service Robot che operano in maniera totalmente o parzialmente indipendete per fornire servizi utili al benessere dei disabili.”
    (R.Q. Van Der Linde, 2003)
  • 4. Usare un Rehabilitation Robot ?
    Perchè si ?
    Aumento dell’età media (più persone anziane)
    Maggiore incidenza delle disabilità
    Le terapie basate sui robot sono più motivanti, accurate, obiettive e adattabili
    Le terapie basate sui robot permetto ai pazienti di curarsi a casa
    Perchè no ?
    Il fattore QALY è basso
    Bisogna ancora provare del tutto gli effetti di tali terapie
    Si tratta di terapie complesse
    Dario Mazza, Sebastiano Merlino
    4
    QALY ( Quality Adjusted Life Year)
    Obiettivo: misurare la qualità della vita
    Definizione: Un QALY pari ad 1 corrisponde ad un’aspettativa di vita di 1 anno in condizioni di buona salute, il valore 0 rappresenta la morte
    Esempi:
    • allungamento della vita di 4 anni * 0,1 = 0,4 QALY (riabilitazione
    • 5. allungamento della vita di 2 anni * 1,0 = 2 QALY (pace maker)
  • Componenti Principali
    Dario Mazza, Sebastiano Merlino
    5
    Il sistema è composto da sensori (cellule nervose e sensoriali), attuatori (muscoli) e controllori (sistema nervoso centrale).
    Ogni sistema biomeccatronico deve avere gli stessi tipi di componenti:
    Biosensori
    I biosensori percepiscono le “intenzioni” dell’utente. A seconda del grado di disabilità e del tipo di dispositivo, questa informazioni possono provenire dal sistema nervoso dell’utente o dal suo sistema muscolare. Il biosensore comunica queste informazioni ad un controllore localizzato esternamente o all’interno dello stesso dispositivo (come nel caso di protesi). I biosensori ricevono anche feedback da parte degli arti (sotto forma di posizione e forza applicata) e riferiscono tali informazioni al controllore o al sistema nervoso/muscolare dell’utente.
    I biosensori possono essere cavi che percepiscono l’attività elettrica come percettori galvanici (che recepiscono le correnti elettriche prodotte dai mezzi chimici) sulla pelle, elettrodi impiantati nei muscoli oppure vettori di elettrodi a stati solidi con nervi che cresono attorno ad essi.
    Sensori Meccanici
    I sensori meccanici misurano le informazioni dal dispositivo (posizione dell’arto, forza applicata) e la riferiscono al biosensore o al controllore.
    Sono misuratori di forza e accellerometri.
  • 6. Componenti Principali
    Dario Mazza, Sebastiano Merlino
    6
    Controllori
    Il controllore è l’interfaccia fra i muscoli e i nervi dell’utente ed il dispositivo; esso si relaziona e/o interpreta i comandi che l’utente vuole impartire all’attuatore sul dispositivo. Esso inoltre si relaziona e/o interpreta le informazioni di ritorno dai sensori meccanici o dai biosensori sull’utente. Il controllore inoltre monitora e controlla i movimenti del dispositivo biomeccanico.
    Attuatori
    L’attuatore è un muscolo artificiale che produce forza o movimento; l’attuatore può essere un motore che aiuta o rimpiazza i muscoli dell’utente a seconda che il dispositivo sia ortesico o protesico
    Ortesi contro Protesi
    I dispositivi ortesici assistono i movimenti umani senza rimpiazzare l’arto danneggiato. Di contro, i dispositivi protesici rimpiazzano l’arto perso o danneggiato per restaurare il movimento.
    La biomeccatornica fornisce risultati migliori dei dispositivi ortesici e protesici poichè è in grado di adattarsi alle necessità dell’utente. Ad esempio può fornire informazioni per correggere i carichi variabili o adattarsi dinamicamente a colui che indossa il dispositivo.
  • 7. Come Funziona la Biomeccatronica?
    Dario Mazza, Sebastiano Merlino
    7
  • 8. Come Funziona la Biomeccatronica?
    Dario Mazza, Sebastiano Merlino
    8
  • 9. Obiettivi
    Dario Mazza, Sebastiano Merlino
    9
    Molti laboratori in giro per il mondo conducono studi di biomeccatronica, inclusi il MIT, l’Università di Twente (Olanda), l’università della California a Berkeley.
    Le ricerche correnti si concentrano, soprattutto, su tre aree:
    Analizzare i movimenti degli esseri umani, che sono complessi, al fine di aiutare nel design di dispositivi biomeccatronici.
    Studiare come i dispositivi possano essere interfacciati con il sistema nervoso (elettrodi impiantabili nel cervello, superfici di elettrodi galvanici nei muscoli e nella pelle).
    Testare l’uso di muscoli “vivi” usati come attuatori per dispositivi elettronici.
    I movimenti umani sono complessi, sia che si tratti di trasportare un bicchiere di vetro pieno d’acqua sia che si tratti, invece, di camminare su un terreno accidentato.
    Primo obiettivo della biomeccatronica, diviene quindi quello di osservare i movimenti umani al fine di capire come essi si muovono e articolano i loro movimenti in relazione al proprio pensiero. Fatto ciò, risulterà molto più semplice realizzare dispositivi in grado di aiutare coloro i quali hanno perso un arto o la sua funzionalità.
  • 10. Casi di Studio
    Dario Mazza, Sebastiano Merlino
    10
  • Sistema visivo – Come vediamo ?
    Dario Mazza, Sebastiano Merlino
    11
    La cornea è il tessuto spesso e trasparente che ricopre la superficie anteriore dell’occhio e serve a far convergere la luce in esso incidente sul cristallino.
    La sclera, in continuazione della cornea, è una membrana opaca che ricopre il bulbo oculare nella sua parte interna.
    La coroide contiene un insieme di vasi sanguigni che portano la maggior parte del nutrimento all’occhio. Ai suoi estremi anteriori la coroide si divede in due parti: il corpo ciliare e l’iride.
    Il cristallino (o lente) ha la funzione di schermare dalle onde nello schermo dell’infrarosso e dell’ultravioletto che possono danneggiare l’occhio e mettere a fuoco l’immagine sulla retina.
    La retina contiene i recettori fotosensibili. La retina costituisce la membrana più interna dell’occhio ed è l’elemento base su cui si fonda la visione.
    Il nervo ottico è il collegamento tra lo strumento di acquisizione visiva (l’occhio) e l’elaboratore delle immagini (il cervello)
  • 15. Principi di Protesi visiva
    Dario Mazza, Sebastiano Merlino
    12
    • L’obiettivo della protesi visiva è quello di replicare le funzioni biologiche dell’occhio mediante l’utilizzo di componenti elettronici.
    • 16. Componenti:
    • 17. Una videocamera digitale (negli occhiali)
    • 18. Un microchip per il processamento video
    • 19. Un radio trasmettitore (negli occhiali)
    • 20. Un radio ricevitore (vicino l’orecchio o sotto l’occhio)
    • 21. Un impianto retinico
  • Processo di Impianto
    Dario Mazza, Sebastiano Merlino
    13
    Si eseguono tre piccole incisione nella parte bianca dell’occhio
    Si rimuove il gel dall’interno dell’occhio
    Viene rimossa una parte della retina
    Il dispositivo viene impiantato nel canale creato
  • 22. Ulteriori Dettagli
    Dario Mazza, Sebastiano Merlino
    14
    Visione attraverso la lingua
    Un segnale elettrico corrispondente alla scena viene inviato alla lingua attraverso un vettore di elettrodi. Il cervello interpreta la scena per consentire la visione.
    Tipologie di Protesi Visive:
    • Protesi Corticale
    • 23. Protesi Retinica
    • 24. Protesi del nervo Ottico
    • 25. Impianto retinico Imbrido
    Problematiche
    • infezioni e infiammazioni
    • 26. calore prodotto
    • 27. disposizione del vettore di elettrodi
    • 28. Alimentazione
    • 29. celle solari
    • 30. batterie esterne
    • 31. membrane fotosintetiche
  • Protesi degli Arti
    Dario Mazza, Sebastiano Merlino
    15
    Obiettivo
    Come prima, l’obiettivo rimane quello di permettere una semplice interazione fra l’utente e il componente robotico.
    Dubbi
    Quale tipo di controllo sul movimento bisogna effettuare ?
    Come ci si interfaccia con il robot ?
    E’ affidabile e sicuro ?
    Tipologie di controllo sul movimento
    • Controllo a loop di controllo di posizione
    • 32. Controllo a loop di controllo di forza/posizione
    • 33. Controllo periodico
  • Controllo di Posizione
    Dario Mazza, Sebastiano Merlino
    16
    Un tale tipo di controllo sul dispositivo è attuato al fine di farne cambiare la posizione. Esso è di fondamentale importanza in tutti i tipi di protesi degli arti in quanto indispensabile per un corretto posizionamento dell’arto in risposta ad un ordine impartito e, più a basso livello, per renderne possibile l’effettivo movimento da parte dell’utente.
  • 34. Controllo di Posizione
    Dario Mazza, Sebastiano Merlino
    17
    Caso più semplice
    Supponiamo che la funzione di trasferimento associata al carico sia una funzione di secondo ordine del tipo:
    Riscrivendo:
    O altrimenti: con
  • 35. Controllo di Posizione
    Dario Mazza, Sebastiano Merlino
    18
    Nel caso indicato, quindi, il sistema generale si riduce al nuovo schema in figura.
    E’ banale verificare come, per valori più piccoli di “m” si giunga prima a regime.
    Sebbene si siano usati sensori e attuatori ideali nello schema, si è potuto scoprire come l’ottimalità del controllo dipenda strettamente dal carico.
  • 36. Controllo di Posizione
    Dario Mazza, Sebastiano Merlino
    19
    Lo schema in figura si occuperà di fornire un’indicazione della forza da applicare sul sistema al fine di permettergli di raggiungere la posizione desiderata.
  • 37. Controllo di Posizione
    Dario Mazza, Sebastiano Merlino
    20
    Il controllo di posizione presenta diversi vantaggi :
    • Ottima tolleranza agli urti
    • 38. Attuatori economici
    • 39. Semplice ed Efficace
    • 40. Molto flessibile nel controllo di posizione e traiettoria
    • 41. Può essere applicata in parallelo per aumentare i gradi di libertà
    • 42. Tipo di controllo in assoluto più usato
    • 43. Utilizzabile anche per effettuare controllo sulla forza e sulla velocità
    • 44. Ha un guadagno ottimo dipendente solo dal carico.
  • Controllo di Forza/Posizione
    Dario Mazza, Sebastiano Merlino
    21
    Spesso, il semplice controllo di posizione si rivela inadeguato al controllo del gran numero di variabili in gioco soprattutto nella gestione complessa (per controllodi forza, velocità e posizione) degli arti superiori.
    Al fine di ottenere il massimo potenziale dalle fonti di movimento in questo tipo di applicazioni risulta necessario implementare un controllore a ciclo chiuso sulla forza applicata al dispositivo e testare in maniera molto precisa sia la posizione voluta che la velocità ottenuta.
    Controllare solo la posizione degli attuatori non è adeguato poiché non sarebbe possibile osservare i sottili cambiamenti delle proprietà del dispositivo oggetto di studio; né sarebbe possibile calcolare in maniera accurata la forza necessaria per muovere o flettere il dispositivo verso la direzione voluta.
    In un sistema a propulsione idraulica, come quelli ad oggi in uso, per calcolare il giusto quantitativo di forza da applicare, bisognerebbe calcolare (supponendo di lavorare al di sopra di un ipotetico pistone) la forza applicata ad entrambi i capi dello stesso.
    Per il controllo misto “forza/posizione” ritroviamo due speciali configurazioni del sistema di controllo: ad “Impedenza” e ad “ammettenza”.
  • 45. Controllo di Forza/Posizione
    Dario Mazza, Sebastiano Merlino
    22
    Loop ad Impedenza
    E’ la più semplice forma di controllo combinato “forza / posizione” attuabile.
    Una tale forma di controllo, mediante l’uso di sensori, cerca di rilevare la grandezza dello sbilanciamento e quindi determinare il quantitativo di forza da applicare. Come si evince dalla figura, la forza generata dall’attuatore viene calcolata comprensivamente all’inerzia accumulata dal dispositivo robotico durante il movimento.
  • 46. Controllo di Forza/Posizione
    Dario Mazza, Sebastiano Merlino
    23
    Caratteristiche del controllo ad impedenza:
    Non elmina l’inerzia residua sul robot
    Non elimina l’attrito meccanico
    Sbilanciamento presente prima dell’applicazione della forza
    Non è richiesto un sensore per la forza.
    Conclusione:
    Ottimo per compiti leggeri; alto grado di sicurezza
    movimento
    forza
  • 47. Controllo di Forza/Posizione
    Dario Mazza, Sebastiano Merlino
    24
    Controllo di
    Posizione
    Loop ad Ammettenza
    E’ un sistema più complesso rispetto al precedente.
    Come si può notare, la parte evidenziata in figura corrisponde ad un loop a controllo di posizione che permette di eliminare, anche se solo parzialmente i problemi sul sistema di controllo dovuti agli attriti e all’inerzia che il robot subisce a causa del movimento.
  • 48. Controllo di Forza/Posizione
    Dario Mazza, Sebastiano Merlino
    25
    Caratteristiche del controllo ad ammettenza:
    Limitata eliminazione dell’inerzia
    Perziale eliminazione dell’attrito meccanico
    Cambiamenti imposti sulla forza già prima di ottenere uno sbilanciamento
    E’ richiesto un sensore per la forza
    Instabile per alti valori del carico.
    Conclusione:
    Ottimo per compiti pesanti; basso grado di sicurezza
    forza
    movimento
  • 49. Controllo di Forza/Posizione
    Dario Mazza, Sebastiano Merlino
    26
    C2 ALTO
    DUT, DBL
    6 Gradi di Libertà
  • 50. Controllo Periodico
    Dario Mazza, Sebastiano Merlino
    27
    Il controllo periodico fa attraversare al sistema, ciclicamente, un certo numero di stati per poi tornare sempre in quello iniziale.
    Una tale forma di controllo ben si adatta alla emulazione dei meccanismi di deambulazione umana.
    Imitare la capacità di muoversi sulle gambe degli esseri umani non è cosa semplice, tuttavia, spesso, un tale movimento può essere ricondotto ad una più semplice pratica ripetuta che sfrutta l’inerzia del movimento a proprio vantaggio.
    Questo controllo, per quanto raffinato, rimane, almeno, in linea teorica, più semplice da implementare rispetto alle sue due controparti (controllo di posizione e controllo forza/posizione).
  • 51. Controllo Periodico
    Dario Mazza, Sebastiano Merlino
    28
    I movimenti sono resi intrinsecamente periodici.
    Si fa in modo, attraverso questa tecnica di controllo di utilizzare le proprietà tipiche dei sistemi massa-molla per fare in modo che il sistema generi oscillazioni e induca il corpo guidato a muoversi entro tali oscillazioni.
    Risulta scontato dire, che obiettivo principale di questa forma di controllo è anche quello di limitare l’ampiezza e la frequenza delle oscillazioni indotte sul corpo in modo da evitare eventuali casi di instabilità.
    Per far ciò, a livello meccanico, si utilizzano particolari sistemi basati su smorzatori dinamici e statici, nonché sistemi di contrappesi.
  • 52. Esoscheletro
    Dario Mazza, Sebastiano Merlino
    29
    “Una struttura solida esterna, come la corazza di un crostaceo o di un insetto, che protegge e fornisce supporto all’organismo”
    Gli esoscheletri artificiali hanno l’obiettivo di assistere i movimenti di chi li indossa. Si possono distinguere due finalità per l’uso di un esoscheletro:
    Assistenza: l’esoscheletro aiuta l’utente in compiti in cui la sua sola forza non risulta sufficiente
    Riabilitazione : l’esoscheletro permette all’utente di riacquistare capacità perse o diminuite drasticamente a causa di traumi, malattie o malformazioni
  • 53. Sistemi Neurobitici
    Dario Mazza, Sebastiano Merlino
    30
    Il neologismo neurobotico indica un sistema bionico ibrido in cui l’uomo e il robot operano in simbiosi (HBS indica la simbiosi uomo macchina): per tale motivo le interfacce, le strutture meccaniche ed i controllori si devono basare su un modello cognitivo e motorio umano che tenga conto delle caratteristiche fisiche dell’utente.
    Campi di interesse
    • Modellazione di sistemi biologici, robotici e relativi alle neuroscienze
    • 54. Interazioni e interfacce uomo/robot
  • Esoscheletri – una panoramica
    Dario Mazza, Sebastiano Merlino
    31
    • Esoscheletro per l’assistenza al movimento degli arti superiori umani
    • 55. Sviluppato per l’assistenza nei movimenti di tutti i giorni e per la riabilitazione degli arti superiori
    • 56. Gli attuatori sono 3 servomotori in continua, i sensori 3 potenziometri, degli straing-gauge e degli elettrodi EMG superficiali. Il controllore è realizzato tramite un controllore di impedenza implementato tramite un controllore neuro-fuzzy.
    • 57. Soft ActuatedExoskeleton(vedi foto in basso a sinistra)
    • 58. Ideato per ridurre il carico dei trattamenti di fisioterapia richiesti dalla riabilitazione dei pazienti.
    • 59. MuscleSuitfor Upper Body
    • 60. Fornisce un supporto muscolare ai pazienti paralizzati o incapacitati a compiere lavori manuali
    • 61. Vedi foto a destra
  • Esoscheletri per locomozione
    Dario Mazza, Sebastiano Merlino
    32
    • BLEEX (BerkleyLowerExtremityExoskeleton)
    Realizzato per conto del DARPA (DefenseAdvancedResearch Project Agency) statunitense, questo esoscheletro permette a soldati, pompieri, soccorritori e ad ogni tipo di personale occupato nelle emergenze di portare un carico maggiore. Il sistema consta di 10 gradi di libertà e utilizza come attuatori dei sistemi idraulici. Il peso dell’esoscheletro è di 78kg e permette all’utilizzatore di trasportare grossi carichi percependo un peso di poche libbre. In basso a sinistra è possibile vedere il BLEEX.
    • SARCOS
    Un esoscheletro per la parte inferiore del corpo che permette ai soldati di portare carichi notevoli per lunghe distanze. Il sistema ha 8 gradi di libertà, utilizza degli attuatori idraulici alimentati da un motore a combustione.
    Permette di trasportare fino a 90 Kg sulla schiena dell’utilizzatore.
  • 62. Neuroexos
    Dario Mazza, Sebastiano Merlino
    33
    Il progetto Neuroexosha come obiettivo quello di applicare agli esoscheletri i principi della neurobotica permettendo agli umani di controllare i robot senza interfacce invasive e accoppiando il sistema esterno (l’esoscheletro) con il braccio umano attraverso un interfaccia meccanica, costituita dalla parte interna dell’esoscheletro e la pelle del braccio.
    Il braccio meccanico consta di 3 gradi di libertà e deve imitare un braccio umano in termini di vincoli fisici:
  • Neuroexos
    Dario Mazza, Sebastiano Merlino
    34
    Il problema di afferrare un oggetto in uno spazio 3D è stato semplificato riconducendolo all’intercettazione di un oggetto con una traiettoria rettilinea in un piano 2D.
    Per studiare le dinamiche dello scenario sono stati realizzati degli esperimenti. Partendo dalla posizione iniziale, il soggetto doveva fermare un carrello, che si muoveva a diverse velocità, afferrando un cilindro munito di sensori. Il movimento del braccio doveva essere planare e parallelo alla superficie del tavolo. I segnali EMG e i dati sul movimento vengono monitorati.
    Sistemi per il rilevamento dei dati:
    • Motioncapture system per acquisire il movimento del braccio
    • 67. Sei canali EMG per l’acquisizione dei dati sull’attività muscolare
  • Neuroexos
    Dario Mazza, Sebastiano Merlino
    35
    A partire dai dati raccolti dai sensori di movimento sulla traiettoria è possibile calcolare, istante per istante, attraverso l’analisi cinematica inversa i valori dell’angolo, velocità angolare e accelerazione angolare nei due snodi. A partire da dalla velocità e accelerazione angolare si applicato l’algoritmo di Newton-Eulero con ricorsione all’indietro per calcolare i valore dei momenti negli snodi.
    Tutti i calcoli vengono eseguiti utilizzando il RoboticTool di Matlab.
    Alcune limitazioni di questo modello sono la mancata considerazione della mano e le conseguenti modifiche alla massa del braccio.
  • 68. NeuroArm
    Dario Mazza, Sebastiano Merlino
    36
    Braccio NeuroArm
    • Massa: 1.83 Kg
    • 69. Inerzia: 0.0644 Kg mm²
    Braccio Umano
    • Massa: 2 Kg
    • 70. Inerzia: 0.0647 Kg mm²
    Per simulare nel modo più reale possibile gli attriti e le dinamiche interne di una articolazione umana sono stati utilizzati dei dispositivi nelle giunture basati sui ferrofluidi che semplificano la trasmissione dell’energia e sono meno rumorosi e pesanti
  • 71. NeuroArm - Attuatore Idraulico
    Dario Mazza, Sebastiano Merlino
    37
    Come funziona il sistema di attuazione ?
    Il motore pilota la pompa
    La pompa carica l’accumulatore
    L’accumulatore spinge l’olio all’interno del sistema idraulico
    Un segnale in tensione pilota le elettrovalvole che controllano la velocità del pistone
  • 72. MIT LegExoskeleton
    Dario Mazza, Sebastiano Merlino
    38
    Gli esoscheletri generalmente utilizzano degli attuatori idraulici per muovere le articolazioni della caviglia, dell’anca e del ginocchio; questa scelta richiede un’ingente quantità di energia che deve essere fornita da un generatore molto pesante. Questo approccio porta a dei meccanismi pesanti, rumorosi con una bassa capacità di carico rispetto al peso della struttura; inoltre, a causa del peso, in caso di guasti questi sistemi possono arrecar danno all’utilizzatore.
    L’esoscheletro realizzato dal MIT punta sulla leggerezza del sistema. I componenti sono progettati basandosi sui dati biomeccanici sulle tecniche di cammino degli essere umani.
  • 73. MIT Exoskeleton - Elettronica
    Dario Mazza, Sebastiano Merlino
    39
    Il sistema è reso autonomo attraverso un computer onboard con schede di acquisizione, generatori di energia (un batteria da 48V) e amplificatori.
    L’esoscheletro del MIT è equipaggiato con dei sensori per catturare gli stati necessari al controllo realtime degli attuatori.
    L’interazione tra l’uomo ed il sistema è misurato tramite un sensore costituito da un insieme
    di molle che permettono di determinare il trasferimento di potenza tra l’utilizzatore e l’esoscheletro. Inoltre quest’ultimo può essere reso reattivo alle forze applicate dall’utilizzatore attraverso l’utilizzo di questo sensore.
  • 74. Macchine a stati dei controllori
    Dario Mazza, Sebastiano Merlino
    40
    Il controllore per l’anca si basa su una macchina a stati che utilizza l’angolo dell’anca e la forza nell’esoscheletro per far scattare i passaggi di stato. Vi sono 5 stati e lo stato NotWalking è lo stato iniziale. Si passa allo stato Late Stance Extension appena l’angolo dell’anca scende sotto una soglia; quando si raggiunge un valore minimo si passa allo stato Early Swing Flexion. L’angolo dell’anca aumenta di nuovo e quando raggiunge la stessa soglia aveva fatto scattare lo stato Late Stance Extension si passa allo stato Late
    Swing Flexion. Lo stato LegRetraction si raggiunge se la velocità dell’anca arriva a zero ossia se l’angolo dell’articolazione raggiunge il suo valore massimo. Infine lo stato Early Stance Extension viene attivato se il carico dell’esoscheletro supera una determinata soglia.
  • 75. Macchine a stati dei controllori
    Dario Mazza, Sebastiano Merlino
    41
    Il controllore per il ginocchio si basa su una macchina a stati composta da 4 stati. Lo stato Off è lo stato iniziale. L’angolo del ginocchio, la forza ed il momento nella gamba dell’esoscheletro sono utilizzate per far scattare le transazioni di stato. Lo stato Off è implementato in modo che appena la gamba viene alzata dal terreno e il carico dell’esoscheletro va a zero, il controllore si disattiva lasciando il ginocchio libero di piegarsi. Lo stato di Stance si raggiunge quando la forza sulla caviglia supera una certa soglia. Lo stato Pre-Swingscatta quando il momento dell’articolazione della caviglia
    supera una soglia, in questo stato si smagnetizza l’articolazione del ginocchio. A questo punto il carico sulla
    caviglia dell’esoscheletro diminuisce rapidamente e quando raggiunge lo zero scatta lo stato Swing Flexion. Si entra nello stato Swing Extension quando la si raggiunge la flessione massima del ginocchio.
  • 76. Braccia e Mani Artificiali
    Dario Mazza, Sebastiano Merlino
    42
    Lo scopo della ricerca nel campo delle protesi per gli arti superiori è quello di progettare arti artificiali pienamente funzionanti e rimpiazzi per mani con un tempo di risposta e una forza uguali (se non superiori) a quelle fisiologiche.
    Eugene Murphy nel suo scritto “Engineener ng – Hopeof the Handless” ha descritto la difficoltà e la frustrazione dovuta ai tentativi di replicare la complessità di una mano umana attraverso mezzi meccanici:
    “La mano umana, con il suo elaborato sistema di controllo situato nel cervello, è senza ombra di dubbio la macchina più versatile che sia mai esistita. […] Tali considerazioni sono giustificate dal fatto che, per quanto ci sia da sempre stato un estremo bisogno di apparati per sostituire le mani, ogni tentativo di replicare con successo la mano è riuscito solo ad una spoglia imitazione di un numero ristretto delle funzionalità della controparte vivente. A causa della mancanza di una conoscenza completa del complesso cervello-mano naturale e dell’ingegnosità necessaria anche per la più banale simulazioni su mani normali, le mani artificiali sono sempre somigliate al modello naturale sempre in maniera superficiale. Lo stesso Voltaire avrebbe osservato che Newton, con tutta la sua scienza, non sapeva come funzionava la propria mano. “
  • 77. Principi per la Progettazione
    Dario Mazza, Sebastiano Merlino
    43
    Vi son oltre 30 muscoli che agiscono nell’avambraccio e nella mano; vi sono 27 ossa importanti nella mano umana e almeno 18 giunti articolari che con più di 27 gradi di libertà. Il braccio contribuisce al sistema aggiungendo altri 7 gradi di libertà. Il ruolo primario del braccio è quello di posizionare la mano nello spazio mentre il ruolo primario della mano è di permettere alla persona di interagire con l’ambiente. Anche se la gente controlla le proprie braccia con grande facilità, questo compito è un compito complesso ed impegnativo.
    L’interazione con il mondo reale è un aspetto che i mezzi robotici e gli attuatori protesici non curano in modo approfondito. Se un robot entra in contatto con una superficie solida può insorgere un fenomeno noto come instabilità da contatto. Tale instabilità può essere evitata se il robot, l’ambiente e la natura dell’interazione meccanica vengono descritti dettagliatamente in modelli matematici precisi: basta un piccolo errore nel modello per generare instabilità da contatto. Il braccio umano non soffre di nessun tipo di instabilità da contatto grazie alla sua stessa conformazione. La modellazione matematica accurata è quindi un requisito fondamentale nella progettazione di un braccio artificiale.
  • 78. Principi per la Progettazione
    Dario Mazza, Sebastiano Merlino
    44
    Forma oppure funzionalità ?
    Il ruolo della forma, o cosmesi, in una protesi non deve essere mai sottovalutato. Il team di progettazione tende spesso a sacrificare la bellezza estetica del dispositivo per ottenere maggiori funzionalità prensili. L’importanza relativa dell’apparenza rispetta alla funzionalità è altamente soggettiva quindi dipende molto dalla persona con l’amputazione. È molto importante ricordare che le persone vedono solo cosa si aspetto di vedere ossia se una persona con un arto artificiale si mostra e muove proprio come le altre persone si aspettano, la presenza dell’arto
    artificiale non verrà notata dagli osservatori casuali.
    Peso
    Il peso finale di una protesi è un aspetto critico per quanto riguarda la vestibilità del dispositivo. Contrariamente a quanto si possa pensare, il peso della protesi non deve mai eguagliare quello dell’arto naturale. Il peso di un braccio di un maschio adulto è di 10Kg; un braccio artificiale non deve mai superare i 3.5Kg perché altrimenti non potrebbe essere usato tutto il giorno a causa dello sforzo necessario a sostenerlo.
  • 79. Principi per la Progettazione
    Dario Mazza, Sebastiano Merlino
    45
    Alimentazione
    Come nel caso di dispositivi portatili, la quantità di energia è poca: la scelta di una fonte di energia determina la scelta dell’attuatore. Se la fonte è la persona stessa allora l’attuatore sarà la muscolatura dell’individuo e la protesi non richiederà un eccessivo sforzo per essere utilizzata. I meccanismi devono essere efficienti e le perdite dovute alle frizioni devono essere minimizzate per evitare che chi
    indossa la protesi si stanchi durante il corso della giornata. Se invece l’arto artificiale è alimentato dall’esterno (utilizzando fonti di alimentazioni diverse dal corpo come, ad esempio, sistemi di immagazzinamento dell’elettricità), l’arto deve essere in grado
    di funzionare per un giorno intero utilizzando la stessa fonte di energia, senza che quest’ultima debba essere ricaricato o sostituita.
    Il problema dell’alimentazione delle protesi portatili è analogo alle questioni legate all’industrie del laptop e dei cellulari: il contributo maggiore al peso e alle dimensioni del dispositivo portatile è dato dalla sua fonte di energia (in molti casi è una batteria).
  • 80. iLimb
    Dario Mazza, Sebastiano Merlino
    46
    Parti dell’iLimb
    La mano iLimb rappresenta il futuro delle mani artificiali. Non solo è molto versatile dal punto di vista funzionale ma è anche molto più gradevole alla vista rispetto alle altre mani artificiali. Inoltre iLimb permette di controllare tutte le dita in maniera indipendente.
    La base di ogni dito ha un motore ad alimentazione indipendente che permette un notevole incremento della precisione e della destrezza dell’arto. Grazie a questa configurazione, il dispositivo è in grado di operare delle strette complesse e non il semplice schema aperto/chiuso.
  • 86. iLimb – Come funziona ?
    Dario Mazza, Sebastiano Merlino
    47
    I segnali elettrici vengono inviati dal cervello ai muscoli
    Gli elettrodi prelevano i segnali elettrici
    I segnali vengono inviati al controllore
    Il controllore invia un segnale all’attuatore che agirà da muscolo artificiale
    I biosensori e i sensori meccanici raccolgo le informazioni sull’arto e su ciò che lo circondano e le inviano al controllore che si occuperà di riportarle al cervello sotto forma di segnali elettrici comprensibili.
  • 87. iLimb
    Dario Mazza, Sebastiano Merlino
    48
  • 88. iLimb – LivingSkin
    Dario Mazza, Sebastiano Merlino
    49
    La pelle che ricopre la mano iLimb è chiamata LivingSkin ed è un sottile strato di materiale semitrasparente, modellato mediante un computer per avvolgere accuratamente la mano artificiale.
    Oltre a rendere più piacevole alla vista, la pelle artificiale fornisce una superficie per facilitare l’impugnatura degli oggetti e agisce anche da sigillante per proteggere l’arto dagli elementi esterni.
    La LivingSkin può essere personalizzata in ogni minimo dettaglio comprese le dimensioni, la quantità di peluria, il colorito della pelle e anche la quantità di lentigini !
  • 89. Kuniholm’s BionicArm
    Dario Mazza, Sebastiano Merlino
    50
    Jonathan Kuniholm ha perso la sua mano destra mentre era in Iraq come membro del corpo dei Marines. In qualità di ingegnere dirige uno staff impegnato nella realizzazione di un prototipo per conto del DARPA di un braccio bionico.
    Questi sistemi generalmente utilizzano degli elettrodi EMG posti su una parte non lesa del paziente ed in base agli stimoli raccolti da questi sensori si comanda l’arto artificiale. Ovviamente comandare un braccio utilizzando stimoli ad altre parti del corpo è molto poco intuitivo per l’utilizzatore.Una soluzione proposta dal RehabilitationInstituteof Chicago è quella di ricollegare i nervi dell’arto amputato sulla parte monitorata dai sensori. Purtroppo gli elettrodi EMG hanno una bassa risoluzione e per eseguire compiti complessi gli utenti devono attivare delle macro programmate all’interno dell’arto bionico: ciò rende ancora più innaturale l’uso del dispositivo.
    Lo staff di Kuniholm adotta due scelte diverse: la prima di piccoli sensori mioelettrici iniettabili nel muscolo e che permettono di cattuare segnali molto più debolo, la seconda scelta si basa su piccoli elettrodi impiantati direttamente nei nervi che permettono una risoluzione molto fine.
  • 90. Kuniholm’s BionicArm
    Dario Mazza, Sebastiano Merlino
    51
    Lo sviluppo nel team di Kunoholm si muove in due direzioni. Kuniholm stesso si occupa di programmare un sistema di pattern recognitionper riconoscere i comandi e tradurli correttamente in movimenti di una mano digitale. Contemporaneamente il resto dello staff lavora su un prototipo del braccio bionico chiamato Proto2 che viene pilotato dalla mano digitale e riesce a compiere movimenti fluidi. L’energia viene fornita da un grosso generatore di corrente ma nel momento del rilascio del prototipo verrà integrata all’interno dell’arto artificiale.
    Il sistema di controllo della mano digitale una volta allenato a dovere potrà essere innestato nel Proto2 per consentire l’uso del braccio bionico come una vera e propria protesi.
  • 91. Proto2
    Dario Mazza, Sebastiano Merlino
    52
  • 92. Gambe Artificiali
    Dario Mazza, Sebastiano Merlino
    53
    Il controllo di arti inferiori di robot umanoidi è un problema realmente complesso che non è, ancora oggi, stato completamente soddisfatto in tutte le sue possibili espressioni (salti verticali, cambi di direzione su un asse).
    Risuscire a soddisfare certe esigenze, richiede nuovi e alternativi approcci basati, essenzialmente sull’osservazione dei sistemi biologici.
    Il primo step che fu percorso, fu quello di imitare la sintesi dei movimenti di un sistema biologico il cui susseguirsi di posizioni acquisite può essere osservato tramite l’utilizzo di catene di oscillatori non lineari.
    Le gambe di un essere umano, infatti, possono essere viste come un meccanismo planare multi-segmentato simile ai modelli utilizzati per le ben note salamandre robotiche e i serpenti robotici.
    Ipotesi alla base delle protesi dell’anca è che essa possa essere controllata nei suoi movimenti su un piano verticale e che sia possibile sintetizzare i movimenti della stessa enfatizzando proprio il concetto di stabilità che sta alla base della mobilità umana.
    Coppie di oscillatori sono usate, spesso, per simulare i movimenti antagonisti che i muscoli attuano sulla gamba così da concedere possibilità di scatti e di salti in verticale.
  • 93. Come Camminiamo?
    Dario Mazza, Sebastiano Merlino
    54
    Consieriamo cosa succede quando camminiamo:
    1) Il centro motorio del cervello invia impulsi ai muscoli del piede e della gamba. I muscoli appropriati si contraggono nella sequenza corretta in modo da muovere il ginocchio e il piede.
    2) Le cellule nervose nel piede sentono il terreno e inviano riscontro al cervello per correggere la forza applicata o il numero di gruppi di muscoli di cui si necessita per camminare su quella specifica superficie.
    3) Le cellule nervose dei muscoli nella gamba si rendono conto della posizione del terreno e la notificano al cervello.
    4) Non è necessario, infatti, guardare a terra per sapere ove si trovi il terreno.
    Quando si solleva un piede per fare un passo, il cervello invia i segnali appropriati ai muscoli della gamba per fare in modo di abbassare nuovamente il piede così da introdurre il successivo passo.
    Il processo ripete iterativamente questi 4 passi.
  • 94. Gambe Artificiali
    Dario Mazza, Sebastiano Merlino
    55
    Le protesi degli arti inferiori possono essere di due tipi:
    • Trans-tibiali: Sono conosciute anche come “Protesi sotto il ginocchio” . Causate da una qualunque amputazione coinvolga la tibia senza coinvolgere il ginocchio e la parte superiore dell’arto.
    • 95. Trans-femorali: Dette anche “Protesi sopra il ginocchio”. Spesso causate da amputazioni che coinvolgono l’osso femorale e tutta la parte dell’anca sopra il ginocchio oppure da problemi congeniti che rendono la gamba totalmente inutilizzabile.
    Componenti base della protesi dell’anca sono:
    • Pylon: Componente interno dello scheletro della protesi
    • 96. Socket: Interfaccia necessaria a collegare la protesi all’arto
    • 97. Sistema di Sospensione: Mantiene arto e Socket collegati.
  • Protesi degli arti inferiori
    Dario Mazza, Sebastiano Merlino
    56
    Questa presentata a sinistra è una protesi di tipo Trans-femorale (modello Otto Bock C-Leg).
    Come si può notare, essa riproduce l’intero arto inferiore e il socket per congiungere il sistema al corpo ospitante si trova sulla sommità dell’anca.
    Una tale protesi risulta di fattura più complessa rispetto a un tipo trans-tibiale dovendo riprodurre interamente la struttura del ginocchio.
    L’immagine sulla destra riproduce una tipica protesi trans-tibiale.
    L’arto inferiore è ricostruito solo a partire dall’area al di sotto del ginocchio. Un simile sistema è più semplice rispetto alle protesi trans-femorali non dovendosi occupare dei movimenti complessi associati al ginocchio. Questo tipo di innesti, tuttavia risultano spesso più complessi in installazione a causa della mancanza di spazio al di sotto della rotula.
  • 98. Il Ginocchio
    Dario Mazza, Sebastiano Merlino
    57
    Come si può facilmente intendere, ilcomponenete degli arti inferiori più complesso da riprodurre è proprio il ginocchio.
    Il modello di protesi più evoluto attualmente disponibile è Rheo-KneeTM prodotto da Ossur.
    Questa protesi rivoluzionaria percepisce le forze esercitate sul ginocchio, le torsioni ed è in grado di correggere l’inclinazione e i movimenti del ginocchio stesso in modo da adattarsi ai movimenti dell’utente.
    Nel ginocchio artificiale è contenuto un ferrofluido che altro non è se non uno speciale olio che contiene una sospensione di particelle di ferro (0.1 – 10 micron di diametro).
    Un qualunque campo elettromagnetico cambia la viscosità del liquido perché spinge le particelle ad orientarsi tutte nella stessa direzione.
    Siccome la viscosità del fluido può essere corretta, momento per momento, agendo in maniera precisa sul campo magnetico si può facilmente aggiustare la resistenza imposta dal ginocchio alla gamba in modo da assicurare la stabilità durante il passo.
  • 99. Il Piede
    Dario Mazza, Sebastiano Merlino
    58
    Il piede e l’articolazione della caviglia rappresentano il secondo grosso punto di complessità negli arti inferiori di un essere umano.
    Anche in questo caso, la casa produttice Ossur ha costruito un modello innovativo di protesi.
    Il modello ProprioFootè un modello di protesi gestita mediante attuatori che aiuta a rimpiazzare le funzioni normalmente ricoperte dal sistema nervoso nel gestire le informazioni provenienti dall’esterno.
    La protesi sfrutta un insieme di accelerometri per percepire il contesto a cui è legato ogni movimento della gamba in modo da aiutare colui che la indossa adattandosi.
    I dati raccolti dai sensori vengono sfruttati per comprendere la struttura del terreno ove ci si sta muovendo e riadattare dinamicamente il sistema di sospensioni di cui la protesi stessa è dotata in sostituzione della caviglia.
    Più velocemente il sistema è in grado di raccogliere dati e riadattarsi, migliore risulterà la deambulazione.
  • 100. TEST
    Dario Mazza, Sebastiano Merlino
    59
    Una protesi per poter essere conferme alle norme ISO deve essere testata per osservare come essa sia in grado di flettersi almeno un milione di volte.
    Inolte, lo scostamento deve essere compreso in range dipendenti dalla forza applicata.
    Il sistema di test usa due cilindri pneumatici. Un cilindo è posizionato per premere sulla pianta del piede e l’altro sulla caviglia.
    Un sensore di carico misura la forza applicata mentre uno strain gauge sui pistoni misura la posizione di ogni attuatore.
    Ad ogni ciclo i due pistoni si alternano aumentando via via la forza applicata e permettendo ai sensori di raccogliere dati.
    Al termine del test, dai dati raccolti sarà possibile determinare se la protesi è valida e che non occorrerà, quindi, in rotture disastrose.
    I cilindri pneumatici sono stati scelti (al posto di quelli idraulici ad esempio) perché consentivano una maggiore leggerezza dell’impianto di test.
  • 101. Ultimi Sviluppi
    Dario Mazza, Sebastiano Merlino
    60
    Neuroni Artificiali
    Il MIT ha sviluppato uno speciale circuito integrato che riesce a connetere due capi nervosi mediante una guida in modo da collegare i nervi a circuiti complessi.
    Muscoli usati come Attuatori
    La maggior parte degli attuatori sono motori elettrici che si attivano se attraversati da corrente.
    E’ già stato sviluppato un prototipo animale che invece sfrutta veri muscoli come attuatori.
    Plantare
    Una nuova protesi plantare adattativa è stata sviluppata dal MIT.
    Componenti principali sono:
    M: Muscoli semitendinei; F: Superficie semimobile; w: elettrodi;
    B: batterie al litio; T: base assemblata in materiale plastico;
    C: microcontrollore, sensore ad infrarossi e unità di stimolazione

×