Arno smets tu delft presentation arnhem
Upcoming SlideShare
Loading in...5
×
 

Arno smets tu delft presentation arnhem

on

  • 990 views

Matchmaking bijeenkomst op 13 september 2012.

Matchmaking bijeenkomst op 13 september 2012.
GAAT DE ZON VOOR NIETS OP (HET NET)?

Statistics

Views

Total Views
990
Views on SlideShare
777
Embed Views
213

Actions

Likes
0
Downloads
19
Comments
0

2 Embeds 213

http://www.dutchpower.net 168
http://zylon.dutchpower.net 45

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Arno smets tu delft presentation arnhem Arno smets tu delft presentation arnhem Presentation Transcript

    • Solar ElectricityArno Smets and Miro ZemanDelft University of Technology Delft University of Picture Source: www.nasa.gov Technology Challenge the future
    • About myself Arno Smets 1974 born in Netherlands 1992-1997 Physics at TU Eindhoven 1998-2002 PhD TU Eindhoven 2002-2004 Post-doctoral Reseacher Helianthos Project 2005-2010 Researcher at AIST, Japan 2010-now Assistant professor at TU Delft Photovoltaic Materials and Devices
    • Photovoltaic Materials and Devices People Scientific StaffSecretary 4 Post docs 4 Technicians Guests 18 PhD students ~30 MSc students (15 final MSc project, 15 traineeship)
    • Outline Introduction Photovoltaics PV Systems PV technology Summary Delft University of Picture Source: www.nasa.gov Technology Challenge the future
    • 1INTRODUCTION
    • Humanity’s ten top problemsfor next 50 years1. ENERGY2. WATER3. FOOD4. ENVIRONMENT5. POVERTY6. TERRORISM & WAR7. DISEASE8. EDUCATION9. DEMOCRACY10. POPULATION Source: Lecture Prof. R.E. Smalley (Rice University) at 27th Illinois Junior Science & Humanities Symposium, 2005
    • Humanity’s ten top problemsfor next 50 years1. ENERGY2. WATER3. FOOD4. ENVIRONMENT5. POVERTY6. TERRORISM & WAR7. DISEASE8. EDUCATION9. DEMOCRACY10. POPULATION Source: Lecture Prof. R.E. Smalley (Rice University) at 27th Illinois Junior Science & Humanities Symposium, 2005
    • The Energy Problem Energy Shortage Growing world population Results in pressure on economy: Ann. averg. oil price (in 2008 USD) 120 100 80 60Increasing living standard: 40 20 0 1900 1920 1940 1960 1980 2000 TimeEnergy consumption per capita
    • The Energy Problem Climate change Jeopardizing our habitats: Somalia Russia Mexico Pakistan “The weather makers”, Tim Flannery
    • Energy transition 50 years is a characteristic time scale for change in energy mix Source: Lecture Prof. Moniz (MIT) at TUD 2010
    • Energy transition scenario EJ/a 1400geothermalother renewablessolar thermal (heat only)solar power 1000(photovoltaics (PV) & PV & CSPsolar thermalgeneration (CSP)wind energy 600biomass (advanced)biomass (traditional)hydroelectricitynuclear powergas 200coaloil 2000 2020 2040 2100 year Source: German Advisory Council on Global Change, 2003, www.wbgu.de
    • Electricity About 100 years of practical use Symbol of modernity and progress Secondary form of energy 2 billion people without electricity Source: Google Images
    • Electricity generation Gravitational Nuclear Wind Hydro-tidal Heat Electric engines generators Thermal Mechanical Electrical η<60% η=90% η=90% Fuel Cells Chemical Coal, oil, gas, biomass, hydrogen Source: L. Freris, D. Infield, Renewable Energy in Power Systems, Wiley 2008
    • Electricity generation Gravitational Nuclear Wind Hydro-tidal Heat Electric engines generators Thermal Mechanical Electrical η<60% η=90% Photovoltaics η=90% Fuel Solar Cells thermal Chemical Coal, oil, gas, Solar biomass, hydrogen Source: L. Freris, D. Infield, Renewable Energy in Power Systems, Wiley 2008
    • Electricity generation 2007 ELECTRICITY GENERATIONgeothermalother renewables conversion hydro 19%solar thermal (heat only) lossessolar power(photovoltaics (PV) & nuclear 16%solar thermalgeneration (CSP) 2/3wind energy gas 15%biomass (advanced) ELECTRICITYbiomass (traditional) CONSUMPTIONhydroelectricity coal 40% 40% residentialnuclear power 1/3gas 47% industrycoal oil 10% 13% transmissionoil losses
    • Electricity generation 2007 Electricity: World Netherlands 20 202 TWh 103 TWh 20-25 kWh/d/p wind 3%geothermal nuclear 4% hydro 19% biomass 6%other renewablessolar thermal (heat only) Total Energy:solar power nuclear 16% (gas,oil,etc.)(photovoltaics (PV) &solar thermal gas 125 kWh/d/pgeneration (CSP) gas 59%wind energy 87%biomass (advanced)biomass (traditional) 65%hydroelectricity coalnuclear powergas coal 26%coal fossil oil oil 2%oil 25 Nuclear power plants (0.5 GW) Sorce: Eurostat 2009 edition , BP Statistical Review Full Report (http://www.bp.com/images)
    • Energy transition scenarioElectricity as energy carrier
    • Living on renewables? David JC MacKay “Sustainable Energy: Without the hot air”
    • Living on renewables? Population density:Netherlands: 16400000 41500 395 2530
    • Living on renewables? Population density: 125 kWh/day/p Required energy per m2 0.016 W/m2 0.028 W/m2 0.067 W/m2 0.068 W/m2 0.22 W/m2 0.32 W/m2 0.57 W/m2 0.70 W/m2 1.2 W/m2 1.9 W/m2Netherlands: 16400000 41500 395 2530 2.0 W/m2
    • Living on renewables? 125 kWh/day/p 125kWh/day/p Population density: Surface area required with Required 15 W/m2 energy per m2 technology 0.016 W/m2 0.11 % 0.028 W/m2 0.19 % 0.067 W/m2 0.45 % 0.068 W/m2 0.45 % 0.22 W/m2 1.5 % 0.32 W/m2 2.1 % 0.57 W/m2 3.8 % 0.70 W/m2 4.6 % 1.2 W/m2 8.0 % 1.9 W/m2 12.7 %Netherlands: 16400000 41500 395 2530 2.0 W/m2 13.3 %
    • Living on renewables? 125 kWh/day/p 125kWh/day/p Surface area required with Required 15 W/m2 energy per m2 technology 0.016 W/m2 0.11 % 0.028 W/m2 0.19 % 0.067 W/m2 0.45 % 0.068 W/m2 0.45 % 0.22 W/m2 1.5 % 0.32 W/m2 2.1 % 0.57 W/m2 3.8 % 0.70 W/m2 4.6 % 1.2 W/m2 8.0 % 1.9 W/m2 12.7 %Netherlands: 16400000 41500 395 2530 2.0 W/m2 13.3 %
    • Solar ResourcesGlobal demand 2010: 16 TW Solar cell with 10% efficiency:Global demand 2050: 32 TW 1250 1250 km2Solar energy: 120 000 TW http://visibleearth.nasa.gov
    • 2PHOTOVOLTAICS
    • Photovoltaics (PV) Solar module ElectricitySun Solar radiation Source: A. Poruba
    • Solar cell sunlight Solar cell electricityheat Maximum electrical power out Efficiency= Light power in
    • Photovoltaic industryScaling production volume40000 Global solar cell production 37185 MW mono c-Si30000 poly c-Si 27381 ribbon c-Si 36% TF-Si Thin- CdTe film20000 CIS solar rest cells 12464 118%10000 7910 56% 4279 1815 2536 85% 750 1257 69% 560 34% 68% 45% 40% 0 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Source: Photon International, March 2012
    • Photovoltaics Historical development of cumulative PV power: 70 China 70 APEC 60 60Cumulative Installed 29.6 PV Capacity (GW) Rest of World North America 50 Japan 50 39.53 European Union 40 40 22.90 30 30 20 .66 20 Nederland 2003: 15 9 9.4 8 46 MW (1.6 %) 6.9 0 10 10 5.4 6 4 3.9 6 2.8 9 6 2.2 1.7 Nederland 2010: 1.4 0 0 2000 2002 2004 2006 2008 2010 97 MW (0.24 %) Year EPIA 2009: Global Market Outlook For Photovoltaics Until 2013
    • Trend in installed power technologies The European Wind Energy Association: Wind in power: 2011 European Statistics, 2012
    • EU power capacity mix Summary in MW in MWTotal ~580 GW Total ~896 GW The European Wind Energy Association: Wind in power: 2011 European Statistics, 2012
    • Photovoltaics2010 Installed Cumulative Installed Capacity Share (MW, %) Nederland 2010 ~60 MW (0.15%)
    • PV module supply and demandsWorld wide supply - demand Source: EPIA
    • PV module supply and demandsWorld wide supply - demand Source: EPIA
    • PV module supply and demandsWorld wide supply - demand Source: EPIA
    • PV module supply and demandsWorld wide supply - demand Source: EPIA
    • PV module supply and demandsWorld wide supply - demand Source: EPIA
    • PV module supply and demandsWorld wide supply - demand Source: EPIA
    • PV module supply and demandsWorld wide supply - demand Source: EPIA
    • PV module supply and demandsWorld wide supply - demand Source: EPIA
    • PV module supply and demandsWorld wide supply - demand Source: EPIA
    • PV module supply and demandsWorld wide supply - demand Source: EPIA
    • PV module supply and demandsWorld wide supply - demand Source: EPIA
    • PV module supply and demandsWorld wide supply - demand Source: EPIA
    • PV module supply and demands World wide supply - demandMoving from local markets to fast changing global markets Source: EPIA
    • Photovoltaics industryMarket 2011 Power [GW]
    • PV powerLatest newsWednesday, May 30, 2012May 30 – Guardian:Solar power generation world record set in GermanyGerman solar power plants produced a world record 22 gigawatts ofelectricity – equal to 20 nuclear power stations at full capacity – through themidday hours of Friday and Saturday, the head of a renewable energy thinktank has said.This met nearly 50% of the nation’s midday electricity needs.The record-breaking amount of solar power shows one of the world’sleading industrial nations was able to meet a third of its electricity needs ona work day, Friday, and nearly half on Saturday when factories and officeswere closed. The Guardian: May 30, 2012
    • Electricity network of today28 power stations in Netherlands
    • Future electricity network
    • 3PV SYSTEMS
    • PV systemTwo main types:Stand-alone system Grid-connected system Grid dc/ac Charge Storage invertor controller = ~ DC dc/ac = AC PV loads invertor PV loadsgenerator ~ generator AC loads
    • PV systemPower electronicsThe highly varying environmental conditions and nonlinearnature of the photovoltaic (PV) generator make the utilization ofPV energy a challenging task:Power electronics converters:Reliable operating interface between renewable energyresources and the electrical power grid.
    • PV systemMarkets/applications: Rural stand-alone and local grid (10 Wp – 10 kWp) Grid-connected (building-)integrated (1 kWp – 1 MWp) Power plants (1 MWp - 1 GWp) Source: W Sinke, Solar Academy
    • PV systemsTerminology and definitionsPower (of cells, modules and systems) in Watt-peak (Wp) (Average) ac system efficiencyPerformance ratio = (STC) dc module efficiencyTypically 0.75 – 0.85Electricity yield in kWh/kWp (usually per year)Typically 750 – 900 kWh/kWp for c-Si modules in NL  hours ac peak power per yearCapacity factor =  hours per yearTypically 0.09 – 0.11 in NL/DE
    • Grid-connected PV system Overview biggest PV installations:Power Location Description Commissioned Picture100 MWp Ukraine, Perovo I-V PV power plant 2011 Perovo Constructed by: Activ Solar97 MWp Canada, Sarnia PV power plant 2009-2010 Sarnia84 MWp Italy, Montalto di Castro PV 2009-2010 Montalto di Castro power plant Constructed by: SunPower, SunRay Renewable82 MWp Germany, Solarpark Senftenberg II,III 2011 http://www.pvresources.com/PVPowerPlants/Top50.aspx Senftenberg Constructed by: Saferay
    • DESERTEC project Solar Thermal Power plants Photovoltaics Wind Hydro Biomass Geothermal Source: DESERTEC foundation
    • Grid-connected PV systemGrid-connected home PV system:Components: 3×150 Wp modules = ~ AC M. Zeman, Delft
    • Solar irradiation on EarthThe Netherlands:2.7 sun hours/day/year 2 3 4 5 6 Solar irradiation: solar irradiance integrated over a period of time
    • Grid-connected PV system Grid-connected home PV system: 3×150 Wp modules 65 386.0 kWh Year 2010 60 55Generated energy [kWh] 50 45 40 35 30 25 20 15 10 5 0 1 2 3 4 5 6 7 8 9 10 11 12 Month M. Zeman, Delft
    • Costs grid-connected PV SystemPV system is nowadays good investment!Cost in 2012:Costs €1030 Saves per year: €115 That’s €2875 in 25 years (500 kWh*€0,23/kWh) A payback period of 9 years! EY=877 kWh/kWp M. Workum, PVMD, TU Delft
    • Costs grid-connected PV System PV system is nowadays good investment! Above € 6000 inverters become relatively cheap Average Dutch family (3500 kWh @ €6800) Cheapest system (500 kWh @ €1030)No installation or second inverter included. One year old data, prices are now even lower (see previous sheet) M. Workum, PVMD, TU Delft
    • Learning curve: PV modules, systems 100Average global sales price PV Module 10 (USD/Wp) 1 Source: Navigant Consulting -4 -3 -2 -1 0 1 2 3 4 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
    • Learning curve: PV modules, systems 100Average global sales price PV System PV Module 10 (USD/Wp) 1 Source: Navigant Consulting -4 -3 -2 -1 0 1 2 3 4 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
    • Learning curve: PV modules, systems 100Average global sales price PV System PV Module 10 (USD/Wp) Non-modular costs 1 Source: Navigant Consulting -4 -3 -2 -1 0 1 2 3 4 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
    • Learning curve: PV modules, systems 100Average global sales price PV System Non-Modular PV Module 10 29% Installation (USD/Wp) 18% Inverter 17% Maintenance Non-modular costs 16% Racking 1 10% Wiring 10% BOS, others Source: Navigant Consulting -4 -3 -2 -1 0 1 2 3 4 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
    • Learning curve: PV modules, systems 100 Average global sales price PV System Non-Modular PV Module 10 29% Installation (USD/Wp) 18% InverterTF Silicon PV 17% Maintenance Non-modular costs 16% Racking 1 10% Wiring 10% BOS, others Source: Navigant Consulting -4 -3 -2 -1 0 1 2 3 4 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
    • 4PV Technologies
    • PV technology: 1st vs 2nd generation First Generation Second Generation (thin film) Melt processing Plasma processing Sanyo, Silicon Hetero-Junction cell NUON HelianthosPure material: high efficiencies Lower quality material:Expensive processing: lower efficiencies cost-price energy higher Low costs processing: cost-price energy lowerSilicon: record lab efficiency 20-27% Thin film: record lab efficiency 13-20%
    • PV technologies CIGSc-Si wafer based CdTe III-V semiconductor based TF Si
    • PV technologies 1. Wafer based Si 2. Thin films 3. Cheap + efficient MC manufacturing costs SP average selling price SIII installed cost for a utility scale system SI installed cost for a residential system Hillhouse and Beard, Curr. Opin. Colloid. In. 14, 245 (2009).
    • Thin-film silicon solar cellsSi-based solar cells Al Al SiO2 n+ electron hole p-type p++ c-Si p++ Al c-Si (180-250 μm)
    • Solar cell Incident light Metal front electrode Si atom electron hole covalent bond Semiconductor Metal back electrode
    • Solar cell Incident light Metal front electrode Si atom electron hole covalent bond Semiconductor Metal back electrode
    • Solar cell Metal front electrode Si atom electron hole covalent bond Semiconductor Metal back electrode
    • Solar cell Metal front electrode Si atom electron hole covalent bond Semiconductor Metal back electrode
    • Solar cell Metal front electrode Si atom electron hole covalent bond hole Semiconductor Metal back electrode
    • Solar cell Metal front electrode Si atom electron hole covalent bond hole Semiconductor Metal back electrode
    • Solar cell Metal front electrode Si atom electron hole covalent bond P atom Semiconductor Metal back electrode
    • Solar cell Metal front electrode Si atom electron hole covalent bond P atom Semiconductor B atom Metal back electrode
    • Solar cell Metal front electrode Si atom electron hole covalent bond P atom Semiconductor B atom Metal back electrode hole
    • Solar cell Metal front electrode Si atom electron hole covalent bond P atom Semiconductor B atom Metal back electrode hole
    • Solar cell Metal front electrode Si atom electron covalent bond P atom Semiconductor B atom Metal back electrode hole
    • Solar cell Incident light Metal front electrode Si atom electron covalent bond P atom Semiconductor B atom Metal back electrode hole
    • Solar cell Metal front electrode Si atom electron covalent bond P atom Semiconductor B atom Metal back electrode hole
    • Solar cell Metal front electrode Si atom electron covalent bond P atom Semiconductor B atom Metal back electrode hole
    • Solar cell Metal front electrode Si atom electron covalent bond P atom Semiconductor B atom Metal back electrode hole
    • Solar cell Metal front electrode Si atom electron covalent bond P atom Semiconductor B atom Metal back electrode hole
    • Solar cell Metal front electrode Si atom electron covalent bond P atom Semiconductor B atom Metal back electrode hole
    • Solar cell Metal front electrode Semiconductor Metal back electrode
    • Solar cell Incident light Metal front electrode ARC electron hole Semiconductor Metal back electrode
    • Solar cellMain losses recombination X gap energy light 1.1 eV X X generation
    • Solar cell Additional losses Incident light Reflection n1 ≠ n2 Metal front electrode ARC electron hole Semiconductor Metal back electrodec-Si solar cell structure Transmission (finite α)
    • Design principle of solar cells Defect Engineering Bulk defects Interface defects Meta-stable defectsSpectral Matching Light Trapping Texture interfaces Choice of Material Reflectors Multi-junctions Plasmonic Approaches
    • Thin-film silicon solar cellsSi-based solar cells Al Al SiO2 n+ Thin-film Si (0.2 - 5 μm) p-type p++ c-Si p++ Al c-Si (180-250 μm)
    • Thin-film silicon solar cellsSi-based solar cells Al Al Glass plate SiO2 n+ Thin-film Si (0.2 - 5 μm) TCO p-type Intrinsic a-Si:H p-type p++ c-Si p++ n-type Al Metal electrode c-Si (180-250 μm) a-Si (0.2-0.3 μm)
    • The a-Si:H p-i-n junctionProblem 2: mismatch single junction with solar spectrum
    • The a-Si:H p-i-n junctionProblem 2: mismatch single junction with solar spectrumAbsorption a-Si:H Does not cover entire spectrum!
    • The a-Si:H/μc-Si:H tandem Problem 2: mismatch with solar spectrumAbsorption Absorption a-Si:H c-Si:H
    • Multi-junction approachRecord ηst (confirmed) Micromorph (double) Triple-junction10.1% (a-Si) Oerlikon 12.5% (a-Si/μc-Si) Oerlikon 13.0% (Si/SiGe/SiGe) USSC*10.1% (μc-Si) Kaneka 12.4% (a-Si/a-SiGe) USSC* 13.4% (a-Si/nc-Si/nc-Si) USSC 13.4% (a-Si/a-Ge/nc-Si) USSC
    • Thin-film silicon solar cellsSi-based solar cells Al Al Glass plate SiO2 n+ TCO p-type Intrinsic a-Si:H n-type p-type Intrinsic p-type uc-Si:H p++ c-Si p++ n-type Al Metal electrode c-Si (180-250 μm) a-Si/uc-Si (2.0-4.0 μm)
    • Learning curve: PV modules, systems 100Average global sales price PV Module 10 (USD/Wp) 1 Source: Navigant Consulting -4 -3 -2 -1 0 1 2 3 4 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
    • Learning curve: PV modules, systems 100Average global sales price PV Module 10 (USD/Wp) Thin Film PV: 1 CdTe (First Solar) Source: Navigant Consulting -4 -3 -2 -1 0 1 2 3 4 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
    • Learning curve: PV modules, systems 100Average global sales price PV Module 10 (USD/Wp) Thin Film PV: 1 CdTe (First Solar) Source: Navigant Consulting Micromorph -4 -3 -2 -1 0 1 2 3 4 (Oerlikon) 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
    • PV technologiesWafer based crystalline silicon ½ century of manufacturing history, ~90% of 2007 market progressing by innovation and volume reduction of manufacturing costs is major challenge module efficiencies: - 12 ~ 20% (now) - 18 ~ >22% (longer term) Source: W Sinke
    • PV technologiesThin-film silicon low-cost potential and new application possibilities positive impact of micro- and nanocrystalline silicon efficiency enhancement is major challenge stable module efficiencies: – 6 ~ 11% (now) – 11 ~ 16% (longer term) Source: W Sinke
    • PV technologiesCadmium Telluride low-cost potential (partly already demonstrated) positive impact of development of take-back and recycling systems efficiency enhancement is major challenge module efficiencies: – 7 ~ 11% (now) – 10 ~ 15% (longer term) Source: W Sinke
    • PV technologiesCopper-indium/gallium-selenide/sulphide (CIGS) high performance & possibilities for multi-junction devices reduction of manufacturing costs is major challenge; work on low-cost varieties module efficiencies: – 9 ~ 12% (now) –15 ~ 18% (longer term) Source: W Sinke
    • Efficiency development
    • Cost price elements vs abundancyAveraged cost-price elements versus abundance in ore (2004-2009) a-Si:H thin film technology M. Green, Progress in PV: Res. Appl. 17, 347 (2009)
    • Composition of the Earth’s crust
    • Composition of the Earth’s crust 1st generation c-Si: Si,O,Al,N,B,P
    • Composition of the Earth’s crust 2nd generation CdTe: Cd,Te,S,Al,Zn,O Ratio Te/Si: 10-9 1 m2 cell 2μm CdTe (50% =Te) 1 m2 hole having depth of (110-6/ 110-9 )~ 103 m = 1 km
    • Composition of the Earth’s crust III-V: Ga,As,Al,In,P,Ge,
    • Composition of the Earth’s crust 2nd generation CIGS: Cu,In,Se,Ga,Al,Zn,O,Cd,S
    • Composition of the Earth’s crust2nd generation Dye-sensitized: Ti,O,Sn,Pt,C,O,H,N,S,Ru,I (and many more)
    • Composition of the Earth’s crust 2nd generation a-Si:H: H,Si,O,Zn,Al,B,P
    • TF turn-key companies Module efficiency: 10.8% guaranteed Record cell: 12.5 % Micromorph0.35 €/Wp technology Yield > 97% Output: 120 MWp
    • Thin-film Si PV technologyGlass plates:ApplicationIndustry hall, Thurnau, Germany
    • Helianthos projectFlexible substrate: Dutch route: Temporary superstrate solar cell concept Development of unique low-cost roll-to-roll technology for fabrication of thin-film Si solar modules (started in 1996)
    • Thin-film Si PV technologyFlexible substrate:Flexible, lightweight, monolithically series connected a-Si modules
    • Thin-film Si PV technology
    • Thin-film Si PV technologyPresented by E. Hamers at the European PV solar energy conference Hamburg 6 sept. 2011.
    • 7SUMMARY
    • PV technologySummary Direct conversion of light to electricity (PV) is an elegant process suitable for versatile, robust, low-cost technology; the global potential is practically unlimited A wide range of technology options is commercially available, emerging or found in the lab The first major economic milestone on the road to very large-scale use has been reached: grid parity with retail electricity prices
    • PV status in 2012Summary Production: - dominant c-Si PV technology, 90% market - large production capacity in China - difficult time for thin-film PV technologies (TF Si, CIGS, CdTe) Installation: - highest contribution to newly installed power capacity in EU Price: - <1 €/Wp; c-Si modules: 0.8-0.9 €/Wp expectation 0.5 €/Wp in 2015 - grid parity reached in Germany and Netherlands Research trends - increasing module efficiency (c-Si modules >20%)
    • PV technologyChallenges for TW scale implementation turn-key system price < 1 €/Wp (generation costs < 3-10 c€/kWh) - low-cost modules at very high efficiency (> 30%) - add efficiency boosters (spectrum shapers), full spectrum utilization (advanced concepts) - or: very low-cost modules (<< 0.5 €/Wp) at moderate efficiency (>10%) - polymer solar cells, nanostructured (quantum dot) hybrid materials - Low BOS costs use of non-toxic, abundantly available materials (preferably use Si, C, Al, O, N, …) - indium replacement - non-metallic conductors (Ag  C?) - all-silicon thin-film tandems stability (20 to 40 years) and realibility - intrinsic & extrinsic degradation of organics-based solar cells
    • Thank you for your attention!DelftUniversity of Picture Source: www.nasa.govTechnologyChallenge the future
    • Thin-film Si PV technologyPresent status:+ Promising low-cost solar cell technology+ Industrial production experience (Flat panel display industry)- Relatively low stabilized efficiencies (η ≈ 6-7%)+ Double-junction micromorph solar cell (η>10%)  ideal combination of materials (a-Si:H/μc-Si:H) for converting AM1.5 solar spectrum+ 2008 production of modules 400 MW production capacity ~ 1000 MW Google images
    • Thin-film Si PV technologyCurrent developments: increase in TF Si module production complete production lines availableFuture developments: Oerlikon short term: optimize micromorph tandem cell long term: optimize triple cell, breakthrough concepts for high efficiency (η>20%) Applied Materials