Your SlideShare is downloading. ×
0
PROPIEDADES ELÁSTICAS DE SÓLIDOS
PROPIEDADES ELÁSTICAS DE SÓLIDOS
PROPIEDADES ELÁSTICAS DE SÓLIDOS
PROPIEDADES ELÁSTICAS DE SÓLIDOS
PROPIEDADES ELÁSTICAS DE SÓLIDOS
PROPIEDADES ELÁSTICAS DE SÓLIDOS
PROPIEDADES ELÁSTICAS DE SÓLIDOS
PROPIEDADES ELÁSTICAS DE SÓLIDOS
PROPIEDADES ELÁSTICAS DE SÓLIDOS
PROPIEDADES ELÁSTICAS DE SÓLIDOS
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

PROPIEDADES ELÁSTICAS DE SÓLIDOS

63,081

Published on

Presentacion sobre las Propiedades Elásticas de los sólidos

Presentacion sobre las Propiedades Elásticas de los sólidos

Published in: Education
1 Comment
4 Likes
Statistics
Notes
No Downloads
Views
Total Views
63,081
On Slideshare
0
From Embeds
0
Number of Embeds
12
Actions
Shares
0
Downloads
523
Comments
1
Likes
4
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. MÓDULO DE ELASTICIDAD Diego Torres UTPL
  • 2. ELASTICIDAD La elasticidad hace referencia, a que cualquier objeto puede cambiar la forma o el tamaño, o ambos cuando se le aplican fuerzas externas, en otras palabras todos los objetos son deformables en cierta medida. Sin embargo, cuando se aplican estos cambios en el objeto, las fuerzas internas de este resisten a la deformación La elasticidad es un comportamiento mecánico reversible sin creación de discontinuidades en el material. Esto quiere decir que una vez producido el proceso de deformación, es posible volver al mismo estado inicial pasando por todos los estados intermedios e invirtiendo todas las interacciones que se hubieran producido con el entorno, de forma que, en el ciclo cerrado (ida y vuelta) no quede ningún efecto del proceso.
  • 3. MÓDULO DE ELASTICIDAD La deformación de los sólidos se explica en términos de los conceptos de esfuerzo y deformación. El esfuerzo es una cantidad proporcional a la fuerza que causa una deformación. El resultado de un esfuerzo es una deformación. Para esfuerzos sumamente pequeños, el esfuerzo es proporcional a la deformación; la constante de proporcionalidad depende del material que se deforma y de la naturaleza de la deformación. A esta constante se la llama Módulo de Elasticidad El módulo de elasticidad se define como la proporción del esfuerzo a la deformación resultante.
  • 4. MÓDULO DE ELASTICIDAD El Módulo de Elasticidad, relaciona lo que se hace a un objeto sólido (se aplica una fuerza) como responde dicho objeto(se deforma en cierta medida). Se consideran tres tipos de deformación, y se define un módulo de elasticidad para cada uno:
    • Módulo de Young: Mide la resistencia de un sólido a un cambio en su longitud
    • Módulo de Corte: Mide la resistencia al movimiento de los planos dentro de un sólido paralelos unos con otros
    • Módulo Volumétrico: Mide la resistencia de los sólidos o líquidos a cambios en su volumen
  • 5. MÓDULO DE ELASTICIDAD Módulo de Young Considere una barra larga con área de sección transversal A , y longitud L i , que se sujeta con una pinza en un extremo. Cuando se aplica una fuerza externa perpendicular a la sección transversal, fuerzas internas en la barra resisten la distorsión. Pero la barra llega a una situación de equilibrio en la que su longitud final L f , es mayor que L i y en la que la fuerza externa se equilibra exactamente mediante fuerzas externas. En tal situación, se dice que la barra está sobrecargada. L i ∆ L A
  • 6. El esfuerzo de tracción, se define como la relación de la magnitud de la fuerza externa F al área de sección transversal A . La deformación por tensión se define como la relación del cambio en longitud ∆L a la longitud original ∆L i . El Módulo de Young se define mediante la combinación de estas dos relaciones: MÓDULO DE ELASTICIDAD Módulo de Young L i ∆ L A
  • 7. MÓDULO DE ELASTICIDAD Módulo de Corte Otro tipo de deformación se presenta cuando el objeto se somete a una fuerza paralela a una de sus caras mientras la cara opuesta se mantiene fija mediante otra fuerza. En este caso, el esfuerzo se llama esfuerzo de corte. Si al inicio el objeto es un bloque rectangular, un esfuerzo de corte resulta en una forma cuya sección transversal es un paralelogramo. El esfuerzo de corte se define como F/A , la relación de la fuerza tangencial al área A de la cara a cortar. La deformación de corte se define como la relación ∆ x/h , donde ∆ x es la distancia horizontal que se mueve la cara cortada y h es la altura del objeto. En términos de estas cantidades, el Módulo de Corte es:
  • 8. El módulo volumétrico caracteriza la respuesta de un objeto a cambios en una fuerza de magnitud uniforme aplicada perpendicularmente sobre toda la superficie del objeto. Tal distribución uniforme de fuerzas se presentan cuando un objeto está sumergido en un fluido. Un objeto sometido a este tipo de deformación se somete a un cambio en volumen pero no un cambio en forma. MÓDULO DE ELASTICIDAD Módulo Volumétrico V i . + ∆ V V i
  • 9. MÓDULO DE ELASTICIDAD Módulo Volumétrico El esfuerzo volumétrico se define como la relación de la magnitud de la fuerza total F ejercida sobre una superficie al área A de la superficie. La cantidad P= F/A se llama presión . Si la presión sobre un objeto cambia en una cantidad ∆ P= ∆ F/A , el objeto experimenta un cambio de volumen ∆ V . La deformación volumétrica es igual al cambio en volumen ∆ V dividido por el volumen inicial V i . Por lo tanto, a partir de la ecuación de Módulo de elasticidad, una compresión volumétrica se caracteriza en términos del módulo volumétrico , que se define como: En esta ecuación se inserta un signo negativo de modo que B es un número positivo. Esta maniobra es necesaria porque un aumento en presión ( ∆ P positivo ) causa una disminución en volumen ( ∆ V negativo ) y viceversa
  • 10. MÓDULO DE ELASTICIDAD Valores representativos para módulos elásticos En esta tabla no se proporcionan valores de Módulo de Young ni Módulo de Corte para líquidos, porque un líquido no sostiene un esfuerzo de corte o un esfuerzo de tensión. Si una fuerza cortante o una fuerza de tensión se aplican a un líquido, el líquido simplemente fluye como respuesta Sustancia Módulo de Young (N/m 2 ) Módulo de Corte (N/m 2 ) Módulo Volumétrico (N/m 2 ) Tungsteno 35 x 10 10 14 x 10 10 20 x 10 10 Acero 20 x 10 10 8.4 x 10 10 6 x 10 10 Cobre 11 x 10 10 4.2 x 10 10 14 x 10 10 Latón 9.5 x 10 10 3.5 x 10 10 6.1 x 10 10 Aluminio 7 x 10 10 2.5 x 10 10 7 x 10 10 Vidrio 6.5-7.8 x 10 10 2.6-3.2 x 10 10 5.0-5.5 x 10 10 Cuarzo 5.6 x 10 10 2.6 x 10 10 2.7 x 10 10 Agua --- --- 0.21 x 10 10 Mercurio --- --- 2.8 x 10 10

×