Bartter’S And Gittleman’S Syndromes


Published on

Dr Nirmala Baskaran

Published in: Health & Medicine
1 Comment
  • Details of Degeorge Syndrome

    Details of Degeorge Syndrome
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Bartter’S And Gittleman’S Syndromes

  1. 1. Bartter’s and Gitelman’s Syndromes Nirmala Baskaran Selayang Hospital
  2. 2. <ul><li>Inherited tubular defects </li></ul><ul><li>Autosomal recessive </li></ul><ul><li>Primary defect is impaired sodium reabsorption </li></ul><ul><li>Characteristic set of metabolic abnormalities: low K, metabolic alkalosis, high renin, high aldosterone, low Mg, hyperplastic juxtaglomerular apparatus. </li></ul>
  3. 3. Pathogenesis <ul><li>Tubular defect </li></ul><ul><li>--- > salt and water loss </li></ul><ul><li>--- > activation of the renin-angiotensin-aldosterone system </li></ul><ul><li>--- > hyperaldosteronism and increased distal flow </li></ul><ul><li>--- > enhanced K + and H + losses </li></ul><ul><li>--- > Low K + and metabolic alkalosis </li></ul>
  4. 4. Bartter’s Syndrome <ul><li>Defects of sodium reabsorption in the thick ascending limb of the LOH. </li></ul><ul><li>5 types, based on the underlying molecular defect. </li></ul>
  5. 6. Loop of Henle <ul><li>Generation and maintenance of the medullary osmotic gradient </li></ul><ul><li>Absorption of 40% Na and 25% water </li></ul><ul><li>Descending limb – highly water permeable aquaporin-1 </li></ul><ul><li>Thin ascending limb – passive Na absorption </li></ul><ul><li>Thick ascending limb – active Na absorption </li></ul>
  6. 10. Clinical presentation-Bartter’s <ul><li>Types 1 and 2 : Present early with severe symptoms (antenatal with maternal polyhydramnios, prematurity, nephrocalcinosis, severe volume depletion) </li></ul><ul><li>Type 3 : Milder sx, similar to Gitelman’s </li></ul><ul><li>Type 4 : Gene mutation -- > abnormal barttin ( a </li></ul><ul><li>beta-subunit of chloride channels in LOH and inner ear) --- > sensorineural deafness and renal failure </li></ul><ul><li>Type 5 : Mutation in the chloride channel itself. </li></ul>
  7. 11. The Role of Prostaglandins <ul><li>Renal overproduction of PGE2 </li></ul><ul><li>Impaired entry of chloride into the macula densa cells --- > increased COX2 expression --- > increased PGE2 </li></ul><ul><li>Directly stimulates renin release --- > hyperaldosteronism </li></ul><ul><li>Vasodilatation --- > normotension </li></ul><ul><li>Not significant in Gitelman’s </li></ul>
  8. 12. Gitelman’s Syndrome <ul><li>Primary defect in the thiazide-sensitive Na:Cl cotransporter in the DCT </li></ul><ul><li>Some heterogenecity from mutations in the genes for Cl channels </li></ul><ul><li>More benign condition </li></ul><ul><li>Presents in late childhood or adulthood </li></ul>
  9. 13. Ion transport in DCT
  10. 14. <ul><li>DCT : Only 7% of NaCl reabsorption --- > less significant volume loss </li></ul><ul><li>Decreased intracellular Na activates the basolateral Na:Ca exchanger --- > hypocalciuria +/- hyperMguria --- > more fatigue, cramps </li></ul>
  11. 16. Phenotypic variations <ul><li>Intrafamilial phenotype variability in Gitelman’s due to increase number and conductance of Cl channel in other area. Am J of Kidney Ds 2004,43:304-12 </li></ul><ul><li>Post-transcriptional compensation in heterozygotes with regulated increase in movement of cytoplasmic protein to luminal membrane. J Am Soc Nephrol 2002,13:604-10 </li></ul><ul><li>Mutants with residual transport activity. J Am Soc Nephrol 2006,17:2136-42 </li></ul><ul><li>ROMK mutants with hyperprostaglandin E syndrome. KI 2001,59:1803-11 </li></ul>
  12. 17. Differential diagnosis <ul><li>Primary hyperaldosteronism – low renin, high BP </li></ul><ul><li>Vomiting/bulemia – low urine chloride (<20meq/L) </li></ul><ul><li>Diuretic use – history, urine chloride, urine diuretic assay </li></ul><ul><li>Autosomal dominant hypocalcemia – due to a gain-of-function mutation in the CaSR (---> inhibits luminal K channel in the TAL) – low Ca, Mg </li></ul><ul><li>Gentamicin-indued – due to activation of the CaSR, resolves 2-6/52 after stopping Rx </li></ul>
  13. 18. Urinary Calcium <ul><li>Can be useful in differentiating between Bartter’s and Gitelman’s. J Pediatr 1992;120:38-43, Bettinelli A et al </li></ul><ul><li>Urinary Ca:Creatinine ratio > 0.20 -- > B </li></ul><ul><li>< 0.20 -- > G </li></ul><ul><li>Not always reliable as </li></ul><ul><li>Persistent low K --- > secondary medullary damage and reduced Ca excretion </li></ul><ul><li>Treatment of hypokalemia corrects hypercalciuria in B </li></ul>
  14. 19. Treatment <ul><li>The tubular defect cannot be corrected </li></ul><ul><li>Rx aims at: </li></ul><ul><li>1) block PGE2 (Indomethacin) </li></ul><ul><li>2) block aldosterone (Spiranolactone) </li></ul><ul><li>3) replace K and Mg </li></ul><ul><li>Combinations of NSAIDs and pottassium-sparing diuretics </li></ul><ul><li>ACE inhibitors useful , transient hypotension, some deterioration in GFR </li></ul>
  15. 20. Chemical chaparones <ul><li>Aim to up-regulate number or function of remaining transporters. </li></ul><ul><li>Glycerol </li></ul><ul><li>4-phenylbutyrate, a transcriptional regulator </li></ul><ul><li>Thapsigangin, a specific inhibitor of sarco-endoplasmic reticulum Ca-ATPase --- > increases expression of wild-type hNCC </li></ul>