Details of subjects of electronics engg
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Details of subjects of electronics engg

on

  • 1,615 views

 

Statistics

Views

Total Views
1,615
Views on SlideShare
1,615
Embed Views
0

Actions

Likes
0
Downloads
32
Comments
0

0 Embeds 0

No embeds

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Details of subjects of electronics engg Document Transcript

  • 1. eeLLeeaarrnniinngg SSooffttwwaarree SSoolluuttiioonnssiinnTTeecchhnniiccaall EEdduuccaattiioonnEElleeccttrroonniiccss && TTeelleeccoommmmuunniiccaattiioonn //IInndduussttrriiaall EElleeccttrroonniiccss // IInnssttrruummeennttaattiioonn EEnnggiinneeeerriinnggDDeettaaiill CCoonntteenntt LLiisstt ooff SSuubbjjeeccttssSoftTech Engineers Pvt. Ltd.Unit 5A, The Pentagon, Next to Pune-Satara Road Telephone Exchange,Shahu College Road, Pune - 411009, Maharashtra, IndiaPh: 020-24217676, Fax: 020-24218747,Email:eLearning@SoftTech-Engr.comWebsite: www.eLearning-SoftTech.com
  • 2. SoftTech Engineers Pvt. Ltd. have developed Multimedia based eLearning SoftwareSolutions for the Electronics & Telecommunication / Industrial Electronics /Instrumentation Engineering subjects.Electronics Materials & Components (ET01)Electronic Measuring Instruments (ET02)Digital Techniques & Applications (ET03)Electronic Devices and Circuits (ET04)Electro Magnetic Field Theory (ET05)Antenna Engineering & Waves Propagation (ET06)Digital Communication & Circuits (ET07)Digital Signal Processing (ET08)Signals & Sensors ( ET09)Microprocessor 8085 Lab (ET10)Microprocessor & Microcontroller (ET11)Power Electronics (ET12)VLSI-Design Techniques (ET13)Communication Systems (ET14)Mobile Communication (ET15)Data Communication & Networking (ET16)Digital Image Processing (ET17)Embedded Systems (ET18)Microwave Engineering (ET19)Optical Fibre Communication (ET20)RFID System (ET21)Bio-Medical Electronics Engineering (ET22)Computerized Process Control System (ET23)Industrial Automation (ET24)Linear Integrated Circuits (ET25)Numerical Methods and Computational Techniques (EE05)
  • 3. Electronics Materials & Components (ET01)Audience: Students of Second Year Electronics EngineeringObjective: : At the end of the course the student will learn about materials used in construction andfabrication of electronics and electrical components.ContentsElectronic Materials-I1. Introduction2. Conductor Material3. Magnetic Material4. Conductinng MaterialsElectronic Materials-II1. Semiconductor Material2. Silicon (Si)3. Germanium (Ge)4. Selenium (Se)5. Silicon carbide (SiC)6. Magnetic Materials7. Classification of magnetic materials8. Domains9. Hysteresis10. Hysteresis Loss11. Permanent Magnetic Materials12. CRGOElectronic Passive Components-I1. Introduction2. Introduction to resistor3. Characteristics of Fixesd Resistors4. Skin Effect
  • 4. 5. Types of Fixed Resistors6. Variable Resistors7. Non Linear Resistors – ThermistersElectronic Passive Components-II1. Concept of Capacitor Formation2. Expression for Capacitance3. Types of Capacitor4. Permittivity5. Series and Parallel Combinations of Capacitor6. Types of variable capacitors7. Square law capacitor8. General Purpose Variable Capacitors9. Trimmer Capacitors10. Characteristics of Capacitors11. SpecificationsCables, Connectors & Wires1. Introduction2. Characteristics of Cables3. Cables4. Types of Cables5. Types of Cable Sheaths Sheathed Cable6. Connectors7. Types of Connectors8. Wires9. Resistance Wires10. Twin Core-Multicore Wires11. Wire Sleevings12. Characteristics of Insulating Materials
  • 5. Inductor & Transformer1. Introduction to Inductors2. Winding of Inductor Coils3. Specifications of Inductors4. Types of Inductors5. Frequency Response of an Inductor6. Transformer7. Core Construction8. Coil Construction9. Specifications of Transformer10. Structure of Transformer11. Impedance Ratio12. Types of Transformer and their Applications13. High Voltage Generation14. Losses in Transformer15. Shielding of TransformerSwitches, Relays & Displays1. Introduction2. Characteristics of Switches3. Toggle Switch4. Push Button Switches5. Relays6. General Purpose Relay7. Reed Relays8. Solid State Relay9. Specifications of Relays10. Testing of Relays11. Types of Displays12. LED (Light Emitting Diode)
  • 6. 13. LED 7 Segment Display14. Liquid Crystal Display15. Nixie TubeMicrophone, Speakers & Batteries1. Introduction to Microphones & Loudspeakers2. Capacitor Microphones3. Crystal Microphones4. Moving - coil Loudspeakers5. Horn type Loudspeakers6. Typical Specifications7. Speaker baffles and enclosures8. Battery9. Types of Batteries10. Maintenance & SafetyIntegrated Circuits & Surface Mount Device1. Introduction2. Classification of ICs3. IC Fabrication4. Metallization5. Testing6. Advantages of SMCs7. Meaning of the Surface Mount Technology8. Soldering Process and Testing9. Adhesives10. Solder Paste11. Soldering Technique
  • 7. Printed Circuit Board1. Introduction2. Copper Used in PCB3. Electrochemicals4. Artwork Rules and Parameters5. Preparation of single-sided PCB6. Double sided PCB7. Soldering and Soldering Techniques8. Soldering with iron9. Soldering10. Art Work Solder Pads11. Multi Layer Artwork12. Additive Wiring13. Metallic Core PCBs14. Final Protection15. Environmental Testing16. Failure17. Repair18. Maintenance19. Procedure of Manufacturing a PCB
  • 8. Electronic Measuring Instruments (ET02)Audience: Students of Second Year Electronics EngineeringObjective: At the end of the course the student will learn about various measuring instruments likeoscilloscope, generators, wave analysers, digital instruments.ContentsFundamentals1. Introduction2. Instrumentation Systems3. Static Characteristics4. Dynamic Characteristics5. Methods of Measurements6. Types of Errors7. Source of Errors8. Standards9. Power IsolationUnits of Measurement & Instruments1. Introduction2. Units of Measurements3. Dimensions of a Physical Quantity4. Permanent Magnet Moving Coil Type5. D.C Ammeter6. Multirange Ammeter7. D.C Voltmeter8. Multirange Voltmeter9. Loading10. A.C Voltmeter Using Rectifiers
  • 9. 11. A.C Voltmeter Using Half Wave Rectifier12. A.C Voltmeter Using Full Wave Rectifier13. Calibration of D.C Instruments14. Ohm Meter15. Multimeter or VOM16. WattmeterMeasuring Parameters1. Introduction to Bridges2. Wheatstone’s Bridge3. Kelvin Bridge4. Kelvin Double Bridge5. Guarded Wheatstone Bridge6. Three Terminal Resistances7. A.C Bridges8. Capacitance Comparison Bridge9. Inductance Comparison Bridge10. Maxwells Bridge11. Hays Bridge12. Scherings Bridge13. Wiens Bridge14. Harmonic Distortion Analysis15. Phase MeterFrequency & Time Measurement1. Introduction2. Frequency and Time Standards
  • 10. 3. Digital Frequency Meter4. Basic Circuit for Frequency Measurement5. Digital Frequency Meter6. Time Base Selector7. Measurement of Time8. Universal Counter9. Measurement Errors10. Crystal CalibrationOscilloscope1. Introduction2. Screens for CRTs3. Deflection Sensitivity4. Basic Principle5. Block Diagram of Oscilloscope6. CRT Connections7. Applications of CRO8. Vertical Deflection System9. Horizontal Deflecting System10. Triggered Sweep CRO11. Trigger Pulse Circuit12. Probes13. Measurement Using CRO14. Measurement of Phase Shift15. Dual Trace Oscilloscope16. Electronic Switch17. Synchronization of the Sweep
  • 11. Generators1. Introduction2. The Sine wave Generator3. Standard Signal Generator4. Modern Laboratory Signal Generator5. Pulse Generator Circuit6. AF Sine and Square Wave Generator7. Function Generator8. Audio Frequency Signal Generation9. Video Pattern GeneratorWave Analyzers1. Introduction2. Basic Wave Analyzer3. Spectrum Analyzer4. Heterodyne Wave Analyzer5. RF Spectrum Analyzer6. Applications of the Spectrum Analyzer7. Logic AnalyzerDigital Instruments1. Introduction2. Analog to digital Converters3. Video Pattern Generator4. Analog to Digital Conversion5. Successive Approximation6. Digital Voltmeter (DVM)
  • 12. 7. Dual Slope Integrating Type DVM8. Digital Multimeter9. Automation in Digital Instrument10. Digital Storage Oscilloscope11. Digital LCR Meter12. Digital IC TesterHigh Frequency Measurements1. High Frequency Measurements2. Q Meter3. Causes of Error4. Measurement of Capacitance5. Measurement of Distributed Parameters6. Transmission Line Parameters7. Infinite Line8. Line Distortion9. Reflection and Reflection Coefficient (K)10. Standing Wave Ratio (SWR)11. Smith Chart12. RF Voltage and power measurement13. Antenna Radiation PatternTransducers1. Electrical Transducer2. Selecting a Transducer3. Bimetallic Thermometer4. Thermocouples
  • 13. 5. Pressure Measurement6. Bourdon Tubes7. Measurement of Flow8. Measurement of Level9. Capacitive Method10. Measurement of Displacement11. Pneumatic Flapper Nozzle Assembly
  • 14. Digital Techniques & Applications (ET03)Audience: Students of Second Year Electronics EngineeringObjective: : At the end of the course the student will learn about number system, logic gates,semiconductor theory, combinational logic circuits, electronic counters, converters, zener diode &its applications.ContentsNumber Systems1. Introduction2. Binary Number System3. Positive & Negative Logic System4. Radix5. Binary to Decimal Conversion6. Decimal to Binary Conversion7. Hexadecimal Number System8. Hex to Binary and Binary to Hex Conversion9. Decimal to Hexadecimal Conversion10. Binary Addition and SubtractionLogic Gates1. Introduction2. Types of Gates3. ODD / EVEN Parity4. De-Morgans Theorems5. Half Adder and Full Adder6. Adder/SubtractorSemiconductor Families1. Introduction2. Classification of ICs3. Characteristics of ICs4. Current and Voltage Parameters
  • 15. 5. TTL Technology6. TTL NAND Gate7. Tristate TTL Gates8. TSL TTl NOT Gate9. CMOS Inverter10. PMOSCombinational logic Circuits1. Introduction2. Multiplexers3. 4:1 Multiplexer4. Demultiplexers5. The Decimal-to-BCD Encoder6. BCD to Decimal Decoder7. The IC 74468. Multipoint Combinational CircuitsElectronic Counters1. Introduction2. Multivibrators3. Flip-Flops4. R-S Flip-Flop Using Gates5. Clocked D Flip-Flop6. Edge Triggering and Race Around Condition7. T and M/S JK Flip-Flop8. Asynchronous Counter Operation9. A 3-Bit Asynchronous Binary Counter10. Ring Counter11. UP/DOWN Synchronous Counter12. Serial IN/Serial OUT Shift Registers
  • 16. A-to-D & D-to-A Converters1. Introduction2. Digital to Analog Converters (DAC)3. The R/2R Ladder Digital-to-Analog Converter4. Analog-to-Digital Conversion5. Dual-Slope Analog-to-Digital Converter6. Approximation Analog to Digital ConverterComputer Fundamentals1. Block Diagram of a Computer2. Input Devices3. Central Processing Unit4. Output Devices5. Address and Data Bus6. Semiconductor Memories7. RAMs8. Magnetic Disk (Hard Disks)9. Magnetic Tape
  • 17. Electronic Devices and Circuits (ET04)Audience: Students of Second Year Electronics EngineeringObjective: : At the end of the course the student will learn about various types of devices andcircuits used in electronics, integrated electronics, and regulated power supply.ContentsIntroduction1. Introduction2. Modern Trends in Electronics3. Communication & Entertainment Applications4. Measurement & Instruments Applications5. Defense Applications6. Applications in Medicine7. Passive Component8. Active Component9. IntroductionSemiconductor Theory1. Bohrs Atomic Model2. Silicon Orbits3. Energy Levels4. Energy Bands5. Important Energy Bands in Solid6. Classification of Solid & Energy Band7. Bonds in Semiconductor8. Effect of Temperature on Semiconductor9. Hole Current10. N type & P type SemiconductorRectifier Circuits1. P-N Junction Diode2. Properties of P-N Junction3. Biasing the P-N Junction
  • 18. 4. Forward Biased P-N Junction5. Reverse Biased P-N Junction6. V-I Characteristic of a P-N Junction Diode7. Types of Diodes8. Rectifier Circuits9. Comparison of RectifiersFilter Circuits1. Introduction to Filters2. Inductor Filters or Chock Filter3. Capacitor Filter4. LC Filter or Chock Input Filter5. P Filter or CLC Filter6. Half Wave voltage Doubler7. Full Wave Voltage Doubler8. Voltage Tripler & Quadrupler Circuits9. Comparison of Filter CircuitsZener Diode & Its Applications1. Zener Diode2. V - I Characteristics of Zener Diode3. Zener Diode Specifications4. Zener Diode Voltage Regulator5. Optimum Value of Current Limiting ResistorBipolar Junction Transistor1. Introduction2. Transistor Construction3. Unbiased Transistor4. Transistor Biasing5. Transistor Configuration6. Common Base Connection7. Characteristics of Common - Base Connection
  • 19. 8. Common Emitter Connection9. Characteristics of Common Emitter Connection10. Common Collector Connection11. Commonly Used Transistor Connections12. Transistor as an Amplifier in CE ArrangementField Effect Transistor1. Introduction2. Construction Details of N Channel JFET3. Working Principle of JFET4. Characteristics of JFET5. Transfer Characteristics6. Pinch off Voltage Vp7. JFET Parameters8. MOSFET9. Enhancement Type MOSFETTransistor Biasing & Stabilization1. Introduction2. Transistor Biasing3. Selection of Operating Point4. Methods of Transistor Biasing5. Stability Factor6. Hybrid Parameters7. Parameters of TransistorsTransistor Amplifiers1. Introduction2. Classification of Amplifiers3. Single Stage Transistor Amplifier4. Phase Reversal5. DC Load Line6. Bandwidth
  • 20. 7. R-C Coupled Transistor Amplifier8. Transformer Coupled Amplifier9. Direct-Coupled AmplifierTransistor AF Power Amplifiers1. Introduction2. Performance Parameters3. Class A Amplifier4. Class B Amplifier5. Class AB Power Amplifier6. Class C Power Amplifier7. Single Ended Power Amplifier8. Push Pull Amplifier9. Complementary Symmetry AmplifierWave Shaping Circuits1. General idea about different wave shapes2. Review of transient phenomena in R-C and R-L circuits3. R-C and R-L differentiating and Integrating circuits4. RC filters, integrators and differentiators5. Input / Output Characteristics and AC Behavior6. Voltage Multipliers7. LED Applications8. Zener Diode Clipper Circuits9. Use of Transistors for clipping10. Diode clamping circuit for clamping to negativepeak, positive peak or any other level11. Ideal transistor switch
  • 21. Timer I. C.1. Block diagram of IC timer and its working2. Use of 555 Timer as Astable MultivibratorMultivibrator Circuits1. Transistorized Astable Multivibrators2. Single-Supply Astable Multivibrator3. Astable Multivibrator Using CMOS Schmitt Trigger4. Transistorized monostable multivibrators5. Op-amp as Astable Multivibrator6. Schmitt TriggerTime Base Circuits1. Simple method of generation of sawtooth wave usingcharging and discharging of a capacitor2. constant current generation of linear sweep voltagecircuit using op-amp3. Cyclic VoltammetryIntegrated Electronics1. Production of Electronic Grade Silicon2. Crystal Structure and Growing3. SI-Wafer Preparation4. Wafer ProcessingRegulated Power Supply1. Specifications of a regulated power supply2. Principles of series and shunt regulators3. Three terminal voltage regulator IC
  • 22. 4. A Three Terminal Regulator Type Throttle5. Voltage Dependent (Foldback) Current Limiting6. Constant Current Vs. Foldback Limiting7. Constant Current Limiting8. Foldback Limiting9. Basic working principles of a switch mode power supply10. A switched-mode power supply, switching-mode power supply or SMPS11. Continuously Variable Transmission12. UPS13. Dual Tracking Power Supply14. voltage controlled oscillator15. Phase Locked LoopThyristors & UJT1. Silicon-Controlled Rectifier2. The Silicon-Controlled Switch (SCS)3. Silicon Unilateral Switch (SUS)4. Silicon Bilateral Switch5. Light Activated Silicon Controlled Rectifier (LASCR)6. Unijunction Transistor7. UJT Relaxation Oscillator
  • 23. Electromagnetic Field Theory (ET05)Audience: Students of Second Year Electronics EngineeringObjective: At the end of the course the student will learn about fundamentals of Electromagneticwave.ContentsVector Analysis1. Introduction2. Scalars and Vectors3. The Cartesian coordinate system4. Vector Components and Unit Vectors5. The Vector Field6. The Dot Product7. The Cross Product8. Other coordinate Systems9. The Spherical Coordinate SystemCoulomb’s Law & Electric Field Intensity1. Introduction2. The Experimental Low of Coulomb3. Electric Field Intensity4. Field Due to a Continuous Volume Charge Distribution5. Field of a Line Charge6. Field of a Sheet of Charge7. Streamlines and Sketches of FieldsElectric Flux Density, Gauss’s Law & Divergence1. Introduction2. Electric Flux Density3. Gausss Law4. Application of Gauss’s Law
  • 24. 5. Differential Volume Element6. Divergence7. Maxwells First Equation (Electrostatics)The Vector Operator and the Divergence TheoremEnergy & Potential1. Introduction2. Energy Expended in moving a Point Charge3. The Line Integral4. Definition of Potential Difference and Potential5. The Potential Field of a Point Charge6. The Potential Field of a System of Charges7. Potential Gradient8. The Dipole9. Energy Density in the Electrostatic FieldConductors, Dielectrics & Capacitance1. Introduction2. Current and Current Density3. Continuity of Current4. Metalic Conductors5. Conductor Properties and Boundary Conditions6. The Method of Images7. Semiconductors8. The Nature of Dielectic Materials9. Boundary Conditions for Perfect DielectricMaterials10. Capacitance11. Several Capacitance Examples12. Capcitance of a Two - Wire Line
  • 25. Experimental Mapping Methods1. Introduction2. Curvilinear Squares3. The Iteration Method4. Current Analogies5. Physical ModelsPoissons & Laplaces Equations1. Introduction2. Poisson’s and Laplace’s Equations3. Uniqueness Theorem4. Examples of the Solution of Laplace’s Equation5. Example of the Solution of Poisson’s Equation6. Product Solution of Laplace’s EquationThe Steady Magnetic Field1. Introduction2. Biot - Savart Law3. Amperes Circuital Law4. Curl5. Stokes Theorem6. Magentic Flux and Magnetic Flux Density7. The Scalar and Vector Magnetic potentials8. Derivation of Steady - Magnetic - Field LawsMagnetic Force, Materials & Inductance1. Introduction2. Force on a Moving Charge3. Force on a Differential Current Element4. Force Between Differential Current Elements
  • 26. 5. Force and Torque on a Closed Circuit6. The Nature of Magnetic Materials7. Magnetization and Permeability8. Magnetic Boundary Conditions9. The Magnetic Circuit10. Potential Energy & Forces on Magnetic Materials11. Inductance and Mutual InductanceTime Varying Fields & Maxwells Equations1. Introduction2. Faradays Law3. Displacement Current4. Maxwells Equations in Point Form5. Maxwells Equations in Integral Form6. The Retarded PotentialsThe Uniform Plane Wave1. Introduction2. Wave Motion in Free Space3. Wave Motion in Perfect Dielectrics4. Plane Waves in Lossy Dielectrics5. The Poynting Vector and Power Considerations6. Propagation in Good Conductors: Skin Effect7. Reflection of Uniform Plane Waves8. Standing - Wave RatioTransmission Lines1. Introduction2. The Transmission-Link Equations3. Transmission - Line Parameters
  • 27. 4. Two-Wire (High Frequencies)5. Two-Wire (Low Frequencies)6. Planar (High Frequencies)7. Some Transmission-Live Examples8. Graphical Methods9. Several Practical ProblemsApplications of Maxwells Equations1. Introduction2. The Laws of Circuit Theory3. The Resonant Coaxial Cavity4. Radiation
  • 28. Antenna Engineering & Waves Propagation (ET06)Audience: Students of Third Year Electronics EngineeringObjective: : At the end of the course the student will learn about fundamental concepts of antenna,arrays and mobile communication, frequency bands, arrays of discrete elements, wave propagation.ContentsFundamentals of Antennas, Arrays and Mobile Communications1. Introduction2. Hertzian and Fitzgerald Elementary Radiators3. Far-Field Antenna Properties4. Antennas as Electromagnetic Circuits5. Polarization6. Directivity Patterns From Continuous Line Sources7. Directivity Patterns From Area SourceDistributions8. Fundamentals of Antenna Arrays9. Basic Concepts in Mobile CommunicationsFrequency Bands for Military and Commercial Applications1. Introduction to Frequency Bands2. Interest for Military Applications3. Interest for Commercial Applications4. Examples of Fundamental Antenna TypesArrays of Discrete Elements1. Introduction2. Antenna Array Factor and Antenna Indices3. Linear Arrays4. Uniform Linear Arrays5. Chebyshev Arrays6. Dolph-Chebyshev Arrays
  • 29. 7. Taylor Distributions8. Bayliss Distributions9. Modified Taylor and Bayliss Patterns10. Planar Arrays11. Circular Arrays12. Array Synthiesis Techniques13. Synthesis as an Optimization Procedure14. Smart AntennasWave Propagation1. Introduction2. Fundamentals of Electromagnetic (EM) Waves3. Propagation of EM Waves4. Attenuation of Ground Waves5. Extension Of Service Area6. Sky Wave Propagation - The Ionosphere7. The Ionosphere and its Layers8. Virtual Height9. Skip zone10. Multiple Hop Sky Wave Propagation11. Concept of Fading12. Radio Horizon13. Duct Propagation14. Advantages and Applications
  • 30. Digital Communication & Circuits (ET07)Audience: Students of Third Year Electronics EngineeringObjective: : At the end of the course the student will learn about fundamental concepts of digitalcommunication systems.ContentsIntroduction to Digital Communication1. Learning Objectives2. The Importance of Communications3. Block Diagram of an AnalogCommunication System4. Baseband and Bandpass Transmission5. Communication Systems using Modulation6. Advantages of modulation7. Analog to Digital Conversion8. Advantages of Digital Representation of a Signal9. Comparison of Analog and Digital Transmission10. Advantages of Digital CommunicationMultiplexing Techniques1. Learning Objectives2. Concept of Multiplexing3. Types of Multiplexing4. Frequency Division Multiplexing (FDM)5. Digital Input6. Demultiplexing7. Multiplexing Hierarchy in FDM8. Time Division Multiplexing9. Synchronous TDM System10. Synchronization in TDM System
  • 31. 11. Inverse TDM12. Synchronous and Asynchronous MultiplexingModulation Schemes & Access Techniques1. Learning Objectives2. Modems3. Need of Modulation4. Amplitude Shift Keying (ASK)5. Transmission Bandwidth of the ASK Signal6. Frequency Shift Keying (FSK)7. Bandwidth for FSK in terms of Baud Rate8. BPSK Generation9. Frequency Spectrum of BPSK10. Operation of DPSK generator11. Advantages of QPSK12. Code Division Multiple Access (CDMA)13. CDMA DemultiplexerError Detection & Correction1. Learning Objectives2. Important Definitions Related to Codes3. Error Detection4. Use of Parity Bit to Decide Parity5. Checksum for Error Detection6. Two Dimensional Parity Check7. The Vertical Redundancy Check (VRC) Bits8. Cyclic Redundancy Check (CRC)9. CRC Checker10. Error Correction Techniques11. Hamming Codes
  • 32. Switching Systems1. Learning Objectives2. Classification of Switching Systems3. Types of Switching Networks4. Electronic Space-Division Switching5. Multistage switches6. Block Schematic of Centralized SPC7. Structure of Distributed SPC8. Time Space Time Switches9. Flow of slots between the switches10. Time Division Space Switching11. Two Stage Network12. Comparison of Single Stage and Multistage NetworksTransmission Media1. Introduction2. Guided Media3. Shielded twisted-pair (STP) Cable4. Coaxial Cable Standards5. Critical Angle6. Cable Composition7. Light Sources for Optical Cable8. Radio Frequency Allocation9. Propagation of Radio Waves10. Terrestrial Microwave11. Satellite Communication12. Geosynchronous Satellites13. Frequency Bands for Satellite Communication14. Transmission Impairment15. Shannon Capacity
  • 33. Integrated Services Digital Network (ISDN)1. Integrated Services Digital Network (ISDN) Services2. Voice and Data Communication3. Subscriber Access to the ISDN4. Functional Grouping5. Network Termination 2 (NT2)6. Physical Layer Specifications for BRI7. Connection and Topology8. Physical Layer Specifications for PRI9. Network Layer10. Information Elements11. Broadband ISDN12. Physical Specifications
  • 34. Digital Signal Processing (ET08)Audience: Students of Third Year Electronics EngineeringObjective: At the end of the course the student will learn about various digital signal processingtechniques, data compression techniques.ContentsThe Breadth and Depth of DSP1. The Roots of DSP2. Telecommunications3. Audio Processing4. Echo Location5. Image ProcessingStatistics, Probability and Noise1. Signal and Graph Terminology2. Mean and Standard Deviation3. Signal vs. Underlying Process4. The Histogram, Pmf and Pdf5. The Normal Distribution6. Digital Noise Generation7. Precision and AccuracyADC and DAC1. Quantization2. The Sampling Theorem3. Digital-to - Analog Conversion4. Analog Filters for Data Conversion5. Selecting the Antialias Filter6. Multirate Data Conversion7. Single Bit Data Conversion
  • 35. DSP Software1. Computer Numbers2. Fixed Point (Integers)3. Floating Point (Real Numbers)4. Number Precision5. Execution Speed: Program Language6. Execution Speed: Hardware7. Execution Speed: Programming TipsLinear Systems1. Signals and Systems2. Requirements for Linearity3. Static Linearity and Sinusoidal Fidelity4. Examples of Linear and Nonlinear Systems5. Special Properties of Linearity6. Superposition: the Foundation of DSP7. Common Decompositions8. Alternatives to LinearityConvolution1. The Delta Function and Impulse Response2. Convolution3. The Input Side Algorithm4. The Output Side Algorithm5. The Sum of Weighted InputsProperties of Convolution1. Common Impulse Responses2. Mathematical Properties3. Correlation4. Speed
  • 36. The Discrete Fourier Transform1. The Family of Fourier Transform2. Notation and Format of the Real DFT3. The Frequency Domains Independent Variable4. DFT Basis Functions5. Synthesis, Calculating the Inverse DFT6. Analysis, Calculating the DFT7. Duality8. Polar Notation9. Polar NuisancesApplications of the DFT1. Spectral Analysis of Signals2. Frequency Response of Systems3. Convolution via the Frequency DomainFourier Transform Properties1. Linearity of the Fourier Transform2. Characteristics of the Phase3. Periodic Nature of the DFT4. Compression and Expansion, Multirate methods5. Multiplying Signals (Amplitude Modulation)6. The Discrete Time Fourier Transform7. Parsevals RelationFourier Transform Pairs1. Delta Function Pairs2. The Sinc Function3. Other Transform Pairs4. Gibbs Effect
  • 37. 5. Harmonics6. Chirp SignalsThe Fast Fourier Transform1. Real DFT Using the Complex DFT2. How the FFT works3. FFT Programs4. Speed and Precision Comparisons5. Further Speed IncreasesContinuous Signal Processing1. The Delta Function2. Convolution3. The Fourier Transform4. The Fourier SeriesIntroduction to Digital Filters1. Filter Basics2. How Information is Represented in Signals3. Time Domain Parameters4. Frequency Domain Parameters5. High-Pass, Band-Pass and Band-Reject Filters6. Filter ClassificationMoving Average Filters1. Implementation by Convolution2. Noise Reduction vs. Step Response3. Frequency Response4. Relatives of the Moving Average Filter
  • 38. Windowed-Sinc Filters1. Strategy of the Windowed-Sinc2. Designing the Filter3. Examples of Windowed-Sinc Filters4. Pushing it to the LimitCustom Filters1. Arbitrary Frequency Response2. Deconvolution3. Optimal FiltersFFT Convolution1. The Overlap-Add Method2. FFT Convolution3. Speed ImprovementsRecursive Filters1. The Recursive Method2. Single Pole Recursive Filters3. Narrow-band Filters4. Phase Response5. Using IntegersChebyshev Filters1. The Chebyshev and Butterworth Responses2. Designing the Filter3. Step Response Overshoot4. StabilityFilter Comparison1. Match #1: Analog vs. Digital Filters
  • 39. 2. Windowed-Sinc vs. Chebyshev3. Moving Average vs. Single PoleAudio Processing1. Human Hearing2. Timbre3. Sound Quality vs. Data Rate4. High Fidelity Audio5. Companding6. Speech Synthesis and Recognition7. Nonlinear Audio ProcessingImage Formation & Display1. Digital Image Structure2. Cameras and Eyes3. Television Video Signals4. Other Image Acquisition and Display5. Brightness and Contrast Adjustments6. Grayscale Transforms7. WarpingLinear Image Processing1. Convolution2. 3x3 Edge Modification3. Convolution by Separability4. Example of a Large PSF: Illumination Flattening5. Fourier Image Analysis6. FFT Convolution7. A Closer Look at Image Convolution
  • 40. Special Imaging Techniques1. Spatial Resolution2. Sample Spacing and Sampling Aperture3. Signal-to-Noise Ratio4. Morphological Image Processing5. Rule four6. Computed TomographyNeural Networks1. Target Detection2. Neural Network Architecture3. Why Does it Work?4. Training the Neural Network5. Evaluating the Results6. Recursive Filter DesignData Compression1. Data Compression Strategies2. Run-Length Encoding3. Huffman Encoding4. Delta Encoding5. LZW Compression6. JPEG (Transform Compression)7. MPEGDigital Signal Processors1. How DSPs are Different from Other Microprocessors2. Circular Buffering3. Architecture of the Digital Signal Processor4. Fixed versus Floating Point
  • 41. 5. C versus Assembly6. How Fast are DSPs?7. The Digital Signal Processor MarketGetting Started with DSPs1. The ADSP-2106x family2. The SHARC EZ-KIT Lite3. Design Example: An FIR Audio Filter4. Analog Measurements on a DSP System5. Another Look at Fixed versus Floating Point6. Advanced Software ToolsComplex Numbers1. The Complex Number System2. Polar Notation3. Using Complex Numbers by Substitution4. Complex Representation of Sinusoids5. Complex Representation of Systems6. Electrical Circuit AnalysisThe Complex Fourier Transform1. The Real DFT2. Mathematical Equivalence3. The Complex DFT4. The Family of Fourier Transforms5. Why the Complex Fourier Transform is UsedThe Laplace Transform1. The Nature of the s-Domain2. Strategy of the Laplace Transform3. Analysis of Electric Circuits4. The Importance of Poles and Zeros5. Design in the s-Domain
  • 42. The Z-Transform1. The Nature of the z-Domain2. Analysis of Recursive Systems3. Cascade and Parallel Stages4. Gain Changes5. Chebyshev-Butterworth Filter Design6. Calculate Pole Locations in the s-Plane7. Continuous to Discrete Conversion8. Low-pass to Low-pass Frequency Change9. Low-pass to High-pass Frequency Change10. The Best and Worst of DSPExplaining Benfords Law1. Frank Benfords Discovery2. Homomorphic Processing3. The Ones Scaling Test4. Writing Benfords Law as a Convolution5. Solving in the Frequency Domain6. Solving Mystery #17. Solving Mystery #28. Benfords Law Compliance Theorem9. More on Following Benfords law10. Analysis of the Log-Normal Distribution11. The Power of Signal Processing
  • 43. Signals & Sensors (ET09)Audience: Students of Second Year Electronics EngineeringObjective: : At the end of the course the student will learn about fundamentals signals and sensors.ContentsIntroduction to Sensor Based Measurement System1. Introduction2. General Concept and Terminology3. General Input - Output Configuration4. Other Characteristics: Linearity and Resolution5. Other Sensor Characteristics6. Temperature Sensors: Bimetals7. Acceleration and Inclination Sensors8. Magnetic Materials9. Microsensor TechnologyResistive Sensors1. Introduction2. Potentiometeres3. Strain Gages4. Types and Applications5. Resistive Temperature Detectors (RTDs)6. Thermostators7. Thermistor Types and Applications8. Linearization9. Magnetoresistors10. Light Dependent Resistirs11. Resistive Hygrometers12. Resistive Gas Sensors13. Liquid Conductivity Sensors
  • 44. Signal Conditioning for resistive sensors1. Introduction2. Measurement of Resistance3. Voltage Dividers4. Potentiometers5. Application to Thermistors6. Dynamic Measurements7. Amplifiers for Voltage Dividers8. Wheatstone Bridge: Balance Measurements9. Wheatstone bridge: Deflection Measurements10. Differential and Instrumentation Amplifiers11. Interference12. Isolation AmplifiersReactance Variation & Electromagnetic Sensors1. Interference2. Capacitive Sensors3. Differential Capacitor4. Inductive Sensors5. Eddy Current Sensors6. Linear Variable Differential Transformers(LVDTs)7. Variable Transformers8. Resolvers9. Inductosyn10. Electromagnetic Sensors11. Electromagnetic FlowmeterSignal Conditioning for Reactance Variation Sensors1. Problems and Alternatives2. AC Bridges
  • 45. 3. Capacitive Bridge Analog Linearization4. Electrostatic Shields and Driven Shields5. Carrier Amplifiers and Coherent Detection6. Application to LVDTs7. Resolver - to - Digital and Digital - to - Resolver8. Digital-to-Resolver Converters9. Resolver-to-Digital ConvertersSelf-Generating Sensors1. Thermoelectric Sensors: Thermocouples2. Common Thermocouples3. Practical Thermocouple Laws4. Law of Successive or IntermediateTemperatures5. Piezoelectric Sensors6. Pyroelectric Sensors7. Photovoltaic SensorsSignal Conditioning for Self-Generating Sensors1. Introduction2. Chopper and Low-Drift Amplifiers3. Chopper Amplifiers4. Current Measurement by Integration5. Noise in Amplifiers6. Noise in Op Amps7. Noise in Transimpedance Amplifiers8. Noise and Drift in Resistors9. Noise in Resistors
  • 46. Digital and Intelligent Sensors1. Introduction2. Position Encoders3. Absolute Position Encoders4. Sensors Based on Quartz Resonators5. Digital Quartz Thermometers6. SAW Sensors7. Digital Flowmeters8. Variable CMOS Oscillators9. Direct Quantity - to -Frequency Conversion10. Calculation and Compensations11. Current Telemetry: 4 to 20 mA Loop12. Sensor Buses: FieldbusOther Sensing Methods1. Introduction2. Photodiodes3. Position-Sensitive Detectors (PSDs)4. Phototransistors5. Charged - Coupled and CMOS ImageSensor6. Fiber-Optic Sensors7. Ultrasonic-Based Sensors8. Biosensors
  • 47. Microprocessor 8085 Lab (ET10)Audience: Students of Second Year Electronics EngineeringObjective: At the end of the course the student will learn about microprocessor 8085simulation used in laboratory.ContentsMicroprocessor - 8085 laboratory is a software program to enable the students totry and test the programming logic of 8085 microprocessor without using anyhardware & trainer kits. The laboratory tutor includes the facility to display internalregisters, memory, stack level etc.Microprocessor - 8085 laboratory is very flexible, reliable,easy to use pedagogicaltool which could be very effectively used to supplement laboratory exercise onmicroprocessor /computer organization as a laboratory aid.The student can visually see the details of all the execution steps and justify thelogic developed by them.Absolute transparency in functioning of the microprocessor at register andflag levels.Constantly displays the contents of all the memory locations that are relevantto a program.Quick assembly language programming saving great amount of time andefforts.Indispensably useful for learning and teaching purposes.Makes writing machine code programs really easy because in this simulatoryou just click at buttons for the mnemonics and everything else is doneautomatically.Extensive and user friendly debugging facilities.Shows all stack activities distinctly and even permits the user to inspect thestack area of the memory dynamically at run time.Rovides valuable online guidance to the user through prompts and warnings.The entire 64 kilobyte memory space is available for use, though the user isallowed to choose his own start address and stack location as per hisrequirement.Total input validation - the beginner is guided all along by this well designedand intelligent simulator, to a stage that we can say that it is almostimpossible to make a mistake.A well designed windows help system.
  • 48. Microprocessor & Microcontroller (ET11)Audience: Students of Third Year Electronics EngineeringObjective: At the end of the course the student will learn about detailed concepts ofmicroprocessor 8085 and microcontroller 8051.ContentsMicroprocessor Systems Theory1. Introduction to Microcomputer2. Microcomputer Architecture & Organization3. System Bus4. Microcomputer Characteristics5. Applications of Microprocessor6. Microprocessor ArchitectureThe 8085 Microprocessor Theory1. Introduction2. Features of 8085A3. Architecture of 80854. 16 Bit Registers5. Pin Definitions of 80856. Interrupt SignalsThe 8085 Instructions & Programming1. Introduction2. Steps Involved in Programming3. Opcode Formats4. Addressing Modes5. 8085 Instruction Set6. Arithmetic operations7. Branch Group
  • 49. 8. Logic Group9. Stack Operations10. Program ExamplesTiminng Diagrams1. Instruction cycle, machine cycle, and T-state2. Representation of Signals3. 8085 Machine Cycles and Their Timings4. Timing Diagrams for 8085 InstructionsStacks & Subroutines1. Concept of Stack2. Stack Operations3. PUSH Instructions4. POP Operation5. Subroutine6. CALL7. Machine Control8. Nested Subroutines9. Nested LoopsMemory Interfacing1. Memory Module2. ROM3. RAM4. Memory Structure & its Requirements5. Basic Concept in Memory Interfacing6. Address Decoding7. Address Decoding & Memory Addresses
  • 50. Interrupts1. Introduction2. Necessity of Interrupts3. Classification of Interrupts4. Nested Interrupts5. Software Interrupts in 80856. SIM Instruction FormatI/O Data Transfer Techniques & Peripherls1. Introduction2. Microprocessor Controlled Data Transfer3. Direct Memory Access 82374. Pin Diagram of 8237A5. IC 81556. Interfacing 8155 with 8085 in I/O Mapped I/O7. Programmable Peripheral Interface 8255A8. Interfacing 8255 in I/O Mapped I/O9. IC 8355/875510. Digital to Analog Converters (DAC)11. Analog to Digital ConvertersMicrocontroller 80511. Introduction2. Block Diagram3. Serial Interface4. Interrupts5. Addressing Modes6. Instruction Sets7. CPU Timing8. Timing Diagram for External Data Memory9. 8051 a Boolean Processor10. Power Saving Options
  • 51. Memory & Interfacing Theory of 80511. Introduction2. Internal RAM3. The Stack & the Stack Pointer4. Internal ROM5. Connecting External Memory6. 8751 EPROM Version7. Keyboard Interface8. Serial Communication9. 8051 I/O Expansion using 825510. Multiprocessor Communication in MCS 5111. Interfacing ExamplesStudy of 8051 & Derivatives1. AT89C51/52-8-Bit Microprocessor2. Program Memory Lock Bits3. Programming the Flash
  • 52. Power Electronics (ET12)Audience: Students of Final Year Electronics EngineeringObjective: : At the end of the course the student will learn about various electronic devices andtransducers, Electric circuit, typical industrial electronic systems, various high power electrondevices, working and control of high power supply systems, transformation of power supply to suitthe electronic system etc.ContentsIntroduction1. Scope of Industrial Electronics2. Power Electronics3. Power Electronics V Communication Electronics4. Scope & Application of Power Electronics5. Classification of Power Processors6. Classification of Power Converters7. Merits & Demerits of Power Electronics8. Interdisciplinary Nature of Power Electronics9. Power Semiconductor DevicesThyristor Principles and Characteristics1. Introduction2. Thyristor Family3. Principle of Operations of SCR4. Static Anode - Cathode Characteristics of SCR5. The Two Transistor Model of SCR6. Thyristor Construction7. Gate Characteristics of SCR8. Turn-on Methods of a Thyristor9. Dynamic Turn-on Switching Characteristics10. Turn-off Mechanism11. Turn-off Methods12. Thyristor ratings
  • 53. 13. Measurement of Thyristor Parameters14. Comparison between Gas Tubes and Thyristors15. Comparison between Transistors and ThyristorsGate Triggering Circuits1. Introduction2. Firing of Thyristors3. Pulse Transformers4. Optical Isolators Optoisolators5. Gate Trigger Circuits6. Unijunction Transistor7. Programmable Unijunction Transistor (PUT)8. Phase Control using Pedestal & Ramp Triggering9. Firing system for DC/DC Choppers10. Firing Circuit for a Three phase Inverter BridgeSeries and Parallel Operation of Thyristors1. Introduction2. Series Operations of Thyristors3. Need for Equalising Network4. Equalising Network Design5. Triggering of Series Connected Thyristors6. Parallel Operation of Thyristors7. Methods for ensuring proper current sharing8. Triggering of Thyristors in Parallel9. String Efficiency10. DeratingPhase Controlled Rectifiers1. Introduction2. Phase Angle Control3. Single phase Half wave Controlled Rectifier
  • 54. 4. Single phase Full wave Controlled Rectifier5. Single phase Half Controlled Bridge Rectifier6. Three phase Controlled Converters7. Three phase Fully controlled Bridge Converter8. The Effect of Input Source Impedance9. Dual ConvertersInverters1. Introduction2. Thyristor Inverter Classification3. Series Inverters4. Self Commutated Inverters5. Parallel Inverters6. Single Phase Bridge Voltage Source Inverter7. Three Phase Bridge Inverters8. Three Phase Bridge Inverter with Input CircuitCommutation9. Voltage control of Single Phase Inverter10. Voltage control of Three Phase Inverter11. Harmonic Reduction12. Harmonic Filters13. Current source InvertersChoppers1. Introduction2. Principle of Chopper Operation3. Control Strategies4. Step Up Choppers5. Step Up/Down Choppers6. Chopper Configuration
  • 55. 7. Chopper Commutation8. Jones Chopper9. Morgan Chopper10. A. C. ChoppersCycloconverters1. Introduction2. The Basic Principle of operation3. Single phase to Single phase Cycloconverter4. Three phase Half wave Cycloconverters5. Cycloconverters Circuits for Three phase Output6. Ring connected Cycloconverters Circuits7. Output Voltage Equation8. Control Circuit9. Comparison of Cycloconverters and D. C. LinkConverter10. Load commutated CycloconvertersElectric Drives1. Concept of Electric Drives2. DC Drives3. Single Phase DC Drives4. Three Phase DC Drives5. Chopper Drives6. AC Drives7. Induction Motor Drives8. Speed Control of Three Phase Induction Motors
  • 56. VLSI-Design Techniques (ET13)Audience: Students of Third Year Electronics EngineeringObjective: : At the end of the course the student will learn about basic concepts of VLSI devices,their fabrication and design of VLSI.ContentsIntroduction to VLSI Design1. Motivation of the Course2. System approach to VLSI Design3. Introduction to MOSFET4. Modes of operation5. MOSFET I-V characteristicsMOSFET1. Advanced Topics2. Short Channel Effect3. Quantum Mechanical Increase EffectIntroduction to Fabrication Process1. Motivation2. Fabrication Process3. General Aspects of CMOS Technology4. Channel Stopper5. Local Oxidation of Silicon (LOCOS)6. Layout Design RulesProgrammable Logic Devices1. Propagation Delays in MOS2. Noise Margins3. Regions of Operation4. Few Definitions
  • 57. 5. Rise and Fall Times6. Static CharacteristicsPower Dissipation in CMOS Circuits1. Motivation2. How to Reduce Temperature3. Dynamic Power Dissipation4. Methods to Reduce Dynamic Power DissipationBasics of Semiconductor Memories1. Introduction2. Memory Classification3. Memory Architecture and Building Blocks4. SRAM Basics5. CMOS SRAM Cell Design6. WRITE Operation7. NAND-based ROM Array8. Few special Examples of Memories9. Erasable Programmable Read Only MemoryI/O PADs1. Introduction2. Electrostatic Discharge (ESD)3. Output Buffer4. Tri-State Output CircuitIntroduction to VHDL1. Introduction2. Features of VHDL3. Architecture4. Introduction to Modeling styles
  • 58. 5. Data flow6. Extended identifier7. Process Types8. Clocked Process9. Functions and ProceduresProgrammable Logic Devices1. Introduction2. Read Only Memory (ROM)3. Programmable Logic Array (PLA)4. Input Buffer5. Implementation of Combination Logic Circuit6. Programmable Array Logic7. Complex Programmable Logic Devices (CPLDs)8. Block Diagram9. Field Programmable Gate Arrays10. Architecture of FPGASubsystem Design Processes1. Objectives2. Some Problems3. An Illustration of Design Processes4. The Design of a 4-bit Shifter5. ObservationsIllustration of the Design Process1. Objectives2. Some Observations on the Design Process3. Regularity4. Design of a 4-bit Adder5. A standard adder element6. Adder element bounding box7. Implementing ALU Functions with an Adder
  • 59. Memory, Registers & M Aspects of System Timing1. Objectives2. The Dynamic Shift Register Stage3. Three-transistor Dynamic RAM Cell4. One-transistor Dynamic Memory Cell5. Pseudo-static RAM/register Cell6. Six-transistor Static CMOS Memory Cells7. Write operations8. Read operations9. JK Flip-flop Circuit10. Logic gate implementations11. Random Access Memory (RAM) ArraysPractical Aspects and Testability1. Objectives2. The Real World Of VLSI Design3. Design Styles and Philosophy4. The Interface with the Fabrication House5. CIF (Caltech. Intermediate Form) Code6. Aspects of Design Tools7. Design Verification Prior to Fabrication8. Test and Testability9. Nature of failures in CMOS devices10. The effect of memory11. Improve controllability and observability12. The use of inter-block multiplexers13. Initialization of sequential logic14. The use of bused structures
  • 60. Communication Systems (ET14)Audience: Students of Electronics EngineeringObjective: : At the end of the course the student will learn about various types of transmissionlines, signal modulation and various types of communication systems like mobile, TV, Satellite,Fiber Optic etc.ContentsIntroduction to Communication1. Introduction2. Elements of Communication System3. Line Communication4. Radio Communication5. Noise6. Classification of Electronic Communication7. Types of SignalsTransmission Media1. Introduction2. Fundamentals of Transmission Lines3. Types of Transmission Line4. Characteristic Impedance5. Propagation Coefficient6. Losses in Transmission Lines7. Information Propagation in Transmission Line8. Standing Waves9. Quarter and Half Wavelength Lines10. Fundamentals of the Smith Chart11. Wave Guides12. Types of Waveguide13. Waves Propagation in Rectangular Waveguides14. TE & TM Modes15. Circular Waveguides
  • 61. Wave Propagation1. Introduction2. Fundamentals of Electromagnetic (EM) Waves3. Propagation of EM Waves4. Ground Wave Propagation5. Sky Wave Propagation6. Virtual Height7. Multiple Hop Sky Wave Propagation8. Concept of Fading9. Space Wave Propagation10. Multiple Space Wave Propagation11. Shadow Zones12. Duct Propagation13. Tropospheric Scatter PropagationOptical Fiber Cable1. Need of Optical Fiber Cable2. Introduction to Light3. Reflection & Refraction4. Dispersion, Diffraction, Absorption & Scattering5. Advantages of Optical Fiber Cable6. Fiber Cable7. Fiber Characteristics & Classification8. Numerical Aperture9. Losses in Optical Fiber CableAmplitude Modulation1. Amplitude Modulation2. Mathematical Representation of AM Wave3. Modulation Index
  • 62. 4. Frequency Spectrum of AM Wave5. Time Domain6. Power Relation in AM Wave7. Generation of AM8. AM TransmittersFrequency Modulation1. Introduction2. Frequency Modulation (FM)3. Phase Modulation (PM)4. Characteristics of FM5. Mathematical Representation of FM6. Frequency Spectrum of FM Wave7. Practical Bandwidth8. Phase Modulation (PM)9. Percent Modulation10. Generation of FM11. Types of Reactance Modulators12. Indirect Method of FM generation13. Need of an Audio Equalizer14. FM Receivers15. Balanced Slope Detector16. Phase Discriminator17. Ratio DetectorPulse Modulation1. Introduction2. Sampling Process3. Nyquist Rate4. Pulse Amplitude Modulation
  • 63. 5. Types of PAM6. Pulse Width Modulation7. Pulse Position Modulation8. Pulse Code Modulation9. Quantization Process10. Companding11. Effect of Noise on the PCM System12. Frequency Shift Keying13. Phase Shift KeyingTelevision System1. Introduction2. Scanning3. Interlaced Scanning4. Scanning Periods5. Picture Resolution6. Brightness Gradation & Colour Characteristics7. Vestigial Sideband Transmission8. Total Channel Width9. Colour Theory10. Grassmans Law11. Compositr Video Signal12. Blanking Pulses13. Front Porch14. Vertical Sync Details15. Monochrome Television Transmitter16. Monochromr Television Receiver17. Colour Picture Tube18. PAL Coder19. Encoding Circuit20. PAL - D Decoder
  • 64. 21. IF Subsystem22. Common Faults in TV Receiver23. Antenna Parameters24. Yagi - Uda AntennaSatellite Communication System1. Introduction2. Allocated Frequency Bands & Uplink/ Downlink3. Satellite Communication System4. Basic Satellite System5. Classification of Satellites6. Synchronous Satellites7. Satellite Look Angles8. Satellite Footprints9. Ground Station or Satellite Earth Station10. DBS or Direct Broadcast Satellite11. Cable Television (ATV)12. Data Communication Services13. Satellite AntennasFiber Optic Communication System1. Introduction2. Optical Transmitters3. Lasers4. Optical Receivers5. Detector Characteristics6. Applications of Optical SystemData Communication Systems1. Introduction2. Communication Model3. Networks
  • 65. 4. Network Criteria5. Mesh6. Star7. Tree8. Bus9. Ring10. Local Area Network LAN11. Metropolitan Area Network (MAN)12. Wide Area Network (WAN)13. Signaling Methods of LAN14. Manchester15. High Density Bipolar 316. Parallel Transmission17. Frequency Division Multiplexing18. Wave Division Multiplexing19. Modem20. InternetCellular Mobile & Facsimile Communication1. Introduction to Cellular Mobile2. A Basic Cellular System3. Cellular Concept4. Setting Size Limitations & Traffic Handling5. Operation of Cellular System in Four Modes6. Hand Off Mechanism7. Concept of Frequency Reuse8. Facsimile9. Image Scanning10. Data Compression
  • 66. Mobile Communication (ET15)Audience: Students of Final Year Electronics EngineeringObjective: : At the end of the course the student will learn about wireless transmission system,telecommunication system, satellite system, broadcast system and mobile network and transportlayer.ContentsIntroduction to Mobile Communication1. Introduction2. Applications3. Location dependent services4. Mobile and wireless devices5. A market for mobile communications6. A simplified reference modelWireless Transmission1. Introduction2. Frequencies for radio transmission3. Regulations4. Signals5. Antennas6. Signal propagation7. Additional signal propagation effects8. Multi-path propagation9. Multiplexing10. Modulation11. Amplitude shift keying12. Multi-carrier modulation13. Spread spectrum14. Direct sequence spread spectrum15. Frequency hopping spread spectrum16. Cellular systems
  • 67. Medium Access Control1. Introduction2. Motivation for a specialized MAC3. Hidden and exposed terminals4. SDMA5. Fixed TDM6. Classical Aloha7. Carrier sense multiple access8. Reservation TDMA9. Multiple access with collision avoidance10. Polling11. Comparison of S/T/F/CDMATelecommunication Systems1. Introduction2. GSM3. Mobile services4. System architecture5. Radio subsystem6. Network and switching subsystem7. Radio interface8. Logical channels and frame hierarchy9. Protocols10. Localization and calling11. Handover12. Security13. Authentication14. New data services15. System architecture16. Physical layer
  • 68. 17. UMTS and IMT-200018. User equipmentSatellite Systems1. Introduction2. Applications3. GEO4. LEO5. MEO6. Routing7. LocalizationBroadcast Systems1. Introduction2. Overview3. Cyclical repetition of data4. Digital audio broadcasting5. Multi-media object transfer protocol6. Digital video broadcasting7. DVB data broadcasting8. DVB for high-speed Internet access9. Convergence of broadcastingWireless LAN1. Introduction2. Infra red vs radio transmission3. Infrastructure and ad-hoc networks4. System architecture5. Frequency hopping spread spectrum6. Medium access control layer
  • 69. 7. Basic DFWMAC-DCF using CSMA/CA8. MAC management9. Wireless ATM working group10. Mobile quality of service11. Radio layer12. SecurityMobile Network Layer1. Introduction2. Agent discovery3. Registration4. Tunneling and encapsulation5. Minimal encapsulation6. Optimizations7. Hierarchical mobile IPv6 (HMIPv6)8. Dynamic host configuration protocol9. Destination sequence distance vectorMobile Transport Layer1. Introduction2. Traditional TCP3. Fast retransmit/fast recovery4. Snooping TCP5. Mobile TCP6. Fast retransmit/fast recovery7. TCP over 2.5/3G wireless networks8. Performance enhancing proxies
  • 70. Data Communication & Networking (ET16)Audience: Students of Final Year Electronics EngineeringObjective: At the end of the course the student will learn about fundamentals of datacommunication systems and networking.ContentsData Communication1. A Communications Model2. Data Communications Model3. Multipoint4. Topology5. Mesh6. Tree7. Bus8. Ring9. Hybrid Topologies10. Transmission Mode11. Simplex12. Half-Duplex13. Full-Duplex14. Categories of Networks15. Local Area Network (LAN)16. Metropolitan Area Network (MAN)17. Wide Area Network (WAN)18. InternetworksThe OSI Model1. Introduction2. The Model3. Layered Architecture4. Peer-to-Peer Processes
  • 71. 5. Interfaces between Layers6. Functions of the Layers7. Synchronization8. Presentation Layer9. Application Layer10. TCP/IP Protocol SuiteSignals1. Introduction2. Periodic and aperiodic Signals3. Amplitude4. Period and Frequency5. More about Frequency6. Time and Frequency Domains7. Composite Signals8. Frequency Spectrum and Bandwidth9. Decomposition of a Digital SignalSignal Encoding and Modulating1. Introduction2. Digital-To-Digital Conversion3. Unipolar4. Nonreturn to Zero (NRZ)5. Differential Manchester6. Bipolar Alternate Mark Inversion (AMI)7. Analog-to-Digital Conversion8. Pulse Amplitude Modulation (PAM)9. Sampling Rate10. Digital-To-Analog Conversion11. Aspects of Digital-to-Analog Conversion12. Quadrature Amplitude Modulation (QAM)
  • 72. 13. Bit/Baud ComparisonTransmission of Digital Data1. Introduction2. Parallel Transmission3. Serial Transmission4. DTE-DCE Interface5. Mechanical Specification6. Control and Timing7. DB-9 Implementation8. Null Modem9. Modems10. Modem Standards11. Intelligent Modems12. Cable ModemTransmission Media1. Introduction2. Guided Media3. Shielded twisted-pair (STP) Cable4. Coaxial cable5. Single Mode6. Fiber-Optic Connectors7. Propagation of Radio Waves8. Terrestrial Microwave9. Satellite Communication10. Transmission Impairment11. Noise
  • 73. Multiplexing1. Introduction2. Many to One/One to Many3. Frequency-Division Multiplexing (FDM)4. Wave-Division Multiplexing (WDM)5. Synchronous TDM Example6. Bit Stuffing7. Addressing and Overhead8. Multiplexing Application9. Common Carrier Services and Hierarchies10. T LinesError Detection & Correction1. Introduction2. Types of Errors3. Detection4. Redundancy5. Vertical Redundancy Check (VRC)6. Longitudinal Redundancy Check (LRC)7. Redundancy Bits8. Positioning the Redundancy Bits9. Calculating the r Values10. Error Detection and CorrectionData Link Control & Protocol1. Introduction2. Line Discipline3. How It Works4. Flow Control5. Stop-and-Wait6. Sliding Window
  • 74. 7. More about Window Size8. Lost Acknowledgment9. Sliding Window ARQ10. Lost Acknowledgment11. Synchronous Protocols12. Data Frames13. Multiframe Transmission14. Address Field15. Information Field16. Selective-Reject17. Integrated Services Digital Network (ISDN)18. Integrated Services Digital Network (ISDN)19. Services20. Analog and Digital Services to Subscribers21. Integrated Services Digital Network (ISDN)22. Functional Grouping23. The ISDN Layers24. U Interface25. Connection and Topology26. Message Type27. Information Elements28. Physical Specifications
  • 75. Digital Image Processing (ET17)Audience: Students of Final Year Electronics EngineeringObjective: At the end of the course the student will learn about various digital image processingtechniques.ContentsContinuous Image Characterization1. Introduction2. Image Representation3. Two-Dimensional Systems4. Singularity Operators5. Additive Linear Operators6. Differential Operators7. Two-Dimensional Fourier Transform8. Image Stochastic CharacterizationPsychophysical Vision Properties1. Introduction2. Light Perception3. Eye Physiology4. Visual Phenomena5. Monochome Vision Model6. Color Vision ModelPhotometry and Colorimetry1. Photometry2. Color Matching3. Colorimetry Concepts4. Tristimulus Value Calculation5. Luminance Calculation6. Tristimulus Value Transformation
  • 76. 7. Color Spaces8. Colorimetric Color Spaces9. XYZ Color Coordinate System10. Subtractive Color Spaces11. Video Color Spaces12. Nonstandard Color SpacesImage Sampling and Reconstruction1. Introduction2. Image Sampling and Reconstruction Concepts3. Sampling Random Image Fields4. Image Sampling Systems5. Aliasing Effects6. Image Reconstruction Systems7. Implementation Techniques8. Interpolation Functions9. Effect of Imperfect Reconstruction FiltersDiscrete Image Mathematical Characterization1. Vector-Space Image Representation2. Generalized Two-Dimensional Linear Operator3. Image Statistical Characterization4. Image Probability Density Models5. Linear Operator Statistical RepresentationImage Quantization1. Introduction2. Scalar Quantization3. Processing Quantized Variables4. Monochrome And Color Image Quantization5. Color Image Quantization
  • 77. Superposition and Convolution1. Introduction2. Finite-Area Superposition and Convolution3. Sampled Image Superposition and Convolution4. Circulant Superposition and Convolution5. Superposition & Convolution OperatorRelationshipsUnitary Transforms1. Introduction2. General Unitary Transforms3. Fourier Transform4. Cosine, Sine and Hartley Transforms5. Sine Transform6. Hadamard, Haar And Daubechies Transforms7. Karhunen–Loeve TransformLinear Processing Techniques1. Introduction2. Transform Domain Processing3. Transform Domain Superposition4. Fast Fourier Transform Convolution5. Fourier Transform Filtering6. Windowing Functions7. Discrete Domain Transfer Functions8. Small Generating Kernel ConvolutionImage Enhancement1. Introduction2. Contrast Manipulation3. Contrast Modification
  • 78. 4. Histogram Modification5. Nonadaptive Histogram Modification6. Adaptive Histogram Modification7. Noise Cleaning8. Nonlinear Noise Cleaning9. Edge Crispening10. Statistical Differencing11. Color Image Enhancement12. False Color13. Multispectral Image EnhancementImage Restoration Models1. Introduction2. General Image Restoration Models3. Optical Systems Models4. Photographic Process Models5. Monochromatic Photography6. Color Photography7. Discrete Image Restoration ModelsPoint and Spatial Image Restoration Techniques1. Introduction2. Sensor Point Nonlinearity Correction3. Display Point Nonlinearity Correction4. Continuous Image Spatial Filtering Restoration5. Inverse Filter6. Parametric Estimation Filters7. Application to Discrete Images8. Pseudoinverse Spatial Image Restoration9. Pseudoinverse: Image Blur Plus Additive Noise10. Pseudoinverse Computational Algorithms
  • 79. 11. SVD Pseudoinverse Spatial Image Restoration12. Statistical Estimation Spatial Image Restoration13. Constrained Image Restoration14. Constrained Restoration TechniquesGeometrical Image Modification1. Introduction2. Generalized Linear Geometrical Transformations3. Separable Translation, Scaling, and Rotation4. Spatial Warping5. Perspective Transformation6. Camera Imaging Model7. Geometrical Image ResamplingMorphological Image Processing1. Introduction2. Binary Image Connectivity3. Binary Image Hit or Miss Transformations4. Additive Operators5. Subtractive Operators6. Binary Image Shrinking, Thinning7. Binary Image Skeletonizing8. Binary Image Generalized Dilation and Erosion9. Binary Image Close and Open Operations10. Gray Scale Image Morphological OperationsEdge Detection1. Introduction2. Edge, Line and Spot Models3. First-Order Derivative Edge Detection4. Edge Template Gradient Generation
  • 80. 5. Threshold Selection6. Morphological Post Processing7. Laplacian Zero-Crossing Detection8. Edge-Fitting Edge Detection9. Luminance Edge Detector Performance10. Edge Detector Figure of Merit11. Subjective Assessment12. Line and Spot DetectionImage Feature Extraction1. Introduction2. Amplitude Features3. Transform Coefficient Features4. Texture Definition5. Visual Texture Discrimination6. Julesz Texture Fields7. Pratt, Faugeras, and Gagalowicz Texture Fields8. Texture Features9. Dependency Matrix Methods10. Gabor Filter Methods11. Transform and Wavelet MethodsImage Segmentation1. Introduction2. Amplitude Segmentation Methods3. Multilevel Luminance Thresholding4. Multilevel Color Component Thresholding5. Amplitude Projection6. Clustering Segmentation Methods7. Region Segmentation Methods8. Boundary Detection
  • 81. 9. Heuristic Edge-Linking Methods10. Snakes Boundary Detection11. Texture Segmentation12. Segment LabelingShape Analysis1. Topological Attributes2. Distance, Perimeter, And Area Measurements3. Geometric Attributes4. Spatial Moments5. Discrete Image Spatial Moments6. Shape Orientation Descriptors7. Fourier DescriptorsImage Detection and Registration1. Template Matching2. Matched Filtering of Continuous Images3. Matched Filtering of Stochastic Continuous Images4. Matched Filtering of Discrete Images5. Image Registration6. Scale and Rotation Misregistration Detection7. Generalized Misregistration DetectionPIKS Image Processing Software1. PIKS Functional Overview2. PIKS Imaging Model3. PIKS Data Objects4. PIKS Operators, Tools, Utilities, and Mechanisms5. PIKS Application Interface6. PIKS Core Overview7. PIKS Core Image Data Object
  • 82. PIKS Image Processing Programming Exercises1. Introduction2. Program Generation Exercises3. Image Measurement Exercises4. Image Restoration Models Exercises5. Morphological Image Processing Exercises6. EDGE Detection Exercises7. Image Segmentation Exercises8. Shape Analysis Exercises
  • 83. Embedded Systems (ET18)Audience: Students of Final Year Electronics EngineeringObjective: At the end of the course the student will learn about basic embedded systems,hardware, programming, real time operating systems.ContentsIntroduction to Embedded Systems1. An Embedded System2. Classification of Embedded Systems3. Microprocessor4. Microcontroller5. Embedded Processor for a complex System6. Other hardware units7. Interrupts handler8. LCD and LED Displays9. Software Embedded into a System10. Software in Processor Specific Assembly Language11. Software in High Level Language12. Models for Software Designing13. Exemplary SoC for Cell-PhoneProcessor & Memory Organisation1. Structural Units in a Processor2. Processor selection for an embedded system3. Case study of a Real Time Robot Control System4. Memory Devices5. RAM Devices6. Memory Selection for an Embedded System7. Case Study of a Mobile Phone System8. Allocation of Memory to Program Segments
  • 84. 9. MemoryBlocksforElementsoftheDifferentD.S.10. The Memory Maps11. Addresses at Map for Internal Devices12. Direct Memory Access13. Interfacing Processor, Memories and I/O DevicesDevices & Buses for Device Networks1. I/O Devices2. Synchronous, Iso-synchronous3. Ex. of Internal Serial-Communication Devices4. Sophisticated Interfacing Features in Device Ports5. Timer and Counting Devices6. Serial Communication using the I2c, Can7. Advanced Serial High Speed Buses8. PCI and PCI/X Buses9. Advanced Parallel High Speed BusesDevice Drivers & Interrupts Servicing Mechanism1. Device Drivers2. Device Driver ISR3. Linux Internals as Device Drivers4. Writing Physical Device Driving ISRs in a System5. Virtual Devices6. Parallel Port Device Drivers in a System7. Serial Port Device Drivers in a System8. Device Drivers for internal Programmable9. Interrupt Servicing (Handling) Mechanism10. Software Error Related Hardware interrupts11. Classification of all interrupts as Non Maskable12. Classification of Processors Interrupt Service Mechanism
  • 85. 13. Assignment of Priorities to Meet Service DeadlinesProgramming Concepts and Embedded Programming in C and C++1. Software Programming in Assembly Language2. C Program Elements3. Preprocessor Directives4. Use of Data Structures5. Use of Modifiers6. Use of Conditions, Loops and Infinite Loops7. Use of Pointers, NULL Pointers8. Use of Function Calls9. Multiple Function Calls in Cyclic Order in the Main10. Queues11. Use of the Queues for Implementing12. Stacks13. Uses of a List of Active Device Drivers14. Embedded Programming in C++15. Embedded Programming in Java16. Optimisation of Memory NeedsProgram Modeling Concepts1. Modeling Processes2. Use of Control Data Flow Graph3. Programming Models for Event Controlled4. Use of the Petri Net model5. FSM as a Special Case of Petri Net6. Modeling of Multiprocessor Systems7. Concurrent process of processors8. Issues in Multiprocessor Systems9. Synchronous Data Flow Graph (SDFG) Model10. Homogeneous Synchronous Data Flow Graph
  • 86. 11. Acrylic Precedence Expansion Graph12. Timed Petri Nets and Extended13. Multi Thread Graph (MTG) System ModelSoftware Engineering Practices in the Embedded Software Development Process1. Software Algorithm Complexity2. Software development Process Lifecycle3. Use of Linear Sequential Model4. Use of the RAD Model5. Software Analysis6. Software Design7. Software Implementation8. Software Testing, Validating and Debugging9. Real Time Programming Issues during the SDP10. Issues in Design and Implementation11. Software Project Management12. Project Metrics13. Software Maintenance14. Unified Modeling Language (UML)Real Time Operating Systems1. Operating System Services2. I/O Subsystems3. Network Operating Systems4. Real-Time and Embedded Operating Systems5. Interrupt Routines in RTOS Environment6. RTOS Task Scheduling Models7. Performance Metric8. IEEE Standard POSIX 1003.1b Functions9. List of Basic Actions10. Fifteen-Point Strategy
  • 87. 11. Embedded Linux Internals12. OS Security Issues13. Mobile OSReal Time Operating System Programming Tools1. Need of a well rested and Debugged RTOS2. Use of C/OS-II3. Use of VxWorksCase Studies of Programming with RTOS1. Automatic Chocolate Vending Machine2. Sending Application Layer Byte Streams3. Adaptive Cruise Control System in a Car4. Embedded System for a Smart Card
  • 88. Microwave Engineering (ET19)Audience: Students of Electronics EngineeringObjective: At the end of the course the student will learn about definition, history, generation,applications of microwave.ContentsMicrowaves1. Introduction2. How do we "see" using Microwaves?3. What do Microwaves show us?What Are Microwaves?1. Introduction2. A Phenomenal Force3. Is Microwave Radiation?History1. Planar Microwave Engineering2. Birth of the vacuum tube3. Armstrong and the RegenerativeAmplifier4. The Wizard WarDefinition & Generation1. Microwave2. Discovery3. Frequency range4. Microwave sources5. Communication6. Remote sensing7. Navigation
  • 89. 8. Power9. Microwave frequency bands10. Microwave frequency measurement11. Health effects12. History and research13. Klystron14. Two - cavity klystron amplifier15. Tuning a klystron16. Optical klystron17. Traveling-wave tubeHow to generate Microwaves1. Reflex oscillator used to generate high-p. m.2.3. The Magnetron Tube Used In Microwave Ovens4. Basic Magnetron Operation5. Effect of the Magnetic FieldApplications of Microwaves1. Applications2. Electronic Countermeasures3. Delay Lines and Beam steering4. LO distribution5. Applications of Microwave EngineeringTransmission Media1. Introduction2. Fundamentals of Transmission Lines3. Types of Transmission Line4. Characteristic Impedance
  • 90. 5. Propagation Coefficient6. Losses in Transmission Lines7. Information Propagation in Transmission Line8. Standing Waves9. Quarter and Half Wavelength Lines10. Fundamentals of the Smith Chart11. Wave Guides12. Types of Waveguide13. Waves Propagation in Rectangular Waveguides14. Propagation of TEM Waves15. TE & TM Modes16. Rectangular Waveguide17. Circular WaveguidesWave Propagation1. Introduction2. Fundamentals of Electromagnetic (EM) Waves3. Propagation of EM Waves4. Ground Wave Propagation5. Sky Wave Propagation6. Virtual Height7. Critical Frequency8. Skip Distance9. Skip Zone10. Multiple Hop Sky Wave Propagation11. Concept of Fading12. Diversity Reception13. Space Wave Propagation14. Multiple Space Wave Propagation15. Optical Horizon16. Radio Horizon
  • 91. 17. Shadow Zones18. Polarization of Space Waves19. Duct Propagation20. Troposphere Scatter Propagation21. Radio Frequency Bands used in CommunicationSatellite Communication System1. Introduction2. Allocated Frequency Bands & Uplink/ Downlink3. Satellite Communication System4. Basic Satellite System5. Classification of Satellites6. Synchronous Satellites7. Satellite Look Angles8. Uplink & Downlink Frequencies Used9. Factors for Up & Downlink Frequencies10. Satellite Footprints11. Satellite Attitudes12. Ground Station or Satellite Earth Station13. Satellite Communication Applications14. DBS or Direct Broadcast Satellite15. Cable Television (ATV)16. Telephone Services via Satellite17. Data Communication Services18. Satellite Antennas
  • 92. Optical Fibre Communication (ET20)Audience: Students of Final Year Electronics EngineeringObjective: At the end of the course the student will learn about fundamental concepts of opticalfiber communication, wavelength division multiplexing, optical amplifiers and optical networks.ContentsOverview of Optical Fiber Communications1. Introduction2. Basic Network Information Rates3. Elements of an Optical Fiber Transmission Link4. Simulation and Modeling Tools5. Advantages of Fiber optic cableStructures, Fabrication & Waveguiding1. The Nature of Light2. Polarization3. Types of Polarization4. The Quantum Nature of Light5. Basic Optical Laws and Definitions6. Optical Fiber Modes and Configurations7. Fiber Types8. Advantages of Multimode fibers9. Intermodal dispersion10. Step-Index Fiber Structure11. Ray Optics Representation12. Maxwell’s Equations13. Waveguide Equations14. Modes in Step-Index Fibers15. Single-Mode Fibers16. Graded-INDEX Fiber Structure
  • 93. 17. Types of Glass Fibers18. Mechanical Properties of FibersSignal Degradation in Optical Fibers1. Introduction2. Attenuation3. Absorption4. Bending Losses5. Core and Cladding Losses6. Signal Distortion in Optical Waveguides7. Information Capacity Determination8. Material Dispersion9. Waveguide Dispersion10. Signal Distortion in Single-Mode Fibers11. Pulse Broadening in Graded-Index Waveguides12. Dispersion CalculationsOptical Sources1. Introduction2. Energy Bands3. Intrinsic and Extrinsic Material4. The pn Junctions5. Direct and Indirect Band Gaps6. Light-Emitting Diodes (LEDs)7. Quantum Efficiency and LED Power8. Laser Diodes9. Laser Diode Structures and Radiation Patterns10. Modulation of Laser Diodes11. Temperature Effects
  • 94. Power Launching and Coupling1. Introduction2. Power Launching versus Wavelength3. Fiber-to-Fiber Joints4. Mechanical Misalignment5. Splicing Single-Mode Fibers6. Optical Fiber Connectors7. Connector Types8. Types of fiber interconnection methods9. Light Injection and Detection Systems10. Profile Alignment System11. Single Fiber Fusion Splicing12. Fiber Preparation13. Splice EvaluationPhotodetectors1. Introduction2. Avalanche Photodiodes3. Photodetector Noise4. Detector Response Time5. Response Time6. Avalanche Multiplication Noise7. Temperature Effect on avalanche Gain8. Comparisons of PhotodetectorsOptical Receiver Operation1. Introduction2. Fundamental Receiver Operation3. Digital Signal Transmission4. Error Sources5. Receiver Configuration
  • 95. 6. Digital Receiver Performance7. Probability of Error8. The Quantum Limit9. Receiver Sensitivity Calculation10. Preamplifier Types11. High-Speed CircuitsDigital Transmission Systems1. Introduction2. Point-To-Point Links3. System Considerations4. Link Power Budget5. Line Coding6. Error Correction7. Noise Effects on System Performance8. Modal Noise9. Mode-Partition Noise10. Chirping11. Reflection Noise12. Overview of Analog LinksWDM Concepts and Components1. Introduction2. Operational Principles of WDM3. Passive Components4. The 2 x 2 Fiber Coupler5. Scattering Matrix Representation6. The 2x2 Waveguide Coupler7. Star Couplers8. Fiber Grating Filters
  • 96. 9. Tunable Sources10. Tunable Filters11. Tunable Filter TypesOptical Amplifiers1. Introduction2. General Applications3. Amplifier Types4. Semiconductor Optical Amplifiers5. Amplification Mechanism6. EDFA Architecture7. EDFA Power-Conversion Efficiency and Gain8. System Applications9. Wavelength ConvertersOptical Networks1. Introduction2. Basic Networks3. SONET/SDH4. SONET/SDH Networks5. Broadcast-and-Select WDM Networks6. Broadcast-and-Select Single-Hop Networks7. Nonlinear Effects on Network Performance8. Crosstalk9. Optical CDMA10. Ultrahigh Capacity Networks11. Ultrahigh Capacity WDM Systems12. Bit-Interleaved Optical TDM
  • 97. Measurements1. Introduction2. Measurement Standards and Test Procedures3. Optical Attenuators4. Tunable Laser Sources5. Optical Spectrum Analyzers6. Optical Time-Domain Reflectometer (OTDR)7. Multifunction Optical Test Systems8. Attenuation Measurements9. Insertion-Loss Method10. Dispersion Measurements11. Chromatic Dispersion12. OTDR Field Applications13. Attenuation Measurements14. Eye Patterns15. Optical Spectrum Analyzer Applications16. EDFA Gain and Noise-Figure Testing17. Noise-Figure Measurements
  • 98. RFID System (ET21)Audience: Students of Electronics EngineeringObjective: At the end of the course the student will learn about fundamentals of RFID, transponder,RFID interrogator, RFID antenna, controller and database.ContentsBasics of Auto ID1. What is Auto ID2. Why is auto ID3. Optical4. Magnetic5. Electro-magnetic6. Biometric7. Touch8. Smart CardBarcode Basics1. Barcode basics2. How it works3. How much data can you actually encode4. Advantages of Bar Code5. Disadvantages of Bar codeAuto-Identification techniques1. Shortcomings of other Auto ID technologies2. RFID advantagesKnow about RF Frequencies1. Radio waves2. Wavelength3. Data put on radio waves
  • 99. 4. What do you mean by RF5. Other characteristics of radio frequencies6. AntennaBasics of RFID1. What is RFID2. System components3. How RFID works4. RFID - The Frequencies5. Significance6. Other RFID Benefits7. RFID Applications8. RFID DrawbacksTags and Readers1. Tags and Readers2. RFID Standards3. Generation 1 RFID Protocol4. Multi-Protocol ReadersEPC Global Network1. Introduction2. EPC Network Architecture3. EPC Network Fundamental Components4. EPC Network Data StandardsSavant Specifications1. EPC Middleware - Savant2. Savant – Processing Module
  • 100. 3. Savant – Application Interface4. Content Layer5. Transport Layer6. Message ChannelsPhysical MarkUp Language (PML)1. Introduction2. PML CoreBusiness value of RFID1. RFID converts information into business value2. Few Examples3. Major Opportunities4. Expected GrowthImpact of RFID on Supply Chain Management1. What is Supply Chain Management2. RFID reshaping Supply Chain Management3. RFID making waves in SCM4. How RFID will automate the Supply Chain5. Major advantages of RFID based SCM6. Major Challenges7. Few Major Players in RFID based SCMRFID Success Stories1. Case Studies2. Problem definition3. RFID Based Solution4. Problem definition5. RFID based solution6. Results
  • 101. Electronic Product Code1. EPCglobal Inc.2. Sun Microsystems3. IBM4. Hewlett-Packard5. Microsoft6. Oracle7. SAPRFID in DSD Use CaseRFID Major Players1. RFID in Indian Scenerios2. Standards Confusion3. Will Indian companies get on RFIDVendor Selection1. Vendor Selection2. RFID is not just RADIO WAVES3. Vendor SelectionHurdlesRFID Regulations – An Overview1. Introduction2. For UHF RFID tags and readers3. Federal Communications CommissionRegulations4. FCC Section 15.2475. Maximum Conducted Output Power
  • 102. 6. RFID Operations within Different Bands7. RFID Operations within Band 902 - 928 MHz8. Certain Restrictions9. Practice Questions10. Regulations of European Radio communations Office11. Standards Adopted by China and Japan12. Standards Adopted by Other CountriesRFID and Business Process Integration1. Course Users2. Course Objectives3. Introduction4. Example of ERP Workflow Tool5. Architecture Framework for RFID6. Data and Device Management7. Role and Functionality of Middleware8. Data Filtering with Business Rules Engine9. RFID Adoption Strategies10. Enterprise Functions Affected by RFID Integration11. RFID Best Practices12. Pointers for the FutureBasics of RFID Technology1. How RFID technology works2. Basics of RFID Technology3. Reader and Antenna Characteristics4. Frequencies5. Tag Packaging Formats6. Readers7. Antennas8. Technical Considerations
  • 103. RFID and Smart Packaging1. Course Users2. Course Objectives3. Introduction4. Examples of Smart Labels5. Benefits of RFID in Smart Packaging Industry6. Monitoring Product Integrity with RFID7. Tracing and Tracking Doubtful Product with RFID8. RFID in Smart Packaging Industry9. Protection from Fake Brands10. Smart Gadgets and Smart Stores11. Limitations for Tagging Liquids12. Other limitations13. Knowledge AssessmentRFID Applications in Manufacturing1. Course Users2. Introduction3. RFID in Overall Manufacturing Processes4. RFID in Warehouse and Inventory Management5. RFID in Production Planning and Operations6. Schematic of RFID in Manufacturing SupplyChain7. Scheduling with RFID8. RFID for Better Resource Utilization9. Enterprise Wide Better Resource Utilization10. Reader and Antenna Characteristics11. RFID Components in Manufacturing Solution12. RFID Systems Integration13. Technical Obstacles for RFID in Manufacturing
  • 104. RFID in Defense Applications1. Course Users2. Introduction3. Supply Chain Issues in DoD4. RTLS and its Applications5. RFID Specifications for DoD Supply ChainRFID Security and Privacy Issues1. Course Users2. Introduction3. Benefits of RFID Technology4. Possible Security Breaches5. Privacy Concerns in Retail, Library and Health6. Some Solutions for Privacy Protection7. Knowledge AssessmentWindows CE .NET Application1. Course Users2. Introduction3. RFID Communications4. Overview of Operating Systems5. Various Operating Systems6. Windows CE.NET 4.2 Advantage7. Overview of Win CE8. The Platform Builder9. Windows CE.NET Application Development10. Application Development in Windows CE.NET11. JETT.RFID Hand Held Reader12. JETT.RFID Aesthetical Features
  • 105. Operating System Details1. Introduction2. Functions of an Operating System3. Sharing CPU4. Sharing Memory5. Sharing Storage Resources6. Types of Operating System7. Multi User Operating System8. Multithread Operating SystemPlaying with JETT.RFID Reader1. A Recap of RFID Technology2. Active Tags3. Technical Considerations4. Introduction5. Product and Systems Overview6. JETT.RFID Aesthetical Features7. Product and Systems Overview8. RFID Module9. Data Synchronization and PersistentRegistry10. Customization Options11. Troubleshooting JETT.RFIDDeveloping Common Application on JETT.RFID1. Course Objectives2. Introduction3. Brief Overview of Compact Framework4. Application Development in Windows Studio
  • 106. RFID Installations1. Course Users2. RFID Hardware Placements in a Library3. Techniques for Supply Chain Visibility with RFID4. RFID Installations for Access ControlRFID Printers Operational SpecificationsReaders Operational SpecificationsTesting & Troubleshooting for Portals & DoorsAutomatic Vehicle Identification1. Introduction2. Long Range Readers3. Key features
  • 107. Bio-Medical Electronics Engineering (ET22)Audience: Students of Electronics EngineeringObjective: At the end of the course the student will learn about fundamental concepts of biomedical electronics.ContentsINTRODUCTION TO BIOMEDICAL INSTRUMENTSBiomedical Recorders1. Electrocardiograph2. Block Diagram Description3. The ECG Leads4. Unipolar Leads (V Leads)5. Effects of Artifacts on ECG Recordings6. Muscle Tremor7. Microprocessor Based ECG Machines8. Multichannel ECG Machine9. Vector cardiograph (VCG)10. Apex cardiograph11. Phonocardiograph (PCG)12. Origin of Heart Sounds13. Microphones for Phonocardiography14. Preamplifier15. Electromyography (EMG)16. Low Frequency and High Frequency FiltersMedical Display Systems1. Introduction2. Oscilloscope for BiomedicalMeasurements3. Recording from the Oscilloscope4. Cardioscope
  • 108. 5. Light Modulation System6. Selection of System Parameters7. Cardiac Monitors Using Digital Memory8. Frequency Response of Cardioscopes9. Electrosurgery Interference10. Leads off Detector11. Multichannel Displays with Digital MemoryFoetal Monitaring Instruments1. Introduction2. Cardiotocograph3. Methods of Monitoring Foetal Heart Rate4. Foetal Phonocardiogram5. FHR Measurement from Ultrasound Doppler F.S.6. FHR Measurement with Direct FECG7. Monitoring Labour Activity8. Recording System9. Continuous Monitoring of Foetal Scalp pHBiomedical Telemetry1. Wireless Telemetry2. Modulation Systems3. Transmitter4. The Receiver5. ECG Telemetry System6. Typical ECG Telemetry System7. Temperature Telemetry System8. Telemetring Intra-arterial Pressure9. Telemetry of ECG and Respiration10. Obstetrical Telemetry System11. Multi-Patient Telemetry
  • 109. 12. Transmission of Analog Physiological SignalsComputer Application in Medical Field1. Introduction2. Computer-Aided ECG Analysis3. Classification Normal4. Computerised Catheterisation Laboratory5. Pressure Measurements6. Computerised Patient Monitoring System7. Clinical Laboratory Automation8. Microcomputers9. Interfacing Analog Signals to Microcomputers10. Microprocessor Controlled Ventilator11. Microprocessor Based Control of Fluid TherapyPHYSIOLOGY AND MEASUREMENTSBioelectric Signals and Electrodes1. Origin of Bioelectric Signals2. Electrocardiogram (ECG)3. Electroencephalogram (EEG)4. Electromyogram (EMG)5. Electrode-Tissue Interface6. Metal-Electrolyte Interface7. Electrolyte-Skin Interface8. Silver-Silver Chloride Electrodes9. Measurement of Skin Contact Impedance10. Electrodes for ECG11. Electrical Conductivity of Electrode Jellies & Creams
  • 110. Physiological Transducers1. Introduction2. Linear Variable Differential Transformer3. Special Considerations for the Design of Pressure4. Transducers for Body Temperature Measurement5. Electrical Resistance Thermometer6. Optical-Fibre Temperature Sensors7. Photoelectric Pulse Transducers8. Piezoelectric Arterial Pulse ReceptorRecording Systems1. Basic Recording System2. Sources of Noise in Low Level Recording Circuits3. Differential Amplifier4. DC Preamplifier for Intracellular Recording5. Damping Control and Frequency Response6. Frequency Response and Sensitivity7. Ultra-Violet (UV) RecordersCardiovascular Measurements1. Introduction2. ECG Amplifiers3. Electrodes and Leads4. ECG Recorder Principles5. Types of ECG Recorders6. Electrocardiographs for computer processing7. Specific Direct Measurement Techniques8. Measurement of Blood Flow and Cardiac Output9. Magnetic Blood Flow Meters10. Ultrasonic Blood Flow Meters11. Measurement by Indicator Dilution Methods
  • 111. Patient Care and Monitoring1. Introduction2. Patient-Monitoring Displays3. Diagnosis, Calibration and Repairability4. Other Instrumentation for MonitoringPatients5. The Organization of the Hospital6. Pacemakers7. Pacing Modes and Pulse Generators8. Power Sources and ElectromagneticInterferenceMEDICAL IMAGINGX-Ray Machines and Computed Tomography1. Introduction2. Properties of X-rays3. X-ray Image Intensifier Television System4. X-Ray Computed Tomography (CT Scanner)5. Contrast Scale6. System Components7. Scanning System8. X-ray Source9. Detectors10. Processing Unit11. Viewing System12. Storing and Documentation13. Spatial Resolution14. Patient Dose in CT Scanners
  • 112. Magnetic Resonance Imaging System1. Introduction2. Principles of NMR Imaging Systems3. Free Induction Decay4. Fourier Transform of the FID5. The Bloch Equation6. Image Reconstruction Techniques7. Sequential Point Method8. Discrimination Based on Relaxation Rates9. Spin-echo Imaging Technique10. Basic NMR Components11. RF Transmitter System12. Gradient System for Spatial Coding13. Contrast Enhancement14. Patient CouchUltrasonic Imaging Systems1. Introduction2. Velocity of Propagation3. Generation and detection of Ultrasound4. Active Element Diameter5. Medical Ultrasound6. Pulse Repetition Frequency Generator7. Transmitter-Receiver Matching8. Applications of A-Scan9. B-Scanner using Articulated Arm10. Mechanical Sector Scanner11. Multi-Element Linear Array Scanners12. Duplex Scanner13. Display Devices for Ultrasonic Imaging14. Three-dimensional Display
  • 113. 15. Biological Effects of UltrasoundMedical Thermograph1. Introduction2. Infrared Radiation3. Transmittance and absorption of infrared radiation4. Thermographic equipment5. Sensitivity of Thermographic Imaging System6. Quantitative Medical Thermograph7. The Software {SOFTA, CAM AT, GAMOS)8. Pyroelectric vidicon camera9. Applications of thermographyMANUFACTURING MANAGEMENT AND SAFETY OF MEDICAL EQUIPMENTSInterference to Medical Electronic Equipment1. Introduction2. Types of Sources of EMI3. EMI Effects4. Intermodulation Problems5. Some solutions6. Halfwave shorting stub7. Dealing with TVI8. Dealing with signal overload problems9. Attenuators10. Wavetraps11. Bandstop wavetrap12. High-pass filters13. ECG equipment and EMI14. EMI to biomedical sensors15. Some solutions
  • 114. Quality Assurance & Quality Improvement1. Introduction2. The theory of variation3. Creating a histogram4. Using histograms in quality control5. Interpreting QC histograms6. Analyzing control charts7. TQM, ISO-9000, and Six-Sigma8. Total quality managementMedical Equipment Maintenance , Management Facilities, and Equipment1. Introduction2. Types of MROs3. Levels of Capability4. Types of Organization5. Commercial MROs6. Single-technician department7. Technical personnel8. Management approachesRequirements Management1. Introduction2. Some definitions3. Why are requirements important?4. What types of requirements are there?5. Requirements application6. Traceable7. How are good requirements written?8. Unintended consequences9. Approaches to requirements
  • 115. Electrical Safety in Medical Environment1. Introduction2. Scope of electrical safety in medical institutions3. Major organizations4. Preventive maintenance to reduce electrical hazards5. Physiological effects of electricity on humans6. Leakage current7. Current Definitions8. Line isolation systems9. Equipotential grounding in reducing electrical shock10. Specialized electrical safety test equipment11. Weighted risk current measurementElectrosurgery Generators1. Electrosurgery machines2. Electrosurgery circuits3. Solid-state electrosurgery generator circuits4. Electrosurgery safetyNOICE SCREENING AND MANAGEMENTBasic Theories of Measurement1. Categories of measurement2. Direct measurement3. Indirect measurement4. Null measurements5. Factors in making measurements6. Reliability and repeatability7. Accuracy and precision8. Measurement errors
  • 116. 9. Error contributions analysis10. Operational definitions in measurementNoise1. Introduction2. Atmospheric Noise3. Extraterrestrial Noise4. Industrial Noise5. Internal Noise6. Thermal Agitation Noise7. Short Noise8. Transit-Time Noise9. Miscellaneous Noise10. Noise CalculationsSignals and Noise1. Types of signals2. Static and quasistatic signals3. Fourier series4. Transient signals5. Signal-to-noise ratio6. Noise temperature7. Using feedback to reduce noise8. Noise reduction by signal averaging
  • 117. Computerized Process Control System (ET23)Audience: Students of Electronics EngineeringObjective: : At the end of the course the student will learn about distributed control systems,architecture of process control units, man machine interface.ContentsDistributed Control Systems1. Reasons for Instrumentation2. Categories of Instruments3. Analog vs Digital4. Control Using Computers5. Distributed Control Concepts6. Process Control and Process Management7. Hardware of a Distributed Control SystemArchitecture of Process Control Units1. Introduction2. Types of Process Control Units3. DCS with single-loop controllers only4. DCS with both single-loop and multi-loop controllers5. Structure of Process Control Units6. Process input cards for Analog Input Signals7. Process output cards for analog output signals8. Digital Input Processing9. Digital output Processing10. Redundancy Aspects11. Intrinsic safe operation of controllers12. Analog Controllers13. Digital Controller
  • 118. Man - Machine Interface1. Introduction2. The operator Station Structure3. Functions of the Operator Station
  • 119. Industrial Automation (ET24)Audience: Students of Electronics EngineeringObjective: At the end of the course the student will learn about basics of industrial automation,various types of control, robotic mechanism, etc.ContentsIntroduction to Industrial Automation1. Introduction2. Industrial Communication Networks3. Transmission Media4. Transmission MethodsIntroduction to Sensors & Measurement Systems1. Introduction2. Position and Speed Measurements3. Proximity Sensors and Switches4. Linear Variable Differential Transformer5. Digital Optical Encoder6. Electrical Resistance Strain Gage7. Measuring Resistance Changes8. Force Measurement with Load Cells9. Liquid-in-Glass Thermometer10. Electrical Resistance Thermometer11. Piezoelectric Accelerometer12. Introduction to Temperature Measurement13. Sources of temperature measurement error14. Pressure and Force Measurement15. Displacement and Speed Measurement16. Rotary Variable Differential Transformer
  • 120. Signal Conditioning and Processing1. Introduction2. Unbalanced D.C. Bridge3. Push-pull Configuration4. Capacitance Amplifier5. Amplifiers6. Errors and Calibration Introduction7. Systematic Errors8. Calibration and error reductionIntroduction to Process Control1. Introduction2. The Control Objectives3. Example - Satellite altitude control system4. Feedback Control System Characteristics5. The Case for High-Gain Feedback6. Proportional Mode of Feedback Control7. Integral Mode of Feedback Control8. Derivative Mode of Feedback Control9. Alternative Control Configurations10. Command Feedforward11. Controller Tuning12. Proportional Controller13. Functions of a PID Controller14. Adjustment Features in Industrial Controllers15. Practical Controller Tuning Tips16. Integrating Processes17. Tuning Rules for Digital Controllers
  • 121. Sequence Control, PLCs and RLL1. Programmable Logic Control2. Industrial Example of Discrete Sensors3. Comparing Logic and Sequence Control4. Evolution of the PLC5. Application Areas6. Special Purpose Modules7. The Software Environment and Programming8. Programming Languages9. Typical Operands of PLC Programs10. Realization of off-delay timer11. Operation Set12. Requirements Analysis13. Design of RLL Program14. Function Block Diagram (FBD)15. Divergence of a Selective Sequence16. The PLC Hardware EnvironmentControl of Machine Tools1. Fundamentals of C.N.C2. CNC Lathe (Horizontal Type)3. Direct Measurement4. Hydraulics5. PneumaticsElectric Drives1. Learning Objectives2. Concept of Electric Drive3. Single Phase DC Drives4. Single-phase Half-wave Converter Drives5. Single-phase Semiconverter Drives
  • 122. 6. Three-phase half-wave converter drives7. Three-phase Full-converter Drives8. Three-phase Dual Converter Drives9. Chopper Drives10. Two-quadrant Chopper Drives11. Induction-Motor Drives12. Stator Voltage and Frequency Control13. Analysis of induction motor with choppercontrol14. Synchronous Motor–General15. Synchronous Motor with Different Excitations16. Different Torques of a Synchronous Motor17. Salient Pole Synchronous Motor18. Hunting or Surging or Phase SwingingNetworking of Sensors, Actuators & Fieldbus1. Introduction2. Motivations for the Fieldbus3. Fieldbus Topology4. The Physical Layer5. The Data Link Layer6. The Link Active Scheduler (LAS)7. Acyclic/Unscheduled Communication8. The Fieldbus Message Sublayer (FMS)9. Realisation of Distributed Control FunctionsIntroduction to Robotics1. Automation2. Subsystems in Robot3. The Robot Control
  • 123. 4. Manipulators5. Main bodies type6. The End Effectors7. Transmission Types8. Tasks Planning for robots9. Part selection by cameraRobotics Mechanisms1. Introduction2. Forward or direct kinematics3. Accuracy & repeatability of EE of manipulator4. Mechanism analysis5. Spatial Manipulators6. Transmission Angle7. Decoupling of motion8. Grippers in manipulatorsActuators for Robots1. Drives in Manipulators2. DC servo motor selection for intermittent3. AC ServomotorsTrajectory Planning1. Introduction2. Continuous trajectories3. Cubic Fit for Two Given Positions4. AC Servomotors5. Condition6. Use of Higher Degree Polynomials
  • 124. Robot Manipulators Kinematics1. Introduction2. Specifying position & orientation of rigid bodies3. Euler Angles4. Fixed frame rotation5. Homogenous CoordinatesRobot Dynamics & Control1. Fundamentals of Dynamics2. Dynamical Equation3. Inertia4. Coriolis component of acceleration5. Why Coriolis component of acceleration Exist6. Why to study Robot Dynamics & Control7. Micro-sensors8. Fabrication Sequence of Magnetic Microactuator9. Lagrangian Formulation for 2-R Manipulator10. Introduction to ControlActurator Dynamics & PD, PID Control1. Actuator dynamics2. Types of Servo-Motors3. Information about Control Strategies4. Control Strategy for PD control5. Equivalent Spring-Mass-Damper system
  • 125. Linear Integrated Circuits (ET25)Audience: Students of Third Year Electronics EngineeringObjective: : At the end of the course the student will learn about operational amplifiers and theirapplications, instrumentation amplifiers, analog to digital and digital to analog converters, signalgenerators, phase locked loop, log and analog operational amplifiers, voltage regulators.ContentsOperational Amplifiers1. Introduction2. Amplifier Fundamentals3. Op-Amp Symbols and Terminals4. Block Schematic of Op-Amp5. Basics of Differential Amplifier6. Transistorised Differential Amplifier7. Common Mode Operation8. Configurations of Differential Amplifier9. Constant Current Bias10. Improving Differential Voltage11. Output Stage in Op-Amp12. Open Loop Configuration of Op-Amp13. Important Op-Amp Parameters14. Bias Current and Offset Voltage Compensation15. Frequency Response of an Op- Amp16. Concept of Frequency Compensation17. Internal Compensation TechniqueApplications of OP-AMP1. Introduction2. Inverting Amplifier3. Non-Inverting Amplifier4. Voltage Follower
  • 126. 5. Summer or Adder Circuit6. Non-inverting Summing Amplifier7. Subtractor or Difference Amplifier8. Op-Amp Integrator9. Practical Integrator10. Summing Integrator11. Op-Amp Differentiator12. Input and Output Waveforms13. Practical Differentiator14. Applications of Practical DifferentiatorInstrumentation Amplifiers1. Introduction2. Requirements of a good Instrumentation Amplifier3. Difference Amplifier Using Op-Amp4. Modified Difference Amplifier5. Instrumentation Amplifier with Two Op-Amps6. Three Op-Amp Instrumentation Amplifier7. Instrumentation Amplifier with Active Guard Drive8. Digitally Programmable Instrumentation Amplifier9. Current Output Instrumentation Amplifier10. Instrumentation Amplifier Using Transducer Bridge11. Applications of Instrumentation Amplifier12. Temperature IndicatorA/D and D/A Converters1. Introduction2. Digital to Analog Converter3. DAC Characteristics4. Binary Weighted Resistor D/A Converter
  • 127. 5. Inverted R/2R Ladder D/A Converter6. Quantization Error7. Successive Approximation A/D Converter8. Flash A/D Converters9. Dual Slope A/D Converter10. Sample and Hold Circuits11. Performance Parameters of S/H CircuitsSignal Generators1. Introduction2. Multivibrators Using Timer IC 5553. Applications of Monostable Multivibrator4. Applications of A stable Multivibrator5. Multivibrators Using Op-Amps6. Sinusoidal Generators7. Triangular Wave Generator8. Sawtooth Wave Generator9. Function Generator IC 803810. Typical ConnectionPhase Locked Loop1. Introduction2. Basic Pll Operation3. Important Definitions Related to PLL4. Transfer Characteristics of PLL5. Monolithic Phase-Locked Loops IC 5656. 565 PLL Applications7. Frequency Synthesizer8. FM Detector9. Frequency Shift Keying (FSK) Demodulator10. AM Detection
  • 128. 11. Frequency TranslationLog and Antilog OP-AMP Amplifiers1. Introduction2. Fundamentals of Log Amplifiers3. Basic Log Amplifier Using Diode4. Basic Log Amplifier Using Transistor5. Temperature Compensated log Amplifier6. Stability Considerations7. Antilog Amplifier8. Basic Antilog Amplifier Using Diode9. Basic Antilog Amplifier Using Transistor10. Temperature compensation antilog amplifier11. Log ratio Amplifier12. Analog Voltage Multiplier Circuit13. Analog Voltage Divider Circuit14. Multiplier Integrated Circuit15. Performance Parameters of Multiplier16. Applications of Multiplier17. Phase Angle Detection Using Multiplier18. Multiplier TechniquesVoltage Regulators1. Introduction2. Factors Affecting the Load Voltage3. Shunt Voltage Regulator4. Transistor Shunt Regulator5. Shunt Regulator Using Op-Amp6. Emitter Follower Series Voltage Regulator7. IC voltage regulators
  • 129. 8. Three Terminal Fixed Voltage Regulators9. IC Series of Three Terminal Regulators10. Limitations of Linear Voltage Regulators11. Step Down Switching Regulator
  • 130. Numerical Methods and Computational Techniques (EE05)Audience: Students of Second Year Electronics EngineeringObjective: At the end of the course the student will learn about various types of numerical methodsand computational techniques.ContentsLinear Systems of Equations & Matrix Computations1. Introduction2. Direct Methods for Solving Linear Systems of EQUATIONSGauss Elimination Method with Partial Pivoting1. Introduction2. Gauss Elimination methodDeterminant Evaluation1. Introduction2. Gauss Jordan Method3. LU DecompositionsDoolittle’s LU Decomposition1. IntroductionDoolittiles Method with Row Interchanges1. Introduction2. Stage 1: Rows of UIterative Methods for S. L. S. of Equations1. Introduction2. Jacobi Iteration3. Introduction4. Examples
  • 131. Gauss - Seidel Method1. Introduction2. ExamplesSuccessive Overrelaxation (SOR) Method1. Introduction2. SOR scheme3. ExamplesReview of Properties of Eigenvalues & Eigenvectors1. Introduction2. Eigen value3. PropertiesSimilar Matrices1. Introduction2. ExamplesHermitian Matrices1. Introduction2. ExamplesGramm – Schmidt Orthonormalization1. Introduction2. Examples3. Characteristic PolynomialVector and Matrix Norms1. Introduction2. Examples
  • 132. 3. Definition4. Matrix normsEigen Value Computations1. Introduction2. Examples3. ComputationEigenvalues of a Real Symmetric Tridiagonal Matrix1. IntroductionTridiagonalization of a Real Symmetric Matrix1. Introduction2. ExamplesJacobi Iteration for Finding E. of a R. S. M.1. Introduction2. ExamplesThe Q R decomposition1. Introduction2. Examples