Triz Overview V 1 2


Published on

Inventive Problem Solving Overview.

  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Triz Overview V 1 2

  1. 1. TRIZ  TRIZ Theory of Inventive Problem  Solving An Overview E.H. Gillespie April 19, 2010 April 19, 2010
  2. 2. What If? What If? • What is in this book? What is in this book? • W ld i h l Would it help you to  have a method to find  solutions for difficult  l ti f diffi lt problems with a better  chance of success? h f ?
  3. 3. What is TRIZ? What is TRIZ? • TRIZ is a Russian acronym standing for  “Theory of Inventive Problem Solving” Theory of Inventive Problem Solving • TRIZ … – Is a systematic structured way of thinking Is a systematic, structured way of thinking. – Captures the science of technological evolution. –H l b k Helps break psychological inertia. h l i li i – Focuses on generating innovative concepts
  4. 4. How can TRIZ help me? How can TRIZ help me? • TRIZ can help TRIZ can help  – Solve current technical problems. – A hi Achieve significant cost reductions. i ifi t t d ti – Produce breakthrough new products. – Produce intellectual property outright and/or  / avoid intellectual property conflicts with others. –FForecast technological development. tt h l i ld l t
  5. 5. But it may be hard to help  some folks.... f
  6. 6. Acknowledgement I am deeply indebted to Awad Gharib of Danaher  Tool Group who trained and mentored me on this  l h i d d d hi subject.  His teachings and synthesis of other  references were invaluable in the preparation of  references were invaluable in the preparation of this presentation.
  7. 7. Where are we headed? Where are we headed? • TRIZ is a broad collection of tools and TRIZ is a broad collection of tools and  methods. • T d I l Today I plan to …. – Introduce the history and foundations of TRIZ. – Discuss how TRIZ fits into problem solving  processes, and – Illustrate the application of the fundamental tools  and techniques.
  8. 8. How do we solve problems? How do we solve problems? Problem  Limitations: Definition • Problem definition is often  haphazard. p Concept   • Concept development often  Development g grounded in trial and error. • Concepts tried are often biased  Verification by psychological inertia. – Prior knowledge & experience – Words Implementation – Pictures, objects & images
  9. 9. The Origin of TRIZ The Origin of TRIZ • Genrich S. Altschuller is Genrich S. Altschuller is  considered the father of TRIZ. • As a patent clerk in 1946  p initiated a study of inventive  patents. • He considered the history of  the successful products and  technologies. h l Genrich S. Altshuller (1926 ‐ 1998)   The father of TRIZ
  10. 10. Altshuller s Work Altshuller’s Work • Studied 200 000 patents worldwide Studied 200,000 patents worldwide. • Identified 40,000 “inventive” patents • Key contributions: – Levels  of invention – Patterns of invention – Definition of inventive problem – Patterns of evolution – Algorithm for inventive problem solving (ARIZ)  g p g( )
  11. 11. Levels of Invention Levels of Invention • Level 5: Discovery – Pioneering of an essentially new system f ll – New Science • Level 4: Invention outside the paradigm p g – New generation of system based on changing the principle  novation performing the primary function – Solution derived from science, not technology. • Level 3: Invention inside the paradigm Level 3: Invention inside the paradigm creasing Inn – Essential improvement of an existing system – Methods from other fields. Inc • Level 2: Improvement L l2 I – Small improvements of an existing system, usually with  compromise – Methods from the same industry • Level 1: Apparent solution (no invention) – Established solutions – well known and readily available
  12. 12. Distribution of Inventions by Level Distribution of Inventions by Level
  13. 13. Patterns of Invention Patterns of Invention • Altschuller noted that different patents in different noted that different patents in different  technological areas (often years apart) often reflect the  same “solution”. • These fundamental solutions are called “operators” • For example, patents were issued for … – Shelling sunflower seeds Shelling s nflo er seeds – Coring bell peppers – Cleaning filters g – Splitting diamonds (27 years after sunflower seeds) – The operator ‐ all of these solutions involve slowly  increasing and then rapidly decreasing pressure increasing and then rapidly decreasing pressure
  14. 14. Operator Example  Operator Example ‐ Mathematics Abstract  Problem Abstract Solution aX2 + bX + c = 0 X = (‐b +/‐ (b2 – 4ac)1/2)/2a ( / ( ) )/ Specific  Problem Specific Solutions 3X2 + 5X  + 2 = 0 1.5  &  .5 Trial & Error
  15. 15. Altshuller s Contribution Altshuller’s Contribution Operators p The World’s Problems The World’s Solutions Abstraction Specialization My Problem My Solution Trial & Error
  16. 16. Primary Assumptions for TRIZ Primary Assumptions for TRIZ • Technological systems don’t evolve randomly Technological systems don t evolve randomly  but according to objective patterns. • These patterns can be revealed from patents These patterns can be revealed from patents  and can be purposely applied without  numerous blind trials.  numerous blind trials “Inventive problems can be codified classified Inventive problems can be codified, classified  and solved methodically, just like other  engineering problems. engineering problems ” ‐ G. S. Altshuller
  17. 17. TRIZ Process TRIZ Process Problem  Problem  Problem  Evaluate  Definition Classification Solving  Concepts • State initial  • Detection/  • Contradiction  situation Measurement Matrix • Analyze  Implementation • Conflict • Separation  situation rules • Harmful  • Analyze  functions f ti Action • ARI ARIZ • Apply ideal  • Absent Action • Direct ways ways • Technological  • Indirect ways • Look for   Forecast • Special ways Special ways contradictions
  18. 18. Initial Situation Initial Situation • Necessary to pull out knowledge base from diverse  perspectives and align team members • Use a structured template – State objective St t bj ti – Develop problem statements, known solutions, and history. – State the purpose of system p p y – Define system, sub‐systems, and super‐system – System environment – Resources (functional, materials, fields, space, information…) (f l l f ld f ) – Constraints – Evaluation criteria Evaluation criteria • As many as 25% of problems are “solved” at this stage
  19. 19. Function Analysis Function Analysis • One technique to break psychological inertia One technique to break psychological inertia. • Helps discriminate between “What” (function)  and  Why (reason) and “Why” (reason). • Helps understand how system works. • Sets up use of Ideal Ways Sets up use of Ideal Ways • Vehicle for knowledge transfer • Another 25% of problems are typically  “solved” at this stage.
  20. 20. Function Analysis Example Function Analysis Example
  21. 21. Substance‐Field (Su‐Field)  Diagrams Field Mech. Force Tool Object Useful Function Sharpener Pencil X Harmful Function The function of the sharpener is to sharpen the pencil
  22. 22. Function Dimensions Function Dimensions • Field Types Field Types • Function Types • Function Classes Function Types Function Classes – Mechanical – Useful – Basic – Thermal • Adequate – Secondary • Insufficient – Chemical – Auxiliary • Exceeding – Electrical • Assisting – Harmful • C Correcting ti – Magnetic – Absent – Detection or  – Acoustic Measurement Problem  Solving Cost  Fight  Reduction Inertia I ti
  23. 23. Consider the System Scale Consider the System Scale Function of Screw  Function of Blade  Function of Guide  Function of Graphite  Function of Wood 
  24. 24. Su field Diagrams Extended Su‐field Diagrams Extended Wood   W d Wood X Shavings Can also envision: •Lead tearing paper Pointed   •Line too fine Sharpener Paper •Line too broad •Line too broad Graphite X •Pencil dull Graphite   Graphite X Shavings
  25. 25. Ideality Value = Benefit / Cost / Ideality = Fu / (Fh + Fc ) Useful Functions Harmful Functions Cost Function If (Fh + Fc ) = 0 then  Ideality = Infinity The ideal system, sub‐system, or component does not exist  but its function is performed.
  26. 26. Ideal Ways Ideal Ways • Ideal Way #1 – Eliminate the need for the function of an item and,  l h df h f f d therefore, the item itself. • Ideal Way #2 Ideal Way #2 – Perform the function of the item but eliminate the  item itself. – Use resources to perform the function Use resources to perform the function. • Ideal Way #3 – Make the item itself eliminate a harmful action or Make the item itself eliminate a harmful action or  perform a new function without any complication or  deterioration. – Use resources to eliminate harm Use resources to eliminate harm.
  27. 27. Where Might  It End? Where Might It End?
  28. 28. Impact Universal Sockets Impact Universal Sockets • Older designs use pins  g p and blocks to transmit  torque at an angle.   These were failure  These were failure points. • Applying the TRIZ Applying the TRIZ  principle of ideal way #2  Block Pins led to the ability to  transmit torque at an  t it t t No Block  angle without blocks  & No Pins and pins. p
  29. 29. TRIZ Process TRIZ Process Problem  Problem  Problem  Evaluate  Definition Classification Solving  Concepts • State initial  • Detection/  • Contradiction  situation Measurement Matrix • Analyze  Implementation • Conflict • Separation  situation rules • Harmful  • Analyze  functions f ti Action • ARI ARIZ • Apply ideal  • Absent Action • Direct ways ways • Technological  • Indirect ways • Look for   Forecast • Special ways Special ways contradictions
  30. 30. Look For Contradictions Look For Contradictions • Defining characteristic of an inventive problem. • Conventional solution – Compromise/Trade‐off A B • Breaking contradictions typically leads to Breaking contradictions typically leads to  intellectual property.
  31. 31. Look For Contradictions Look For Contradictions • Contradictions can be classified as technical or  physical. – For technical contradictions improving one system  p g y characteristic causes another to deteriorate. • Increased acceleration  Greater fuel consumption • The contradiction matrix may be useful. – For physical contradictions a characteristic must be  present and absent. d b • A linkage needs to be rigid and flexible. •SSeparation rules are the tool of choice. ti l th t l f h i
  32. 32. The Contradiction Matrix The Contradiction Matrix • All too often…  – The only tool associated with TRIZ. – Applied prematurely and inappropriately. • Altshuller developed lists of 39 design parameters and  40 inventive principles (or operators).   • Altshuller then created a 39 X 39 matrix.  The rows  represent parameters that we want to change, and the  columns are parameters that might be in conflict. l t th t i ht b i fli t • Matrix intersections contain the inventive principles  that have been used to break the contradiction. that have been used to break the contradiction
  33. 33. Ratcheting Box Wrenches Ratcheting Box Wrenches • Using a traditional Using a traditional  box end wrench  in  a constrained area  can be slow. • A socket and  ratchet is typically  much faster but  much faster but may not fit.
  34. 34. The Contradiction Matrix The Contradiction Matrix 4. Length of stationary object: the linear  Parameter in Conflict measure of an object s length, height, or  measure of an object’s length, height, or 3 4 5 width in the direction for which no  ationary object moving object oving object observed  movement occurs. 25. Waste of time: increase in the  25 Waste of time: increase in the Area of mo Length of m Length of sta amount of time needed to complete  an action. 30, 24, , , Parameter to Improve e 24 Loss of information 1, 26 26 14, 5 30, 26 15, 2,    30, 24,  26, 4,     25 Waste of time 29 14, 5 5, 16 29, 14,  15, 14,  26 Amount of substance 35, 18 29 Potential operators to consider: Potential operators to consider: 30 ‐ Flexible film or thin membranes 14 ‐ Spheroidality 24 ‐ Mediator 5   ‐ Combining (integration)
  35. 35. Ratcheting Box Wrenches Ratcheting Box Wrenches • This contradiction can be eliminated by combining a This contradiction can be eliminated by combining a  box end profile with a ratcheting mechanism.
  36. 36. Contradiction Matrix Caveats Contradiction Matrix Caveats • DO NOT short circuit the problem definition step DO NOT short circuit the problem definition step. • Be sure to develop a thorough understanding of  the conflict(s) investigated. the conflict(s) investigated. • The design parameters and the inventive  p principles are worded generically and have  p g y particular definitions/descriptions. Use them! • Posing alternative contradictions may help. • Interpretation requires abstraction to go from  your case to a general case and specialization to  get back again. b k i
  37. 37. Conditions for Separation Rules Conditions for Separation Rules • F For physical contradictions, a characteristic  h i l t di ti h t i ti must be present and absent. • Contradictions exist only in time and space • To eliminate the contradiction, contradictory  requirements must be separated. • Separation rules work best for basic functions. Separation rules work best for basic functions.
  38. 38. Separation Rules Separation Rules • Consider: – Separation in Time –SSeparation in Space ti i S – Separation between components and the whole – Separation between parameters or upon  condition
  39. 39. Separation Rules Separation in Time The  Contradiction The “Contradiction” Separation in Space
  40. 40. Separation Between Parts & Whole Separation Between Parts & Whole A characteristic has one value at the system level and  A characteristic has one value at the system level and the opposite value at the component level. The chain is flexible but the link is rigid.  The chain is flexible but the link is rigid A characteristic exists at the system level  and does not exist at the component  and does not exist at the component level (or vice versa). Epoxy resin and hardener are liquids as  Epoxy resin and hardener are liquids as components but solidify when mixed. 
  41. 41. Separation Based on Condition Separation Based on Condition Characteristic is high under one  Characteristic is high under one condition and low under another. Flow is high with liquids and low for  Flow is high with liquids and low for solids. Characteristic is present under one  condition and absent under another. condition and absent under another. The circuit is closed with movement in  the room and open when there isn t. the room and open when there isn’t
  42. 42. ARIZ – Algorithm for Inventive  Problem Solving • The concepts studied thus far are very helpful The concepts studied thus far are very helpful  but can be perplexing for complex problems. • Altshuller (and later others) developed this Altshuller (and later others) developed this  algorithm to help users make informed  choices in applying the tools effectively. choices in applying the tools effectively • Each step is designed to modify the initial  understanding of a system to make getting to  d di f k i a solutions easier.
  43. 43. ARIZ – Algorithm for Inventive  Problem Solving • ARIZ consists of four parts : ARIZ consists of four parts. : – Part 1 – Formulation of system conflicts. – Part 2 Analysis of the system conflicts and Part 2 – Analysis of the system conflicts and  formulation of a mini‐problem. – Part 3 – Analysis of available resources Part 3 – Analysis of available resources. – Part 4 – Development of conceptual solutions. • Unfort natel a more detailed treatment ill Unfortunately a more detailed treatment will  have to wait for another day.
  44. 44. Where have we been? Where have we been? • We have We have …  – Introduced the history and foundations of TRIZ. – Di Discussed how TRIZ fits into problem solving  d h TRIZ fit i t bl l i processes, and – Introduced fundamental tools and techniques Introduced fundamental tools and techniques. • Function analysis • Ideal ways Ideal ways • Contradiction resolution • ARIZ
  45. 45. Questions? 5/5/2010 45
  46. 46. References • Fey, V., Rivin, E., Innovation on Demand – New  ey, ., , ., o at o o e a d e Product Development using TRIZ, Cambridge  University Press, Cambridge, UK, 2005 • Gharib, A., lecture notes, 2007 • Kaplan, S., An Introduction to TRIZ – The Russian  Theory of Inventive Problem Solving, Ideation  International, Inc., Southfield, MI, 2005 • T i k J Z Terninko, J., Zusman, A., Zlotin, B., Systematic  A Zl ti B S t ti Innovation – An introduction to TRIZ, St. Lucie  Press, Washington, D.C., 1998 Press Washington D C 1998