UMLS-Interface and UMLS-Similarity: Open Source Software for Measuring Paths and Semantic Similarity<br />Bridget  McInnes...
Objective<br />Develop tools to automatically compute the semantic similarity between two concepts in the biomedical domai...
Motivation<br />Clustering symptoms and disorders found in the text of clinical reports for post marking medication safety...
Unified Medical Language System<br />Knowledge representation framework <br />Contains 3 Main components:<br />Metathesaur...
Metathesaurus<br />Semi-automatically integrates biomedical concepts from over a 100 controlled medical terminologies <br ...
Concept Unique Identifiers (CUIs)<br />6<br />CUI C0009264<br />Cold Temperature<br />AUI A15588749<br />Cold Temperature<...
CUI Information<br />The concepts (AUIs) from the source vocabularies may contain information about the concept such as it...
Relations between CUIs in MSH<br />8<br />AUI A0123939<br /> Temperature<br />is-a<br />AUI A15588749<br />Cold Temperatur...
Relations between CUIs in SNOMED-CT<br />9<br />AUI A2887140<br /> Temperature<br />is-a<br />AUI A3292554<br />Low Temper...
Multiple Relations<br />10<br />PAR/CHD<br />     (SNOMED-CT)<br />CUI C0039476<br /> Temperature<br />CUI C0009264<br />C...
Relation Information<br />11<br />MRHIER<br />MRREL<br />AUI A0123939<br /> Temperature<br />CUI C0039476<br /> Temperatur...
MRREL and MRHIER<br />MRHIER <br />Contains the full path to root relations between AUIs from each of the sources<br />is-...
CUI versus AUI Hierarchy<br />The benefit of using CUIs<br />Ability to obtain the relation information between concepts a...
UMLS-Interface<br />Perl interface to the UMLS present locally in a MySQL database.<br />Its main purpose is to returns pa...
UMLS-Similarity<br />A suite of perl modules that implement a number of path-based semantic similarity measures to determi...
Semantic Similarity Example<br />Path measure<br />16<br />1<br />Sim(c1,c2) = <br />N<br />where N  =  # links in the sho...
Similarity Given Specified Sources<br />17<br />C0005898<br />Body <br />Regions<br />PAR<br />     (SNOMED-CT)<br />C0229...
Similarity Given Specified Sources<br />18<br />C0005898<br />Body <br />Regions<br />PAR<br />     (SNOMED-CT)<br />C0229...
Similarity Given Specified Sources<br />19<br />C0005898<br />Body <br />Regions<br />PAR<br />     (SNOMED-CT)<br />Simil...
Similarity Given Specified Sources<br />20<br />C0005898<br />Body <br />Regions<br />PAR<br />     (SNOMED-CT)<br />Simil...
Similarity Given Specified Relations<br />21<br />C0005898<br />Body <br />Regions<br />RB<br />(MSH)<br />C0229962<br />A...
Similarity Given Specified Relations<br />22<br />C0005898<br />Body <br />Regions<br />RB<br />(MSH)<br />C0229962<br />A...
Similarity Given Specified Relations<br />23<br />C0005898<br />Body <br />Regions<br />Similarity = 1/2<br />RB<br />(MSH...
Similarity Given Specified Relations<br />24<br />C0005898<br />Body <br />Regions<br />Similarity =  1/1<br />RB<br />(MS...
Functional Validation<br />Comparison with Previous Work:<br />Pedersen, et al. 2007<br />Nguyen and Al-Mubaid, 2006<br />...
Pedersen, et al. <br />Semantic Similarity Measures<br />Path<br />Leacock and Chodorow, 1998<br />Source<br />SNOMEDCT<br...
Comparison with Pedersen, et al.<br />Semantic Similarity Measures<br />Path<br />Leacock and Chodorow, 1998<br />Source: ...
Comparison with Pedersen, et al.<br />28<br />
Comparison with Pedersen, et al.<br />29<br />
Nguyen and Al-Mubaid<br />Semantic Similarity Measures<br />Nguyen and Al-Mubaid, 2006<br />Leacock and Chodorow, 1998<br ...
Comparison with Nguyen and Al-Mubaid<br />Semantic Similarity Measures<br />Nguyen and Al-Mubaid, 2006<br />Leacock and Ch...
Comparison with Nguyen and Al-Mubaid<br />32<br />
Caviedes and Cimino<br />Semantic Similarity Measure<br />Conceptual Distance – Rada, et al.<br />Source: MSH<br />Relatio...
Comparison with Caviedes and Cimino<br />Semantic Similarity Measures<br />Conceptual Distance <br />Originally proposed b...
Comparison with Caviedes and Cimino<br />35<br />
Comparison with Caviedes and Cimino<br />36<br />
Results<br />The results show that UMLS-Similarity can be used to reproduce the results reported by:<br />Pedersen, et al....
Results<br />The correlation results obtained by UMLS-Similarity and reported by Nguyen and Al-Mubaid vary<br />Different ...
Conclusions<br />UMLS-Similarity<br />Used to determine the similarity between two concepts given a specified set of sourc...
Future Work<br />UMLS-Interface<br />Improve the efficiency in which the path information is stored <br />UMLS-Similarity<...
Take Home Message #1<br />41<br />UMLS-Interface can used to extract path information about a concept given a specified <b...
Take Home Message #2<br />42<br />UMLS-Similarity can be used to compute the semantic similarity between two concepts give...
UMLS-Interface<br />http://search.cpan.org/dist/UMLS-Interface<br />UMLS-Similarity<br />http://search.cpan.org/dist/UMLS-...
Thank You<br />We would like to thank <br />Kin Wah Fung, <br />Olivier Bodenreider, <br />Jan Willis <br />Lan Aronson <b...
Upcoming SlideShare
Loading in...5
×

Amia2009

402

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
402
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • The objective of this work was to develop tools to automatically computer the semantic similarity between two concepts in the biomedical domain using measures originally developed for general EnglishWe obtain these biomedical concepts from the Unified Medical Language System UMLS
  • The Unified Medical Language System (UMLS) which is a knowledge representation framework consisting of three main components: 1. The Metathesaurus2. The Semantic Network3. The Specialist LexiconOur focus with respect to these packages is the Metathesaurus
  • The Metathesaurus integrates biomedical concepts from over 100 controlled medical terminologies into a single sourceThe concepts from the terminologies or often called source vocabularies are referred as Atomic Unique Identifiers (AUIs). These AUIs are semi-automatically clustered into Concept Unique Identifiers CUIs
  • For example, two source vocabularies in the Metathesaurus are MSH and SNOMEDCT In MSH and SNOMEDCT there exists a concept for “Cold Temperature” these AUIs are combined to form a CUI for the concept Cold Temperature
  • These concepts from the source vocabularies may be encoded with information about the concept such as its definition or relationship with other conceptsThis information encoded at the AUI level may be obtained through their respective CUIs
  • For example, in MSH there exists an is-a relationship between the concepts Cold Temperature and TemperatureThis is carried over as a PAR/CHD between the CUIs Cold Temperature and TemperatureThe Metathesaurus keeps track of where the relationships originated
  • So for example,If a relationship existed between Low Temperature and Temperature in SNOMED CT – this also would be carried to the CUI level
  • Creating two entries in the Metathesaurus for the same pair of CUIs – one for each source.
  • This relation information is stored in two tables in the Metathesaurus. MRHIER which stores the relations between AUIs in their respective sourcesAnd MRREL which stores the relations between CUIs.
  • MRHIER contains the full path to root relations between the AUI for each of the different sourcesMRREL contains the pairwise relations between the CUIs derived from these sources. These relations are labeled PAR/CHD relations in MRRELMRREL contains other types of relations - the two considered hierarchical in the literature are the PAR/CHD relations and the RB/RN (broader or narrower)It is possible to generate MRHIER from MRREL through the PAR/CHD relations for most sources although this is not the case for all of them. For example, MSH because a MSH concept may have different children depending on their location within the hierarchy.NOTES: don’t readthe full path-to-root is a transitive closure of the pairwise PAR/CHD relations which does not hold true for MSH because a MSH concept may have different children depending on their location within the hierarchy
  • There are benefits to using either the AUI hierarchy in MRHIER and the CUI hierarchy in MRREL The benefit of using CUIs is that ability to obtain the path information between in concepts in different sources and over relations outside of just the PAR/CHD relation But the benefit of using AUIS is that the PAR/CHD path information between concepts incorporates the tree positional information for the sources that use this information such as MSH.Currently, there is one package that we know of that obtains path information using MRHIER which is UMLS-Query by Shah and Musen
  • The UMLS-Interface package is a perl interface to the UMLS which is present locally in a MySQL databaseIts main purpose is to return path information about CUIs using information from MRREL such as all of the possible paths from the CUI to the root given a specified set of sources and relations
  • UMLS-Similarity package is a Perl package that allows you to take the semantic similarity between two CUIs given a specified set of sources and relationsThe measure currently implemented in UMLS-Similarity are the path based measures proposed by Leacock and Chodorow Wu and Palmer Nguyen and Al-MubaidAnd the conceptual distance measure proposed by Rada, at. Al. and the path measureThese measure are called path-based measures because they rely on the location of the concepts in a hierarchy – the path information is obtained from the UMLS-Interface package which returns the path information given a set of specified sources and relations
  • In the next couple slides I am going to show and example using the path measure which is one over the number of nodes in the shortest path between two concepts
  • So in this example would like to calculate the similarity between Limbs and Body Region using the path measure given a set of specified sourcesUsing MSH, the similarity is going to be one over one since there is only one link between the two concepts although when using SNOMEDCT the similarity is ½ since there are two links between the two concepts. If we combine the MSH and SNOMEDCT sources the similarity is going to be one over the number of links in the shortest path between the two concept which would be one.
  • So in this example would like to calculate the similarity between Limbs and Body Region using the path measure given a set of specified sourcesUsing MSH, the similarity is going to be one over one since there is only one link between the two concepts although when using SNOMEDCT the similarity is ½ since there are two links between the two concepts. If we combine the MSH and SNOMEDCT sources the similarity is going to be one over the number of links in the shortest path between the two concept which would be one.
  • So in this example would like to calculate the similarity between Limbs and Body Region using the path measure given a set of specified sourcesUsing MSH, the similarity is going to be one over one since there is only one link between the two concepts although when using SNOMEDCT the similarity is ½ since there are two links between the two concepts. If we combine the MSH and SNOMEDCT sources the similarity is going to be one over the number of links in the shortest path between the two concept which would be one.
  • So in this example would like to calculate the similarity between Limbs and Body Region using the path measure given a set of specified sourcesUsing MSH, the similarity is going to be one over one since there is only one link between the two concepts although when using SNOMEDCT the similarity is ½ since there are two links between the two concepts. If we combine the MSH and SNOMEDCT sources the similarity is going to be one over the number of links in the shortest path between the two concept which would be one.
  • And in this example we would like to calculate the similarity between Limbs and Body Region using the path measure given a set of specified sourcesUsing PAR/CHD relations, the similarity is going to be one over one since there is only one link between the two concepts although when using the RB/RN the similarity is ½ since there are two links between the two concepts. If we combine the PAR/CHD and RB/RN relations the similarity is going to be one over the number of links in the shortest path between the two concept which would be one.
  • And in this example we would like to calculate the similarity between Limbs and Body Region using the path measure given a set of specified sourcesUsing PAR/CHD relations, the similarity is going to be one over one since there is only one link between the two concepts although when using the RB/RN the similarity is ½ since there are two links between the two concepts. If we combine the PAR/CHD and RB/RN relations the similarity is going to be one over the number of links in the shortest path between the two concept which would be one.
  • And in this example we would like to calculate the similarity between Limbs and Body Region using the path measure given a set of specified sourcesUsing PAR/CHD relations, the similarity is going to be one over one since there is only one link between the two concepts although when using the RB/RN the similarity is ½ since there are two links between the two concepts. If we combine the PAR/CHD and RB/RN relations the similarity is going to be one over the number of links in the shortest path between the two concept which would be one.
  • And in this example we would like to calculate the similarity between Limbs and Body Region using the path measure given a set of specified sourcesUsing PAR/CHD relations, the similarity is going to be one over one since there is only one link between the two concepts although when using the RB/RN the similarity is ½ since there are two links between the two concepts. If we combine the PAR/CHD and RB/RN relations the similarity is going to be one over the number of links in the shortest path between the two concept which would be one.
  • We compare the results obtained by UMLS-Similarity to those reported by Pedersen, et. Al. Nguyen and Al-Mubaid and Caviedes and Cimino
  • Pedersen evaluate the semantic similarity measure proposed by Leacock and Chodorow and the path measure using SNOMEDCT prior to its inclusion in the UMLS Their dataset consists of 29 medical term pairs whose similarity was determined by 9 Medical Coders and 3 Physicians using a 4 point scale where four indicates that the terms are practically synonymous and 1 indicates that they are unrelatedThe authors evaluate the measures by determining the correlation between the human annotations and the measures using Spearman’s rank correlation coefficient
  • We compare the correlation results obtained by UMLS-Similarity on the same dataset using SNOMEDCT and the PAR/CHD relations in the 2008AB version of the UMLS
  • The results show that the correlationobtained by UMLS-Similarity and the human annotators when using the path measure is only one percentage point lower than those obtained by Pedersen, et. Al. and the results obtained using the measure proposed by Leacock and Chodorow are identical to those obtained by Pedersen, et. al.
  • The results show that the correlationobtained by UMLS-Similarity and the human annotators when using the path measure is only one percentage point lower than those obtained by Pedersen, et. Al. and the results obtained using the measure proposed by Leacock and Chodorow are identical to those obtained by Pedersen, et. al.
  • Nguyen (Wing) and Al-Mubaid evaluate the semantic similarity methods proposed by Leacock and Chodorow, and Wu and Palmer, their own proposed measure and the path measure using the Medical Subject Headings MSH – the actual MSH source not the source integrated in the UMLS. They use the same dataset as Pedersen and evaluate the measure by determining the correlation between the human annotations using Spearman’s Rank Correlation Coefficient
  • We compare the correlation results obtained by UMLS Similarity using MSH and the PAR/CHD relations in the 2008AB version of the UMLS
  • The results show that UMLS-Similarity obtains a lower correlation than those reported by Nguyen and Al-Mubaid for each of the semantic similarity measures.
  • Lastly we compare the results of the UMLS-Similarity package with those obtained by Caviedes and CiminoCaviedes and Cimino evaluate the Conceptual distance measure proposed by Rada, et. Al. on 10 medical terms pairs
  • Caviedes and Cimino use the PAR/CHD relations in MSH to determine the Conceptual Distance for each pair of terms. We compare the actual conceptual distance score obtained by Caviedes and Cimino with those obtained by UMLS-Similarity using MSH and the PAR/CHD relations from the UMLS version 2008AB.
  • The results show that the UMLS-Similarity obtains the same conceptual distance as Caviedes and Cimino for six out of the ten pairs. The remaining four pairs are only off by one point.
  • The results show that the UMLS-Similarity obtains the same conceptual distance as Caviedes and Cimino for six out of the ten pairs. The remaining four pairs are only off by one point.
  • The results show that UMLS-Similarity can be used to reproduce the results reported by Pedersen et al and Caviedes and CiminoWe believe that the minor differences in results are due to different versions of the source vocabularies that were used
  • We believe the difference in the results is due to :Different versions of MSH being used to conduct the experimentPossibly different mappings of the terms to CUIs in MSHThe path information used by Nguyen (Wing) and Al-Mubaid to determine the semantic similarity comes directly from MSH which in the UMLS would be located in the MRHEIR and the PAR/CHD relations in MRRELBut with MSH, the exact path-to-root information for each of the concepts can not be generated in MRREL because a MSH concept may have different children depending on its position in the hierarchy
  • So In conclusion the UMLS-Interface can be used to obain the path information about a CUI given a specified set of sources and relationsUMLS-Similarity can be used to determine the semantic similarity between two CUIs in the UMLSCurrently, there are five path-based semantic similarity measures included in the package: Conceptual Distance proposed by Rada, et. Al.The measures proposed by Leacock and Chodorow, Wu and Palmer and Nguyen and Al-Mubaid and the path measure
  • In the future, For UMLS-Interface, we plan to improve the efficiency in which the path information of a CUI is stored And For UMLS-Similarity, we plan to incorporate other semantic similarity and relatedness measures such as the information-content semantic similarity measures proposed by Resnik, Jiang and Conrath and LinAnd the semantic relatedness measure proposed by Patwardhan.
  • So, this wraps up my presentation about UMLS-Interface and UMLS-Similarity. I have two take home messages that I hope that you remember from this talk. The first is that UMLS-Interface can reliably be used to extract path information about a CUI given a specified set of sources and relations
  • The second is that UMLS-Similarity can reliably be used to determine the semantic similarity between two CUIs
  • UMLS-Interface and UMLS-Similarity can both be downloaded from CPAN. I do have a demo set up on my laptop so if you are interested please let me know and I can show you during the break.Thank you - are there any questions
  • Amia2009

    1. 1. UMLS-Interface and UMLS-Similarity: Open Source Software for Measuring Paths and Semantic Similarity<br />Bridget McInnes<br />Ted Pedersen <br />Serguei Pakhomov<br />1<br />11/17/2009<br />
    2. 2. Objective<br />Develop tools to automatically compute the semantic similarity between two concepts in the biomedical domain using measures originally developed for general English using the Unified Medical Language System (UMLS)<br />2<br />
    3. 3. Motivation<br />Clustering symptoms and disorders found in the text of clinical reports for post marking medication safety and surveillance<br />Identification of patients for clinical studies<br />Improving the sensitivity of document retrieval of scientific journals and clinical reports<br />Development of terminologies and ontologies<br />Clustering of biomedical documents<br />Word sense disambiguation<br />3<br />
    4. 4. Unified Medical Language System<br />Knowledge representation framework <br />Contains 3 Main components:<br />Metathesaurus<br />Semantic Network<br />SPECIALIST Lexicon<br />4<br />
    5. 5. Metathesaurus<br />Semi-automatically integrates biomedical concepts from over a 100 controlled medical terminologies <br />Source vocabularies are organized based on their Atomic Unique Identifiers<br />Metathesaurus is organized based on their Concept Unique Identifier (CUI)<br />5<br />
    6. 6. Concept Unique Identifiers (CUIs)<br />6<br />CUI C0009264<br />Cold Temperature<br />AUI A15588749<br />Cold Temperature<br />AUI A3292554<br />Low Temperature<br />MSH<br />SNOMED-CT<br />
    7. 7. CUI Information<br />The concepts (AUIs) from the source vocabularies may contain information about the concept such as its<br />Definition<br />Relation information between the concepts<br />The information from the AUIs can be obtained through their respective CUIs<br />7<br />
    8. 8. Relations between CUIs in MSH<br />8<br />AUI A0123939<br /> Temperature<br />is-a<br />AUI A15588749<br />Cold Temperature<br />CUI C0039476<br /> Temperature<br />PAR/CHD<br /> (MSH)<br />CUI C0009264<br />Cold Temperature<br />MSH<br />
    9. 9. Relations between CUIs in SNOMED-CT<br />9<br />AUI A2887140<br /> Temperature<br />is-a<br />AUI A3292554<br />Low Temperature<br />CUI C0039476<br /> Temperature<br />PAR/CHD<br /> (SNOMED-CT)<br />CUI C0009264<br />Cold Temperature<br />SNOMED-CT<br />
    10. 10. Multiple Relations<br />10<br />PAR/CHD<br /> (SNOMED-CT)<br />CUI C0039476<br /> Temperature<br />CUI C0009264<br />Cold Temperature<br />CUI C0039476<br /> Temperature<br />PAR/CHD<br /> (MSH)<br />CUI C0009264<br />Cold Temperature<br />
    11. 11. Relation Information<br />11<br />MRHIER<br />MRREL<br />AUI A0123939<br /> Temperature<br />CUI C0039476<br /> Temperature<br />Relation<br />Relation<br />AUI A15588749<br />Cold Temperature<br />CUI C0009264<br />Cold Temperature<br />
    12. 12. MRREL and MRHIER<br />MRHIER <br />Contains the full path to root relations between AUIs from each of the sources<br />is-a<br />part-of<br />MRREL<br />Contains the pairwise relations between CUIs<br />Relations:<br />PAR/CHD<br />RB/RN<br />It is possible to generate MRHEIR from MRREL except for the following sources:<br />AIR<br />MSH<br />SNM2<br />USPMG<br />OMS<br />12<br />
    13. 13. CUI versus AUI Hierarchy<br />The benefit of using CUIs<br />Ability to obtain the relation information between concepts across sources<br />Ability to obtain the relation information between concepts using more than one type of relation:<br />PAR/CHD – parent/child (relation in MRHIER)<br />RB/RN – narrower/broader<br />SIB – sibling<br />RL – concepts are similar or ‘alike’<br />The benefit of using AUIs<br />Ability to obtain relation information (PAR/CHD) between concepts in the same source very quickly <br />incorporates tree positional information for sources such as MSH<br /> UMLS-Query by Shah and Musen, 2008 <br />13<br />
    14. 14. UMLS-Interface<br />Perl interface to the UMLS present locally in a MySQL database.<br />Its main purpose is to returns path information about CUIs using the relation information in MRREL <br />All possible paths to the root<br />Shortest path between two concepts<br />14<br />
    15. 15. UMLS-Similarity<br />A suite of perl modules that implement a number of path-based semantic similarity measures to determine the similarity between two CUIs in the UMLS<br />Measures are path-based because they rely on the location of the concepts in a hierarchy<br />The path information is obtained using UMLS-Interface<br />Semantic Similarity Measures:<br />Path measure<br />Conceptual Distance (Rada, et. al, 1989)<br />Leacock and Chodorow, 1998<br />Wu and Palmer, 1994<br />Nguyen and Al-Mubaid, 2006<br />15<br />
    16. 16. Semantic Similarity Example<br />Path measure<br />16<br />1<br />Sim(c1,c2) = <br />N<br />where N = # links in the shortest path between the two concepts c1 and c2<br />
    17. 17. Similarity Given Specified Sources<br />17<br />C0005898<br />Body <br />Regions<br />PAR<br /> (SNOMED-CT)<br />C0229962<br />Anatomic Part<br />PAR<br />(MSH)<br />C0015385<br />Limbs<br />PAR<br /> (SNOMED-CT)<br />
    18. 18. Similarity Given Specified Sources<br />18<br />C0005898<br />Body <br />Regions<br />PAR<br /> (SNOMED-CT)<br />C0229962<br />Anatomic Part<br />Similarity = 1/1<br />PAR<br />(MSH)<br />C0015385<br />Limbs<br />PAR<br /> (SNOMED-CT)<br />
    19. 19. Similarity Given Specified Sources<br />19<br />C0005898<br />Body <br />Regions<br />PAR<br /> (SNOMED-CT)<br />Similarity = 1/2<br />C0229962<br />Anatomic Part<br />PAR<br />(MSH)<br />C0015385<br />Limbs<br />PAR<br /> (SNOMED-CT)<br />
    20. 20. Similarity Given Specified Sources<br />20<br />C0005898<br />Body <br />Regions<br />PAR<br /> (SNOMED-CT)<br />Similarity = 1/1<br />C0229962<br />Anatomic Part<br />PAR<br />(MSH)<br />C0015385<br />Limbs<br />PAR<br /> (SNOMED-CT)<br />
    21. 21. Similarity Given Specified Relations<br />21<br />C0005898<br />Body <br />Regions<br />RB<br />(MSH)<br />C0229962<br />Anatomic Part<br />PAR<br />(MSH)<br />C0015385<br />Limbs<br />RB<br />(MSH)<br />
    22. 22. Similarity Given Specified Relations<br />22<br />C0005898<br />Body <br />Regions<br />RB<br />(MSH)<br />C0229962<br />Anatomic Part<br />Similarity = 1/1<br />PAR<br />(MSH)<br />C0015385<br />Limbs<br />RB<br />(MSH)<br />
    23. 23. Similarity Given Specified Relations<br />23<br />C0005898<br />Body <br />Regions<br />Similarity = 1/2<br />RB<br />(MSH)<br />C0229962<br />Anatomic Part<br />PAR<br />(MSH)<br />C0015385<br />Limbs<br />RB<br />(MSH)<br />
    24. 24. Similarity Given Specified Relations<br />24<br />C0005898<br />Body <br />Regions<br />Similarity = 1/1<br />RB<br />(MSH)<br />C0229962<br />Anatomic Part<br />PAR<br />(MSH)<br />C0015385<br />Limbs<br />RB<br />(MSH)<br />
    25. 25. Functional Validation<br />Comparison with Previous Work:<br />Pedersen, et al. 2007<br />Nguyen and Al-Mubaid, 2006<br />Caviedes and Cimino, 2004<br />25<br />
    26. 26. Pedersen, et al. <br />Semantic Similarity Measures<br />Path<br />Leacock and Chodorow, 1998<br />Source<br />SNOMEDCT<br />Data<br />29 medical terms pairs <br />Similarity determined by:<br />9 Medical Coders<br />3 Physicians<br />4 Point Scale<br />4 – practically synonymous<br />3 – related<br />2 – marginally related<br />1 - unrelated <br />Spearman’s Rank Correlation Coefficient<br />26<br />
    27. 27. Comparison with Pedersen, et al.<br />Semantic Similarity Measures<br />Path<br />Leacock and Chodorow, 1998<br />Source: SNOMED-CT from UMLS 2008AB<br />Relations: PAR/CHD<br />Comparison with human annotations<br />Spearman Rank Correlation Coefficient<br />27<br />
    28. 28. Comparison with Pedersen, et al.<br />28<br />
    29. 29. Comparison with Pedersen, et al.<br />29<br />
    30. 30. Nguyen and Al-Mubaid<br />Semantic Similarity Measures<br />Nguyen and Al-Mubaid, 2006<br />Leacock and Chodorow, 1998<br />Wu and Palmer, 1994<br />Path<br />Source: MSH<br />Same Dataset created by Pedersen, et al. <br />Data<br />29 medical terms pairs <br />Similarity determined by:<br />9 Medical Coders<br />3 Physicians<br />Spearman’s Rank Correlation Coefficient<br />30<br />
    31. 31. Comparison with Nguyen and Al-Mubaid<br />Semantic Similarity Measures<br />Nguyen and Al-Mubaid, 2006<br />Leacock and Chodorow, 1998<br />Wu and Palmer, 1994<br />Path<br />Source: MSH from UMLS 2008AB<br />Relations: PAR/CHD<br />Comparison with human annotations<br />Spearman Rank Correlation Coefficient<br />31<br />
    32. 32. Comparison with Nguyen and Al-Mubaid<br />32<br />
    33. 33. Caviedes and Cimino<br />Semantic Similarity Measure<br />Conceptual Distance – Rada, et al.<br />Source: MSH<br />Relations: PAR/CHD<br />Data<br />10 medical terms pairs using following CUIs<br />Digestive system disease: C0012242<br />Peptic esophagitis: C0014869<br />Psychotherapy: C0033968<br />Thirst: C0039971<br />Thoracic duct: C0039979<br />33<br />
    34. 34. Comparison with Caviedes and Cimino<br />Semantic Similarity Measures<br />Conceptual Distance <br />Originally proposed by Rada, et. al., 1989<br />Source: MSH from UMLS 2008AB<br />Relations: PAR/CHD<br />Comparison between the Conceptual Distance Scores<br />34<br />
    35. 35. Comparison with Caviedes and Cimino<br />35<br />
    36. 36. Comparison with Caviedes and Cimino<br />36<br />
    37. 37. Results<br />The results show that UMLS-Similarity can be used to reproduce the results reported by:<br />Pedersen, et al.<br />Caviedes and Cimino<br />37<br />
    38. 38. Results<br />The correlation results obtained by UMLS-Similarity and reported by Nguyen and Al-Mubaid vary<br />Different versions of MSH were used to conduct the experiment<br />Possibly different mappings of the terms to CUIs in MSH were used<br />Information used by Nguyen and Al-Mubaid comes directly from MSH which is located in MRHEIR and as PAR/CHD relations in MRREL <br />It is not possible to generate MRHIER from MRREL because the full path-to-root is a transitive closure of the pairwise PAR/CHD relations which does not hold true for MSH because a MSH concept may have different children depending on its tree position<br />38<br />
    39. 39. Conclusions<br />UMLS-Similarity<br />Used to determine the similarity between two concepts given a specified set of sources and relations<br />Contains the following similarity measures<br />Path measure<br />Conceptual Distance proposed Rada, et. al. 1989 <br />Leacock and Chodorow, 1998<br />Wu and Palmer, 1994<br />Nguyen and Al-Mubaid, 2006<br />UMLS-Interface<br />Used to obtain path information about a CUI given a specified set of sources and relations<br />39<br />
    40. 40. Future Work<br />UMLS-Interface<br />Improve the efficiency in which the path information is stored <br />UMLS-Similarity<br />Information Content Similarity Measures<br />Resnik, 1995<br />Jiang and Conrath, 1997<br />Lin, 1997<br />Relatedness Measures<br />Patwardhan, 2003<br />40<br />
    41. 41. Take Home Message #1<br />41<br />UMLS-Interface can used to extract path information about a concept given a specified <br />set of sources and relations.<br />
    42. 42. Take Home Message #2<br />42<br />UMLS-Similarity can be used to compute the semantic similarity between two concepts given a specified set of sources and relations.<br />
    43. 43. UMLS-Interface<br />http://search.cpan.org/dist/UMLS-Interface<br />UMLS-Similarity<br />http://search.cpan.org/dist/UMLS-Similarity<br />43<br />Availability<br />
    44. 44. Thank You<br />We would like to thank <br />Kin Wah Fung, <br />Olivier Bodenreider, <br />Jan Willis <br />Lan Aronson <br />The research was supported in parts by:<br />Fellowships:<br />NLM Research Participation Program <br />GAANN fellowship from US Dept. of Ed.<br />Grants <br />IR01LM009623-01A2 from NIH, NLM<br />44<br />
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×