Your SlideShare is downloading. ×

Network traffic classification using correlation information

175

Published on

Final Year IEEE Projects, Final Year Projects, Academic Final Year Projects, Academic Final Year IEEE Projects, Academic Final Year IEEE Projects 2013, Academic Final Year IEEE Projects 2014, IEEE …

Final Year IEEE Projects, Final Year Projects, Academic Final Year Projects, Academic Final Year IEEE Projects, Academic Final Year IEEE Projects 2013, Academic Final Year IEEE Projects 2014, IEEE JAVA, .NET Projects, 2013 IEEE JAVA, .NET Projects, 2013 IEEE JAVA, .NET Projects in Chennai, 2013 IEEE JAVA, .NET Projects in Trichy, 2013 IEEE JAVA, .NET Projects in Karur, 2013 IEEE JAVA, .NET Projects in Erode, 2013 IEEE JAVA, .NET Projects in Madurai, 2013 IEEE JAVA, .NET Projects in Salem, 2013 IEEE JAVA, .NET Projects in Coimbatore, 2013 IEEE JAVA, .NET Projects in Tirupur, 2013 IEEE JAVA, .NET Projects in Bangalore, 2013 IEEE JAVA, .NET Projects in Hydrabad, 2013 IEEE JAVA, .NET Projects in Kerala, 2013 IEEE JAVA, .NET Projects in Namakkal, IEEE JAVA, .NET Image Processing, IEEE JAVA, .NET Face Recognition, IEEE JAVA, .NET Face Detection, IEEE JAVA, .NET Brain Tumour, IEEE JAVA, .NET Iris Recognition, IEEE JAVA, .NET Image Segmentation, Final Year JAVA, .NET Projects in Pondichery, Final Year JAVA, .NET Projects in Tamilnadu, Final Year JAVA, .NET Projects in Chennai, Final Year JAVA, .NET Projects in Trichy, Final Year JAVA, .NET Projects in Erode, Final Year JAVA, .NET Projects in Karur, Final Year JAVA, .NET Projects in Coimbatore, Final Year JAVA, .NET Projects in Tirunelveli, Final Year JAVA, .NET Projects in Madurai, Final Year JAVA, .NET Projects in Salem, Final Year JAVA, .NET Projects in Tirupur, Final Year JAVA, .NET Projects in Namakkal, Final Year JAVA, .NET Projects in Tanjore, Final Year JAVA, .NET Projects in Coimbatore, Final Year JAVA, .NET Projects in Bangalore, Final Year JAVA, .NET Projects in Hydrabad, Final Year JAVA, .NET Projects in Kerala, Final Year JAVA, .NET IEEE Projects in Pondichery, Final Year JAVA, .NET IEEE Projects in Tamilnadu, Final Year JAVA, .NET IEEE Projects in Chennai, Final Year JAVA, .NET IEEE Projects in Trichy, Final Year JAVA, .NET IEEE Projects in Erode, Final Year JAVA, .NET IEEE Projects in Karur, Final Year JAVA, .NET IEEE Projects in Coimbatore, Final Year JAVA, .NET IEEE Projects in Tirunelveli, Final Year JAVA, .NET IEEE Projects in Madurai, Final Year JAVA, .NET IEEE Projects in Salem, Final Year JAVA, .NET IEEE Projects in Tirupur, Final Year JAVA, .NET IEEE Projects in Namakkal, Final Year JAVA, .NET IEEE Projects in Tanjore, Final Year JAVA, .NET IEEE Projects in Coimbatore, Final Year JAVA, .NET IEEE Projects in Bangalore, Final Year JAVA, .NET IEEE Projects in Hydrabad, Final Year JAVA, .NET IEEE Projects in Kerala, Final Year IEEE MATLAB Projects, Final Year Projects, Academic Final Year Projects, Academic Final Year IEEE MATLAB Projects, Academic Final Year IEEE MATLAB Projects 2013, Academic Final Year IEEE MATLAB Projects 2014, IEEE MATLAB Projects, 2013 IEEE MATLAB Projects, 2013 IEEE MATLAB Projects in Chennai, 2013 IEEE MATLAB Projects in Trichy, 2013 IEEE MATLAB Projects in Karur, 2013 IEEE MATLAB Projects in Erode, 2013 IEEE MATLAB Projects in Madurai, 2013 IEEE MATLAB

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
175
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
6
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. NETWORK TRAFFIC CLASSIFICATION USING CORRELATION INFORMATION ABSTRACT: Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent research tends to apply machine learning techniques to flow statistical feature based classification methods. The nearest neighbor (NN)-based method has exhibited superior classification performance. It also has several important advantages, such as no requirements of training procedure, no risk of overfitting of parameters, and naturally being able to handle a huge number of classes. However, the performance of NN classifier can be severely affected if the size of training data is small. In this paper, we propose a novel nonparametric approach for traffic classification, which can improve the classification performance effectively by incorporating correlated information into the classification process. We analyze the new classification approach and its performance benefit from both theoretical and empirical perspectives. A large number of experiments are carried out on two real-world traffic data sets to validate the proposed approach. The results show the traffic classification performance can be improved significantly even under the extreme difficult circumstance of very few training samples. ECWAY TECHNOLOGIES IEEE PROJECTS & SOFTWARE DEVELOPMENTS OUR OFFICES @ CHENNAI / TRICHY / KARUR / ERODE / MADURAI / SALEM / COIMBATORE CELL: +91 98949 17187, +91 875487 2111 / 3111 / 4111 / 5111 / 6111 VISIT: www.ecwayprojects.com MAIL TO: ecwaytechnologies@gmail.com

×