EMVT 12 september - Pavol Bauer - TU Delft
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

EMVT 12 september - Pavol Bauer - TU Delft

on

  • 416 views

Met EMVT op Zee

Met EMVT op Zee

Statistics

Views

Total Views
416
Views on SlideShare
274
Embed Views
142

Actions

Likes
0
Downloads
1
Comments
0

1 Embed 142

http://www.dutchpower.net 142

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

EMVT 12 september - Pavol Bauer - TU Delft Presentation Transcript

  • 1. 1Challenge the future EPP Electrical Power Processing Met EMVT op Zee P Bauer
  • 2. 2Challenge the future EPP Electrical Power Processing Content • Introduction • Renewable energies offshore • Wave energy innovation • Need for the DC grids
  • 3. 3Challenge the future EPP Electrical Power Processing Real available solar energy per month Data: NASA
  • 4. 4Challenge the future EPP Electrical Power Processing 4 Real available wind energy per month Data: NASA
  • 5. 5Challenge the future EPP Electrical Power Processing 5 Data: NASA
  • 6. 6Challenge the future EPP Electrical Power Processing 6
  • 7. 7Challenge the future EPP Electrical Power Processing • Wind energy offshore • Wave energy Collection system
  • 8. 8Challenge the future EPP Electrical Power Processing • Higher average wind speeds at sea • Space limitations on shore • The turbines will on average have a larger diameters and rated powers • Less turbulence and lower wind shear • Erection and maintenance will be more expensive • Turbine noise will probably not be an important issue • Submarine electrical connection to shore • The farm will be difficult to access during periods with high winds EPP Electrical Power Processing
  • 9. 9Challenge the future EPP Electrical Power Processing 9 gear- ASG box f a) direct grid connection (normal plant for grid operation) n= (1-s) f/p s~ 0...0.8 (output dependent) inductive reactive power consumer ~ 1) with thyristor converter 2) with pulse inverter n~ 0.8 1.2 f/p (controllable) 1) inductive reactive power consumer gear- box b) grid connection via direct-current intermediate circuit ASG ~ f 2) controllable reactive power output DC c) grid connection via direct ac converter inductive reactive power consumer gear- box n~ 0.8 1.2 f/p (controllable)~ ASG f d) dynamic slip control (output dependent, dynamic) gear- box n= (1-s) f/p s~ 0... 0.1... (0.3)~ ASG f inductive reactive power consumer e) oversynchronous static Kraemer system inductive reactive power consumer gear- box n~ 1...1.3 f/p (controllable)~ ASG f n n n n n box controllable reactive power output n~ .8...1.2 f/p (controllable)~ f) double fed asynchronous generator gear- ASG n f controllable reactive power output n= f/p box gear- SG n f g) direct grid connection h) coupling to direct current grid SG gear- box n~ 0.5...1.2 n n uDC ~ N ~n~ 0.5...1.2 f/p (controllable) i) grid connection via direct-current intermediate circuit ngear- box SG f 1) with thyristor converter 2) with pulse inverter 1) inductive reactive power consumer 2) controllable reactive power output n~ 0.5...1.2 f/p (controllable) 1) with thyristor converter 2) with pulse inverter j) grid connection via direct-current intermediate circuit ~ 2) controllable reactive power output 1) inductive reactive power consumer n SG f DC DC k) grid connection via direct-current intermediate circuit ~ 1) with thyristor converter 2) with pulse inverter n~ 0.6...1.2 f/p (controllable) 1) inductive reactive power consumer 2) controllable reactive power output n DC f l) grid connection via direct ac converter ~n~ 0.8...1.2 f/p (controllable) (partial) reactive power consumer n f conversion system with asynchronous generator (ASG) conversion system with synchronous generator (SG) short-circuitrotormachinesslipringrotormachines permanentlyexcitedmachinesmachineswithexcitationsystem (normal plant for independent operation) * * *
  • 10. 10Challenge the future EPP Electrical Power Processing 10
  • 11. 11Challenge the future EPP Electrical Power Processing 11
  • 12. 12Challenge the future EPP Electrical Power Processing 12
  • 13. 13Challenge the future EPP Electrical Power Processing Introduction wave
  • 14. 14Challenge the future EPP Electrical Power Processing Introduction Wave generators – Wave Dragon
  • 15. 15Challenge the future EPP Electrical Power Processing Introduction Wave generators – Pelamis
  • 16. 16Challenge the future EPP Electrical Power Processing Introduction Wave generators – Oscillating Water Column
  • 17. 17Challenge the future EPP Electrical Power Processing Introduction Wave generators – Oyster
  • 18. 18Challenge the future EPP Electrical Power Processing Introduction wave Wave generators – Archimedes Wave Swing
  • 19. 19Challenge the future EPP Electrical Power Processing Introduction Wave Generators – EAPWEC (1) (2) (3) “Snake” made of rolled DE material and filled with water
  • 20. 20Challenge the future EPP Electrical Power Processing Introduction Electro Active Polymer – Dielectric Elastomer (DE) • Actuator - If a voltage is applied to the electrodes electrostatic forces will squeeze the dielectric elastomer material and reduce in thickness and expand in area • Sensor - Stretching the DE material will change area and thickness resulting in a change in capacitance which can be measured • Generator - If a stretched DE film is charged and then relaxed the voltage will increase significantly; converting mechanical energy to electrical energy DE STRETCHED DE CONTRACTED contraction large capacitance low voltage low energy state small capacitance high voltage high energy state
  • 21. 21Challenge the future EPP Electrical Power Processing Principle of operation • Energy is generated as the charged electroactive polymer decreases in area and increases in thickness as it contracts Variable capacitor generator Energy = ½ Qo 2 (1/Cr - 1/Cs) C = εr εo x film area/film thickness + + + + + _ _ _ _ _ +Vin (lo)+Vout (high) EAP STRETCHED + + + + + _ _ _ _ _ +Vin (low)+Vout (high) Dielectric Elastomer Compliant Electrodes (2) EAP CONTRACTED
  • 22. 22Challenge the future EPP Electrical Power Processing Introduction • Constant voltage • Constant charge • Constant electric field Methods for Energy Harvesting T Cs Cc 0 10 kV 0 Id Ic tcharge tdischarge ∆tc ∆td ∆qc ∆qd • Current shape optimization for the optimum energy harvesting cycle
  • 23. 23Challenge the future EPP Electrical Power Processing Introduction Power Take Off System • Low voltage DC bus of 800 V • Maximum power output per segment 10 kW • High power PEU required, 100 kW peak power rating • Target efficiency of PEU >95% • Bidirectional power flow capability of the PEU
  • 24. 24Challenge the future EPP Electrical Power Processing Medium-voltage dc-dc topologies 1) Two Quadrant Converter – Boost-Buck (2QC) 2) Flying Capacitor Multilevel Converter (FCMC) 3) Cascade Multilevel Converter (CMC) 4) Boost-Buck Multilevel Converter (B/BMC) 5) Multiphase Boost-Buck Converter (MPC) • Final decision will be made based on a total ranking of the converter based on multiple criteria
  • 25. 25Challenge the future EPP Electrical Power Processing Medium-voltage dc-dc topologies • High efficiency at low switching frequencies and low VDE • Simple control • Stacking of switches neccessary • High current switches • High current ripple through CDE • Huge inductor size 1) Two Quadrant – Boost/Buck
  • 26. 26Challenge the future EPP Electrical Power Processing V2V1 Lk S3 S1 S2 S4 S7S5 S6 S8 iLk vT1 vT2 1:n DAB1 DAB2 DABN VBUS VGEN DAB module I1 I2 V1 V2 • Input parallel output series converter with DABs • Very wide output voltage range • Variable frequency trapezoidal control method for DABs
  • 27. 27Challenge the future EPP Electrical Power Processing 0 1000 2000 3000 4000 5000 6000 85 87 89 91 93 95 97 99 power [W] effciency[%] parallel bypass Comparison of parallel and bypass module control method using efficiency curves 0 500 1000 1500 2000 85 87 89 91 93 95 97 99 power [W] effciency[%] Efficiency curve of the module and combination of parallel and bypass methods – hybrid method DAB module 2 DAB module 1 Controller DAB module 3 bypass VGEN c o n t r o l s i g n a l s
  • 28. 28Challenge the future EPP Electrical Power Processing Medium-voltage dc-dc topologies • DAB circuit for balancing of intermediate capacitor • Medium-voltage transformer • ZCS and ZVS • Low current switches • Simple control • Low current ripple through CDE • Different control methods • Transformer for every module needed • Low efficiency at low VDE 3) Cascade Multilevel
  • 29. 29Challenge the future EPP Electrical Power Processing Chapter 17 Electric Utility Applications • These applications are growing rapidly
  • 30. 30Challenge the future EPP Electrical Power Processing • AC versus DC string G G G star ~ = = ~ DC ~ = DC ~ ~ = = G G = ~ = ~ DC ~ = ~ G = G ~ = GG ~~ == 40 / 80 kV 6.25 MVA 80 kV (2 X 40 kV) 80 kV (2 X 40 kV) 4.16 / 40 kV 6.25 MVA 150 kV 5 / 33 kV 31.25 MVA 33 kV 150 kV 40 / 150 kV 125 MVA 150 kV 33 / 150 kV 125 MVA 40 / 150 kV 125 MVA 40 / 80 kV 6.25 MVA 40 / 80 kV 125 MVA 10 kV (2 X 5 kV)4.16 / 10 kV 6.25 MVA 5 / 10 kV 31.25 MVA = ≈ = ≈ 4.16 / 40 kV 6.25 MVA 40 / 80 kV 125 MVA string G G G G G star = ~ = ~ ~ = = ~ ~ = = ~ ~ = = ~ ~ ~ = = 33 kV 5 / 33 kV 6.25 MVA 150 kV 5 / 33 kV 31.25 MVA 33 kV 150 kV 4.16 / 5 kV 6.25 MVA 33 / 150 kV 125 MVA 33 / 150 kV 125 MVA 5 kV 4.16 / 5 kV 6.25 MVA Collection systems
  • 31. 31Challenge the future EPP Electrical Power Processing 31 Data: NASA
  • 32. 32Challenge the future EPP Electrical Power Processing Electrical Maximum allowable load current as a function of cable length Itot RI R,maxI l maxI IR,max = Imax - IC = Imax – U/wC’ length Power Processing
  • 33. 33Challenge the future EPP Electrical Power Processing 33
  • 34. 34Challenge the future EPP Electrical Power Processing Thank You for Your Attention Any Questions?
  • 35. 35Challenge the future EPP Electrical Power Processing
  • 36. 36Challenge the future EPP Electrical Power Processing • 1882 • 1882 The world’s first power transmission over a long distance was based on DC. The first transmission was from Miesbach to Munich – by Oskar von Miller and Marcel Deprez: 57 km, 1.4 kV • 1945: World’s first DC transmission project by Siemens and AEG: 115 km cable, mercury-arc based link from the power station Elbe/Elektrowerke AG to Bewag/Berlin at 60 MW / ±200 kV, ready for commissioning, but then transported to Russia … History of DC power Transmission • 1945 J.Dorn Siemens
  • 37. 37Challenge the future EPP Electrical Power Processing J.Dorn Siemens HVDC advantages Long overhead lines with high transmission Capacity, low transmission losses and reduced right-of-way Cable transmissions with low losses and without limitation in length Asynchronous grids can be interconnected Increase of transmission capacity without increasing short circuit currents Fast control of power flow, independent from AC conditions Firewall against cascading disturbances, active power oscillation damping
  • 38. 38Challenge the future EPP Electrical Power Processing J.Dorn Siemens Worldwide installed capacity
  • 39. 39Challenge the future EPP Electrical Power Processing J.Dorn Siemens • HVDC Classic • Line comutated CSC • Thyristors with turn on Capability only • VSC HVDC • Self commutated VSC • Semiconductor Switches with torn on and turn off - IGBT
  • 40. 40Challenge the future EPP Electrical Power Processing HVDC Classic vs VSC
  • 41. 41Challenge the future EPP Electrical Power Processing HVDC Applications
  • 42. 42Challenge the future EPP Electrical Power Processing • Long distance overhead • DC submarine cable • Back to Back HVDC Applications J.Dorn Siemens
  • 43. 43Challenge the future EPP Electrical Power Processing HVDC Transmission • There are many such systems all over the world
  • 44. 44Challenge the future EPP Electrical Power Processing HVDC Poles • Each pole consists of 12-pulse converters
  • 45. 45Challenge the future EPP Electrical Power Processing HVDC Transmission: 12-Pulse Waveforms
  • 46. 46Challenge the future EPP Electrical Power Processing HVDC Transmission: Converters • Inverter mode of operation
  • 47. 47Challenge the future EPP Electrical Power Processing Control of HVDC Transmission System • Inverter is operated at the minimum extinction angle and the rectifier in the current-control mode
  • 48. 48Challenge the future EPP Electrical Power Processing Breakthrough
  • 49. 49Challenge the future EPP Electrical Power Processing Thyristors
  • 50. 50Challenge the future EPP Electrical Power Processing Thyristors en module 2x13
  • 51. 51Challenge the future EPP Electrical Power ProcessingChapter 17 Electric VSC HVDC
  • 52. 52Challenge the future EPP Electrical Power Processing Multilevel reduced semiconductor voltage - Lower harmonic distortion - More levels possible (multi level)
  • 53. 53Challenge the future EPP Electrical Power Processing Multilevel • Practical realization σ σ α
  • 54. 54Challenge the future EPP Electrical Power Processing Space vector multilevel
  • 55. 55Challenge the future EPP Electrical Power ProcessingChapter 17 Electric A B A B A B A B A B A B A B A B A B A B A B A B B A VSC HVDC
  • 56. 56Challenge the future EPP Electrical Power ProcessingCopyright © 2003 Chapter 17 Electric Utility Applications
  • 57. 57Challenge the future EPP Electrical Power ProcessingChapter 17 Electric UtilityApplications
  • 58. 58Challenge the future EPP Electrical Power Processing – Press-pack IGBT modules for the CTL converter. ABB
  • 59. 59Challenge the future EPP Electrical Power Processing Alsthom
  • 60. 60Challenge the future EPP Electrical Power Processing Thank You for Your Attention Any Questions?