Fast channel zapping with destination oriented multicast for ip video delivery

96 views
61 views

Published on

Final Year IEEE Projects, Final Year Projects, Academic Final Year Projects, Academic Final Year IEEE Projects, Academic Final Year IEEE Projects 2013, Academic Final Year IEEE Projects 2014, IEEE JAVA, .NET Projects, 2013 IEEE JAVA, .NET Projects, 2013 IEEE JAVA, .NET Projects in Chennai, 2013 IEEE JAVA, .NET Projects in Trichy, 2013 IEEE JAVA, .NET Projects in Karur, 2013 IEEE JAVA, .NET Projects in Erode, 2013 IEEE JAVA, .NET Projects in Madurai, 2013 IEEE JAVA, .NET Projects in Salem, 2013 IEEE JAVA, .NET Projects in Coimbatore, 2013 IEEE JAVA, .NET Projects in Tirupur, 2013 IEEE JAVA, .NET Projects in Bangalore, 2013 IEEE JAVA, .NET Projects in Hydrabad, 2013 IEEE JAVA, .NET Projects in Kerala, 2013 IEEE JAVA, .NET Projects in Namakkal, IEEE JAVA, .NET Image Processing, IEEE JAVA, .NET Face Recognition, IEEE JAVA, .NET Face Detection, IEEE JAVA, .NET Brain Tumour, IEEE JAVA, .NET Iris Recognition, IEEE JAVA, .NET Image Segmentation, Final Year JAVA, .NET Projects in Pondichery, Final Year JAVA, .NET Projects in Tamilnadu, Final Year JAVA, .NET Projects in Chennai, Final Year JAVA, .NET Projects in Trichy, Final Year JAVA, .NET Projects in Erode, Final Year JAVA, .NET Projects in Karur, Final Year JAVA, .NET Projects in Coimbatore, Final Year JAVA, .NET Projects in Tirunelveli, Final Year JAVA, .NET Projects in Madurai, Final Year JAVA, .NET Projects in Salem, Final Year JAVA, .NET Projects in Tirupur, Final Year JAVA, .NET Projects in Namakkal, Final Year JAVA, .NET Projects in Tanjore, Final Year JAVA, .NET Projects in Coimbatore, Final Year JAVA, .NET Projects in Bangalore, Final Year JAVA, .NET Projects in Hydrabad, Final Year JAVA, .NET Projects in Kerala, Final Year JAVA, .NET IEEE Projects in Pondichery, Final Year JAVA, .NET IEEE Projects in Tamilnadu, Final Year JAVA, .NET IEEE Projects in Chennai, Final Year JAVA, .NET IEEE Projects in Trichy, Final Year JAVA, .NET IEEE Projects in Erode, Final Year JAVA, .NET IEEE Projects in Karur, Final Year JAVA, .NET IEEE Projects in Coimbatore, Final Year JAVA, .NET IEEE Projects in Tirunelveli, Final Year JAVA, .NET IEEE Projects in Madurai, Final Year JAVA, .NET IEEE Projects in Salem, Final Year JAVA, .NET IEEE Projects in Tirupur, Final Year JAVA, .NET IEEE Projects in Namakkal, Final Year JAVA, .NET IEEE Projects in Tanjore, Final Year JAVA, .NET IEEE Projects in Coimbatore, Final Year JAVA, .NET IEEE Projects in Bangalore, Final Year JAVA, .NET IEEE Projects in Hydrabad, Final Year JAVA, .NET IEEE Projects in Kerala, Final Year IEEE MATLAB Projects, Final Year Projects, Academic Final Year Projects, Academic Final Year IEEE MATLAB Projects, Academic Final Year IEEE MATLAB Projects 2013, Academic Final Year IEEE MATLAB Projects 2014, IEEE MATLAB Projects, 2013 IEEE MATLAB Projects, 2013 IEEE MATLAB Projects in Chennai, 2013 IEEE MATLAB Projects in Trichy, 2013 IEEE MATLAB Projects in Karur, 2013 IEEE MATLAB Projects in Erode, 2013 IEEE MATLAB Projects in Madurai, 2013 IEEE MATLAB

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
96
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Fast channel zapping with destination oriented multicast for ip video delivery

  1. 1. FAST CHANNEL ZAPPING WITH DESTINATION-ORIENTED MULTICAST FOR IP VIDEO DELIVERY ABSTRACT: Channel zapping time is a critical quality of experience (QoE) metric for IP-based video delivery systems such as IPTV. An interesting zapping acceleration scheme based on time-shifted subchannels (TSS) was recently proposed, which can ensure a zapping delay bound as well as maintain the picture quality during zapping. However, the behaviors of the TSS-based scheme have not been fully studied yet. Furthermore, the existing TSS-based implementation adopts the traditional IP multicast, which is not scalable for a large-scale distributed system. Corresponding to such issues, this paper makes contributions in two aspects. First, we resort to theoretical analysis to understand the fundamental properties of the TSS-based service model. We show that there exists an optimal subchannel data rate which minimizes the redundant traffic transmitted over subchannels. Moreover, we reveal a start-up effect, where the existing operation pattern in the TSS-based model could violate the zapping delay bound. With a solution proposed to resolve the start-up effect, we rigorously prove that a zapping delay bound equal to the subchannel time shift is guaranteed by the updated TSS-based model. Second, we propose a destination-oriented-multicast (DOM) assisted zapping acceleration (DAZA) scheme for a scalable TSS-based implementation, where a subscriber can seamlessly migrate from a sub channel to the main channel after zapping without any control message exchange over the network. Moreover, the sub channel selection in DAZA is independent of the zapping request signaling delay, resulting in improved robustness and reduced messaging overhead in a distributed environment. We implement DAZA in ns-2 and multicast an MPEG-4 video stream over a practical network topology. Extensive simulation results are presented to demonstrate the validity of our analysis and DAZA scheme. ECWAY TECHNOLOGIES IEEE PROJECTS & SOFTWARE DEVELOPMENTS OUR OFFICES @ CHENNAI / TRICHY / KARUR / ERODE / MADURAI / SALEM / COIMBATORE CELL: +91 98949 17187, +91 875487 2111 / 3111 / 4111 / 5111 / 6111 VISIT: www.ecwayprojects.com MAIL TO: ecwaytechnologies@gmail.com

×