Your SlideShare is downloading. ×
  • Like
Zero emission indoor climate control - Menerga
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Now you can save presentations on your phone or tablet

Available for both IPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Zero emission indoor climate control - Menerga

  • 430 views
Published

HVAC 2012

HVAC 2012

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
430
On SlideShare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
8
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. 26.09.2012 Welkom BienvenuZero Emission Indoor Climate Control : Dream or Reality ? 1
  • 2. 26.09.2012MENERGA – What does it stands for ? m minimum energy applicationMENERGA fields of application Parliament / Budapest Privat swimming pool hall / Waiblingen-Neustadt Zoo Hellabrunn / Munich Premium sports studio / Stuttgart 2
  • 3. 26.09.2012 Fields of competence _ Process and _ Customer service climate cooling_ Air-conditioning and climate-control _ Chilled water units technology _ Air conditioning in _ Heat recovery from swimming pool halls water MENERGA and research organisations 3
  • 4. 26.09.2012MENERGA KLIMA PLUS System concepts that save resources and are environmentally friendly Efficient, resource saving operation thanks to the highest degree of efficiency Maximum reduction of CO2 emissions Technologies modelled on natureProducts and production Manufacturer of complete systems Experience in research projects All knowledges consolidated Flexible fabrication Experience in practice Integrated control and regulation system 4
  • 5. 26.09.2012Products and innovations 1980 energy saving swimming pool hall air conditioning 1985 regenerative air conditioning with heat recovery with more than 90 % efficiency 1991 „Adiabatic“ – cooling without electric powerEvaporation cooling systems Indirect Evaporation Cooling Humidification before Heat Recovery Return air Exhaust air Supply Air Outside Air Indirect Evaporation Cooling Humidification during Heat Recovery Direct Evaporation Cooling Exchaust air Return air Outside Air Supply Air Outside Air Supply Air 5
  • 6. 26.09.2012 6
  • 7. 26.09.2012 7
  • 8. 26.09.2012 8
  • 9. 26.09.2012 9
  • 10. 26.09.2012 10
  • 11. 26.09.2012 11
  • 12. 26.09.2012 12
  • 13. 26.09.2012 13
  • 14. 26.09.2012 14
  • 15. 26.09.2012 15
  • 16. 26.09.2012 16
  • 17. 26.09.2012 17
  • 18. 26.09.2012 18
  • 19. 26.09.2012 19
  • 20. 26.09.2012 20
  • 21. 26.09.2012Products and innovations 1980 energy saving swimming pool hall air conditioning 1985 regenerative air conditioning with heat recovery with more than 90 % efficiency 1991 „Adiabatic“ – cooling without electric power 1994 Implementation of optimum efficiency motor with integral frequency controller 1999 hybride compact – chilled water unit with integrated compression refrigeration plant 2004 energy efficient compressor with integrated control of power output 2007 web based Integrated control and regulation system of air conditioning systems 2008 Zero Emission Indoor Climate Control Dream or reality ?Why Climate Control? For economic reasons employees are 10 to 15 % more efficient in comfort conditions For Company Image reasons To be attractive for hard to find emplyee profiles. 21
  • 22. 26.09.2012What is Climate Control? Climate Control = more than cooling Climate Control = also dehumidification Dry air is very comfortable Temperature may rise 2 – 3 K at dry circumstances with same comfort awareness Higher room temperature Higher cooling capacity using sustainable energy sources.Dehumidification bycooling and condensation Condensation on cold surfaces or water drops 5% 10% 15% 20% 30% 45 Cooling coil with chilled water 40% 40 50% 60% DX cooling coil 35 OA 70% Tem per atur [ °C ] 80% 30 90% 100% Cold water sprinkler 25 20 SA For the dehumidification of air, surface temperatures below the dew point are needed 15 0 5 10 15 20 Wassergehalt [gW /kgtr L] cooling coil & LPHW reheater The production of the cold water is produced by e.g. through a chiller 22
  • 23. 26.09.2012Sorption mechanism Adsorption Absorption vapour heat removal solid liquid Desorption (regeneration) heat supply solid liquidDehumidification rotor (adsorption) 5 • typical adsorption material LiCl, silica gel or molecular sieve • regeneration temperatures 70°C up to 120°C !! • due to the mechanical rotors, immediate regeneration is necessary • cooling of the adsorption process is not possible EA 45 5% 10% 15% 20% EA 30% • Low primary energy ratio (thermal COP) of 0,7 to 0,8 1 40% 40 Heater of the 4 50% regeneration air Humidifier 60% 35 EA 5 4 3 RA 70% Tem per atur [ °C ] OA 80% 30 90% RA 100% Humidifier 25 2 20 SA 3 OA 1 2 SA 15 Dehumidification rotor Heat exchanger 0 5 10 15 20 Wassergehalt [gW /kgtr L] DEC-plant with dehumidification rotor 23
  • 24. 26.09.2012Dehumidification by absorption (liquid) • absorption material LiCl-brine + regeneration temperatures only 50°C to 70°C 5% 10% 15% 20% 30% 45 6 7 EA 40% 7 5 RA 40 50% 3 1 FA 4 SA 2 60% 35 70% Temperatur [°C] 3 1 80% 30 2 90% 5 6 100% 1 2 Absorption 25 2 3 Temperature increase of the fan 3 4 Indirect evaporation cooling 20 4 4 5 Survey of heat- and humidity load 5 6 Indirect evaporation cooling 15 0 5 10 15 20 1 7 Desorption Wassergehalt [gW /kgtr L] + discontinuous absorption and regeneration possible + unlimited loss-free storage of regenerated brine (5 x more energy stored in brine than water) + cooling of the absorption process is possible + high primary energy ratio (thermal COP) of 1,4 to 1,6Sources of low temperature heatProcess heat Heat energy Solar energy District heating 24
  • 25. 26.09.2012 25
  • 26. 26.09.2012 26
  • 27. 26.09.2012 27
  • 28. 26.09.2012 28
  • 29. 26.09.2012 29
  • 30. 26.09.2012 30
  • 31. 26.09.2012 31
  • 32. 26.09.2012 32
  • 33. 26.09.2012 33
  • 34. 26.09.2012 34
  • 35. 26.09.2012 35
  • 36. 26.09.2012 36
  • 37. 26.09.2012Realised objects SOBIC, Freiburg Universitätsklinikum, Freiburg Commisioning: July 2003 Volume flow: 1.500 m³/h Commisioning: May 2006 Regeneration: Solar Volume flow: 12.000 m³/h Regeneration: Low temperature heat from the district heating system of the UniversityUniversity FREIBURG – comfort measurements relative Feuchtigkeit [% ] 10 20 40 40 35 60 30 80 25 100 Lufttemperatur [°C] 70 20 60 50 15 40 10 30 spezifische Enthalpie h 5 20 0 Aussenluft 10 Behaglichkeitsfeld / Sommer -5 0 Behaglichkeitsfeld / Winter -10 0 2 4 6 8 10 12 14 16 18 20 Wasserdampfgehalt x [g/kg] 37
  • 38. 26.09.2012University FREIBURG – comfort measurements 40 relative Feuchtigkeit [% ] 10 20 40 35 60 30 80 25 100 Lufttemperatur [°C] 70 20 60 50 15 40 10 30 spezifische Enthalpie h 5 20 0 Aussenluft 10 Zuluft -5 Behaglichkeitsfeld / Sommer 0 Behaglichkeitsfeld / Winter -10 0 2 4 6 8 10 12 14 16 18 20 Wasserdampfgehalt x [g/kg]University FREIBURG – comfort measurements relative Feuchtigkeit [% ] 10 20 40 40 35 60 30 80 25 100 Lufttemperatur [°C] 70 20 60 50 15 spezifische Enthalpie h 40 10 30 5 20 Aussenluft 0 Zuluft 10 Abluft -5 Behaglichkeitsfeld / Winter 0 Behaglichkeitsfeld / Sommer -10 0 2 4 6 8 10 12 14 16 18 20 Wasserdampfgehalt x [g/kg] 38
  • 39. 26.09.2012Domaines of application Passive Buildings Zero Emission Buildings or concepts Dehumidification of Swimming Pools Air volumes 1.200 to 14.400 m³/h Use of Renewable Energy at low temperature (55 – 70°) Use of waste energy from other (industrial) processes Use of rain water or lake water is a possibility Zero Emission Indoor Climate Control : It’s no dream anymore It’s real !! 39
  • 40. 26.09.2012THANK YOU FOR YOUR ATTENTION 40