Elben Shira
@UT
@NI
AD*
Anytime D*
Anytime Dynamic A*
Anytime Dynamic A*
Plan first, optimize second.
Anytime Dynamic A*
     Use previous knowledge.
Anytime Dynamic A*
             I have no idea.
Advantages

fast (sometimes)
      lazy
    proven
Disadvantages

         heavy
   slow (sometimes)
sub-optimal (sometimes)
      complicated
Terminology
Example
1   2   2   1
1   1   2   1
2   2   1   2
2   2   1   1
1   2   2   1   0   2   4   5
1   1   2   1   1   2   4   5
2   2   1   2   3   4   5   7
2   2   1   1   5   6   6   7
1   2   2   1   0   2   4   5
1   1   2   1   1   2   4   5
2   2   1   2   3   4   5   7
2   2   1   1   5   6   6   7
1   2   2   1   0   2   4   5
1   1   1   1   1   2   4   5
2   2   1   2   3   4   5   7
2   2   1   1   5   6   6   7
1   2   2   1   0   2   4   5
1   1   1   1   1   2   4   5
2   2   1   2   3   4   5   7
2   2   1   1   5   6   6   7
1   2   2   1   0   2   4   5
1   1   1   1   1   2   3   4
2   2   1   2   3   4   4   6
2   2   1   1   5   6   5   6
1   2   2   1   0   2   4   5
1   1   1   1   1   2   3   4
2   2   1   2   3   4   4   6
2   2   1   1   5   6   5   6
1   2   2   1   0   2   4   5
1   1   1   1   1   2   3   4
2   4   1   2   3   4   4   6
2   2   1   1   5   6   5   6
1   2   2   1   0   2   4   5
1   1   1   1   1   2   3   4
2   4   1   2   3   6   4   6
2   2   1   1   5   7   5   6
1   2   2   1   0   2   4   5
1   1   1   1   1   2   3   4
2   4   1   2   3   6   4   6
2   2   1   1   5   7   5   6
Some other things.
backwards
back pointers
 overhauling
Demo
What's Left
more tests
optimize
Wisdom Captured
Build relationships.
Software Development

    Know the Theory
     Write the Tests
         Code
I'm in the right field.
Sneak Peek
Questions?
Anytime Dynamic A*
Anytime Dynamic A*
Anytime Dynamic A*
Anytime Dynamic A*
Anytime Dynamic A*
Anytime Dynamic A*
Upcoming SlideShare
Loading in...5
×

Anytime Dynamic A*

720
-1

Published on

My a talk at the end of my internship at National Instruments. Describes the search algorithm Anytime Dynamic A* and my work involving it.

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
720
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
7
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Anytime Dynamic A*

  1. 1. Elben Shira
  2. 2. @UT
  3. 3. @NI
  4. 4. AD*
  5. 5. Anytime D*
  6. 6. Anytime Dynamic A*
  7. 7. Anytime Dynamic A* Plan first, optimize second.
  8. 8. Anytime Dynamic A* Use previous knowledge.
  9. 9. Anytime Dynamic A* I have no idea.
  10. 10. Advantages fast (sometimes) lazy proven
  11. 11. Disadvantages heavy slow (sometimes) sub-optimal (sometimes) complicated
  12. 12. Terminology
  13. 13. Example
  14. 14. 1 2 2 1 1 1 2 1 2 2 1 2 2 2 1 1
  15. 15. 1 2 2 1 0 2 4 5 1 1 2 1 1 2 4 5 2 2 1 2 3 4 5 7 2 2 1 1 5 6 6 7
  16. 16. 1 2 2 1 0 2 4 5 1 1 2 1 1 2 4 5 2 2 1 2 3 4 5 7 2 2 1 1 5 6 6 7
  17. 17. 1 2 2 1 0 2 4 5 1 1 1 1 1 2 4 5 2 2 1 2 3 4 5 7 2 2 1 1 5 6 6 7
  18. 18. 1 2 2 1 0 2 4 5 1 1 1 1 1 2 4 5 2 2 1 2 3 4 5 7 2 2 1 1 5 6 6 7
  19. 19. 1 2 2 1 0 2 4 5 1 1 1 1 1 2 3 4 2 2 1 2 3 4 4 6 2 2 1 1 5 6 5 6
  20. 20. 1 2 2 1 0 2 4 5 1 1 1 1 1 2 3 4 2 2 1 2 3 4 4 6 2 2 1 1 5 6 5 6
  21. 21. 1 2 2 1 0 2 4 5 1 1 1 1 1 2 3 4 2 4 1 2 3 4 4 6 2 2 1 1 5 6 5 6
  22. 22. 1 2 2 1 0 2 4 5 1 1 1 1 1 2 3 4 2 4 1 2 3 6 4 6 2 2 1 1 5 7 5 6
  23. 23. 1 2 2 1 0 2 4 5 1 1 1 1 1 2 3 4 2 4 1 2 3 6 4 6 2 2 1 1 5 7 5 6
  24. 24. Some other things.
  25. 25. backwards back pointers overhauling
  26. 26. Demo
  27. 27. What's Left
  28. 28. more tests optimize
  29. 29. Wisdom Captured
  30. 30. Build relationships.
  31. 31. Software Development Know the Theory Write the Tests Code
  32. 32. I'm in the right field.
  33. 33. Sneak Peek
  34. 34. Questions?
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×