SlideShare a Scribd company logo
1 of 57
Download to read offline
CHAPTER 10  Fundamentals of the Metal–Oxide–
Semiconductor Field‐Effect Transistor
• Study the characteristics of energy bands as a function of applied 
voltage in the metal–oxide–semiconductor structure known as the 
MOS capacitor. The MOS capacitor is the heart of the MOSFET.
• Discuss the concept of surface inversion in the semiconductor of the 
MOS capacitor.
• Define and derive the expression for the threshold voltage, which is a 
basic parameter of the MOSFET.
• Discuss various physical structures of MOSFETs, including 
enhancement and depletion mode devices.
• Derive the ideal current–voltage relationship of the MOSFET.
• Develop the small‐signal equivalent circuit of the MOSFET. This circuit 
is used to relate small‐signal currents and voltages in analog circuits.
• Derive the frequency limiting factors of the MOSFET.
1
2
10.1 | THE TWO‐TERMINAL MOS 
STRUCTURE
The parameter tox in the figure is the 
thickness of the oxide and εox is the 
permittivity of the oxide.
10.1.1    Energy‐Band Diagrams
3
Figure 10.4a shows the ideal case when zero bias is applied across the MOS 
device. The energy bands in the semiconductor are flat indicating no net 
charge exists in the semiconductor. This condition is known as flat band
4
• positive electron energy is plotted 
“upward” and positive voltage is 
plotted “downward.”
• Figure 10.5 shows that the intrinsic 
Fermi level at the surface is now 
below the Fermi level.
• created an inversion layer of 
electrons at the oxide–
semiconductor interface.
The same type of energy‐band diagrams can be constructed for a MOS capacitor 
with an n‐type semiconductor substrate.
5
Figure 10.7c shows the energy 
bands when a larger negative 
voltage is applied to the gate. 
The conduction and valence 
bands are bent even more and 
the intrinsic Fermi level has 
moved above the Fermi level.
6
10.1.2 Depletion Layer Thickness
The potential φs is called the 
surface potential; it is the 
difference (in V) between EFi
measured in the bulk 
semiconductor and EFi measured 
at the surface.
The space charge width Xd,
εs is the permittivity of the 
semiconductor.
7
• The electron concentration at the surface is the same as the hole concentration in 
the bulk material. This condition is known as the threshold inversion point. The 
applied gate voltage creating this condition is known as the threshold voltage.
• If the gate voltage increases above this threshold value, the conduction band will 
bend slightly closer to the Fermi level, but the change in the conduction band at the 
surface is now only a slight function of gate voltage.
• The electron concentration at the surface is an exponential function of the surface 
potential. The surface potential may increase by a few (kT/e) volts, which will 
change the electron concentration by orders of magnitude, but the space charge 
width changes only slightly. In this case, then, the space charge region has 
essentially reached a maximum width.
Figure 10.9 shows the energy 
bands for the case in which 
φs=2φfp. The Fermi
level at the surface is as far 
above the intrinsic level as 
the Fermi level is below the
intrinsic level in the bulk 
semiconductor. 
8
9
10.1.3 Surface Charge Density
10
the inversion charge density increases by a 
factor of 10 with a 60‐mV increase in surface 
potential. 
the electron inversion charge density increases 
rapidly with small increases in surface potential, 
which means that the space charge width 
essentially reaches a maximum value.
11
10.1.4 Work Function Differences
The metal work function is φm and the electron affinity is x. The parameter xi  
is the oxide electron affinity and, for SiO2, xi= 0.9 V.
φm’ as a modified metal work function—the potential required to 
inject an electron from the metal into the conduction band of the 
oxide. Similarly, x’ is defined as a modified electron affinity. The 
voltage Vox0  is the potential drop across the oxide for zero applied 
gate voltage . The potential φs0 is the surface potential for this case.
12
Degenerately doped polysilicon is used as the metal gate. 
13
Figure 10.15 shows the energy‐
band diagram of the MOS 
capacitor with a n‐type substrate, 
14
10.1.5    Flat‐Band Voltage
The flat‐band voltage is defined as the 
applied gate voltage such that there is no 
band bending in the semiconductor and, as 
a result, zero net space charge in this 
region.
15
an equivalent trapped charge per unit area, Q’ss, is located in the oxide 
directly adjacent to the oxide–semiconductor interface. 
The positive charge has been identified with broken or dangling covalent 
bonds near the oxide–semiconductor interface. 
16
Comment of Ex 10.3
The applied gate voltage 
required to achieve the flat‐band 
condition for this p‐type 
substrate is negative. If the 
amount of fixed oxide charge 
increases, the flat‐band voltage 
becomes even more negative.
17
10.1.6 Threshold Voltage
The threshold inversion point, in turn, is defined as the
condition when the surface potential is φs=2φfp for the p‐type semiconductor 
and Φs=2φfn for the n‐type semiconductor
The space charge width has reached 
its maximum value. 
There is an equivalent
oxide charge Q’ss and the positive 
charge on the metal gate at 
threshold is Q’mT. 
neglect the inversion layer charge at this 
threshold inversion point.
18
where VoxT is the voltage across the 
oxide at this threshold inversion point.
19
Extremely important !!
Ex 10.4 The semiconductor is fairly lightly doped, which, in conjunction with the 
positive charge in the oxide and the work function difference, is sufficient to 
induce an electron inversion layer charge even with zero applied gate voltage. 
This condition makes the threshold voltage negative.
20
• for various positive oxide charge 
values.
• the p‐type semiconductor must 
be somewhat heavily doped in 
order to obtain an enhancement 
mode device.
More Na VTN , more positive
The same type of derivation can 
be done with an n‐type 
semiconductor substrate, 
21
for all values of positive oxide charge
More Nd, VTP more negative
Ex 10.5, The solution to this design problem is not straight 
forward, since the doping concentration parameter appears in 
the terms φfn, xdT, Q’sD (max), and φms. The threshold voltage, 
then, is a nonlinear function of Nd. We resort to trial and error to 
obtain a solution.
22
10.2 | CAPACITANCE–VOLTAGE CHARACTERISTICS
10.2.1    Ideal C–V Characteristics
There are three operating conditions of interest in the MOS 
capacitor: accumulation, depletion, and inversion.
23
24
inversion
25
Low frequency C‐V
The three dashed segments cor‐
respond to the three components Cox, 
CSCD, and C ‘min. The solid curve is 
the ideal net capacitance of the MOS 
capacitor. 
26
There are two sources of electrons that can change the charge density of 
the inversion layer. The first source is by diffusion of minority carrier 
electrons from the p‐type substrate across the space charge region. This 
diffusion process is the same as that in a reverse‐biased pn junction that 
generates the ideal reverse saturation current. The second source of 
electrons is by thermal generation of electron–hole pairs within the 
space charge region. This process is again the same as that in a reverse‐
biased pn junction generating the reverse‐biased generation current. 
In the limit of a very high frequency, the inversion layer charge will not 
respond to a differential change in capacitor voltage.
10.2.2    Frequency Effects
27
At a high‐signal frequency, the 
differential change in charge occurs 
at the metal and in the space 
charge width in the semiconductor. 
The capacitance of the MOS 
capacitor is then C ‘min.
In general, high frequency 
corresponds to a value on the order 
of 1 MHz and low frequency 
corresponds to values in the range 
of 5 to 100 Hz. Typically, the high‐
frequency characteristics of the 
MOS capacitor are measured. 
28
10.2.3    Fixed Oxide and Interface Charge Effects
The C–V characteristics can be 
used to determine the equivalent 
fixed oxide charge. For a given 
MOS structure, φms and Cox are 
known, so the ideal flat‐band 
voltage and flat‐band capacitance 
can be calculated. The 
experimental value of flat‐band 
voltage can be measured from the 
C–V curve, and the value of fixed 
oxide charge can then be 
determined. The C–V 
measurements are a valuable 
diagnostic tool to characterize a 
MOS device. 
29
These allowed energy states are 
referred to as interface states. 
Charge can flow between the 
semiconductor and interface 
states, in contrast to the fixed 
oxide charge. The net charge in 
these inter face states is a 
function of the position of the 
Fermi level in the bandgap.
In general, acceptor states exist in the upper half of the bandgap and 
donor states exist in the lower half of the bandgap. An acceptor state 
is neutral if the Fermi level is below the state and becomes negatively 
charged if the Fermi level is above the state. A donor state is neutral if 
the Fermi level is above the state and becomes positively charged if 
the Fermi level is below the state. The charge of the interface states is 
then a function of the gate voltage applied across the MOS capacitor.
30
there is a net posi‐ tive charge 
trapped in the donor states.
there is now a net negative 
charge in the acceptor states.
31
C–V curves become “smeared out”
, Stretch out
Any “smearing out” in the experimental curve indicates the 
presence of interface states and any parallel shift indicates the 
presence of fixed oxide charge. The amount of smearing out 
can be used to determine the density of interface states. These 
types of measurement are extremely useful in the study of 
radiation effects on MOS devices.
32
10.3 | THE BASIC MOSFET OPERATION
the threshold voltage of a 
MOS device with a p‐type 
substrate may be negative;
The n‐channel can be an 
electron inversion layer or an 
intentionally doped n region. 
A positive gate voltage induces the 
electron inversion layer, which then 
“connects” the n‐type source and the 
n‐type drain regions.
33
In the p‐channel 
enhancement mode device, 
a negative gate voltage 
must be applied to create 
an inversion layer of holes 
that will “connect” the p‐
type source and drain 
regions. 
34
35
When VGS < VT, the drain current is zero. 
As VGS  becomes larger than VT, 
channel inversion charge density 
increases, which increases the channel 
conductance.
A larger value of gd produces a larger 
initial slope of the ID versus VDS  
characteristic
36
Figure 10.39b,
As the drain voltage increases, the voltage drop across the oxide near 
the drain terminal de‐ creases, which means that the induced 
inversion charge density near the drain also decreases. The 
incremental conductance of the channel at the drain decreases, which 
then means that the slope of the ID versus VDS  curve will decrease.
Figure 10.39c.
Figure 10.39d , 
When VDS  becomes larger than the VDS (sat) value, the point in 
the channel at which the inversion charge is just zero moves toward 
the source terminal. 
37
Figure 10.39d ,
Then, at the point where the charge goes to zero, the electrons are injected 
into the space charge region where they are swept by the E‐field to the drain 
contact. If we assume that the change in channel length  ∆L is small compared 
to the original length L, then the drain current will be a constant for VDS  > 
VDS (sat). The region of the ID  versus VDS  characteristic is referred to as the 
saturation region. 
• if VGS increases, the initial slope of ID 
versus VDS increases. 
• from Equation (10.43b) that the value of 
VDS (sat) is a function of VGS. 
38
• depletion mode,  the current–voltage characteristics are exactly the 
same as we have discussed, except that VT is a negative quantity. 
• a negative gate voltage will induce a space charge region under the 
oxide, reducing the thickness of the n‐channel region. 
• A positive gate voltage will create an electron accumulation layer, which 
increases the drain current.
• One basic requirement for this device is that the channel thickness tc
must be less than the maximum induced space charge width in order to 
be able to turn the device off. 
39
The operation of a p‐channel device is the same as that of the n‐channel 
device, except the charge carrier is the hole and the conventional current 
direction and voltage polarities are reversed.
40
*10.3.3    Current–Voltage Relationship—Mathematical Derivation
In this analysis, we make the following assumptions:
1.    The current in the channel is due to drift rather than diffusion.
2.    There is no current through the gate oxide.
3.    A gradual channel approximation is used in which éìEy/éìy > éìEx/éìx. This
approximation means that Ex is essentially a constant.
4.    Any fixed oxide charge is an equivalent charge density at the oxide–
semiconductor interface.
5.    The carrier mobility in the channel is constant.
σ= eμn n(y),  Q’n is the inversion layer 
charge per unit area and is a negative 
quantity
41
concept of charge neutrality,
The inversion layer charge and 
induced space charge are negative for 
this n‐channel device.
the contributions of surfaces 1 and 2 cancel 
each other. Surface 3 is in the neutral p 
region, so the electric field is zero at this 
surface.
42
need an expression for Eox.
43
44
45
A straight line is fitted through the points. The deviation from the 
straight line at low values of VGS is due to subthreshold conduction and 
the deviation at higher values of VGS is due to mobility being a function 
of gate voltage. 
for very small VDS
46
p‐channel enhancement mode MOSFET. 
The voltage polarities and current 
direction are the reverse of those in the 
n‐channel device. 
47
10.3.4    Transconductance
The transconductance increases as the width of the device increases, and it 
also increases as the channel length and oxide thick‐ ness decrease. 
10.3.5    Substrate Bias Effects (Body effects)
the source and body may not be at the same potential. 
The source‐to‐substrate pn junction must always be zero or reverse 
biased, so VSB  must always be greater than or equal to zero.
48
• these electrons are at a higher potential energy than are the electrons 
in the source. 
• The newly created electrons will move laterally and flow out of the 
source terminal. 
• When φs = 2φfp+VSB, the surface reaches an equilibrium inversion 
condition, as shown in Figure 10.50c. 
• The curve represented as EFn is the Fermi level from the p  substrate 
through the reverse‐biased source–substrate junction to the source 
contact.
• The space charge region width under the oxide increases from the original xdT
value when a VSB  > 0 is applied. 
49
50
Figure 10.51 shows plots of VID(sat) versus 
VGS for various applied values of VSB. The 
original threshold voltage is assumed to be 
VTO = 0.64 V.
10.4 | FREQUENCY LIMITATIONS
51
One parameter, rds, shown in Figure 10.53, is not shown in Figure 10.52. 
This resistance is associated with the slope ID versus VDS. 
52
10.4.2    Frequency Limitation Factors and Cutoff Frequency
• The first factor is the channel transit time. The transit time of carriers 
through the channel is usually not the limiting factor.
• The second limiting factor is the gate or capacitance charging time. 
53
The cutoff frequency fT is defined to be the frequency at which the 
magnitude of the current gain of the device is unity, or when the 
magnitude of the input current Ii is equal to the ideal load current Id. 
54
In the ideal MOSFET, the overlap or parasitic capacitances, Cgsp and Cgdp, 
are zero. Also, when the transistor is biased in the saturation region, Cgd
approaches zero and Cgs is approximately CoxWL. 
*10.5 | THE CMOS TECHNOLOGY
• In most cases, the p‐type substrate doping level must be larger than the n‐
type substrate doping level to obtain the desired threshold voltages. 
• The larger p doping can easily compensate the initial n doping to form the 
p well.
55
The notation FOX stands for field oxide, which is a relatively thick oxide 
separating the devices. 
The FOX prevents either the n or p substrate from becoming inverted and 
helps maintain isolation between the two devices. 
56
One major problem in CMOS circuits has been latch‐up. 
Latch‐up refers to a high‐current, low‐voltage condition that may occur in a 
four‐layer pnpn structure. 
under certain conditions, avalanche breakdown may occur in the p‐well to 
n‐ substrate junction, driving both bipolar transistors into saturation. 
This high‐current, low‐voltage condition—latch‐up—can sustain itself by 
positive feedback. 
57
Latch‐up can be prevented if the 
product βnβp  is less than unity at all 
times, where βn  and βp  are the 
common‐emitter current gains of the 
npn and pnp parasitic bipolar 
transistors
• One method of preventing latch‐up is to “kill” the minority carrier lifetime. 
Minority carrier lifetime degradation can be accomplished by gold doping 
or neutron irradiation.
• A second method of preventing latch‐up is by using proper circuit layout 
techniques. The two parasitic bipolar transistors can also be decoupled by 
using a different fabrication technology, the silicon‐on‐insulator 
technology.

More Related Content

What's hot (20)

Mos transistor
Mos transistorMos transistor
Mos transistor
 
Mosfet Operation and Charecteristics.
Mosfet Operation and Charecteristics.Mosfet Operation and Charecteristics.
Mosfet Operation and Charecteristics.
 
Second order effects
Second order effectsSecond order effects
Second order effects
 
Short channel effects
Short channel effectsShort channel effects
Short channel effects
 
Stick Diagram
Stick DiagramStick Diagram
Stick Diagram
 
Layout rules
Layout rulesLayout rules
Layout rules
 
Presentation on Scaling
Presentation on ScalingPresentation on Scaling
Presentation on Scaling
 
Mosfet
MosfetMosfet
Mosfet
 
MOSFET Discription Presentation
MOSFET Discription PresentationMOSFET Discription Presentation
MOSFET Discription Presentation
 
MOS Capacitor
MOS CapacitorMOS Capacitor
MOS Capacitor
 
MOS transistor 13
MOS transistor 13MOS transistor 13
MOS transistor 13
 
Matching concept in Microelectronics
Matching concept in MicroelectronicsMatching concept in Microelectronics
Matching concept in Microelectronics
 
Mos short channel effects
Mos short channel effectsMos short channel effects
Mos short channel effects
 
Mosfet
MosfetMosfet
Mosfet
 
Fabrication steps of IC
Fabrication steps of ICFabrication steps of IC
Fabrication steps of IC
 
Layouts
LayoutsLayouts
Layouts
 
MOSFETs
MOSFETsMOSFETs
MOSFETs
 
Electronics 1 : Chapter # 06 : Bipolar Junction Transistor
Electronics 1 : Chapter # 06 : Bipolar Junction TransistorElectronics 1 : Chapter # 06 : Bipolar Junction Transistor
Electronics 1 : Chapter # 06 : Bipolar Junction Transistor
 
Mosfet
MosfetMosfet
Mosfet
 
SPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELS
SPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELSSPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELS
SPICE LEVEL I/LEVEL II/LEVEL III AND BSIM MODELS
 

Similar to Fundamentals of the Metal–Oxide–Semiconductor Field‐Effect Transistor (MOSFET

Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
DESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICES
DESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICESDESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICES
DESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICESmsejjournal
 
DESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICES
DESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICESDESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICES
DESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICESmsejjournal
 
High Performance Germanium Double Gate N-MOSFET
High Performance Germanium Double Gate N-MOSFETHigh Performance Germanium Double Gate N-MOSFET
High Performance Germanium Double Gate N-MOSFETIJMER
 
A Comparative Study on Carbon Nanotube MOSFET, Silicon Nanowire MOSFET and Si...
A Comparative Study on Carbon Nanotube MOSFET, Silicon Nanowire MOSFET and Si...A Comparative Study on Carbon Nanotube MOSFET, Silicon Nanowire MOSFET and Si...
A Comparative Study on Carbon Nanotube MOSFET, Silicon Nanowire MOSFET and Si...Mukit Ahmed Chowdhury
 
Metal oxide-semiconductorfetmosfet-090615015822-phpapp02
Metal oxide-semiconductorfetmosfet-090615015822-phpapp02Metal oxide-semiconductorfetmosfet-090615015822-phpapp02
Metal oxide-semiconductorfetmosfet-090615015822-phpapp02zambaredn
 
small geometry effect and working of solar cell
small geometry effect and working of solar cellsmall geometry effect and working of solar cell
small geometry effect and working of solar cellShivank Rastogi
 
MOSFET, SOI-FET and FIN-FET-ABU SYED KUET
MOSFET, SOI-FET and FIN-FET-ABU SYED KUETMOSFET, SOI-FET and FIN-FET-ABU SYED KUET
MOSFET, SOI-FET and FIN-FET-ABU SYED KUETA. S. M. Jannatul Islam
 
Metal oxide-semiconductor (mos) fundamentals
Metal oxide-semiconductor (mos) fundamentalsMetal oxide-semiconductor (mos) fundamentals
Metal oxide-semiconductor (mos) fundamentalsBhaSkar Nath
 
Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications
Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications
Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications IOSRJECE
 
POWER ELECTRONICS
POWER ELECTRONICSPOWER ELECTRONICS
POWER ELECTRONICSsujimuthu2
 

Similar to Fundamentals of the Metal–Oxide–Semiconductor Field‐Effect Transistor (MOSFET (20)

Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Mosfet
MosfetMosfet
Mosfet
 
MOS Structure.pptx
MOS Structure.pptxMOS Structure.pptx
MOS Structure.pptx
 
DESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICES
DESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICESDESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICES
DESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICES
 
DESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICES
DESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICESDESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICES
DESIGN OF DIFFERENT DIGITAL CIRCUITS USING SINGLE ELECTRON DEVICES
 
Bo25391394
Bo25391394Bo25391394
Bo25391394
 
1576330771.pdf
1576330771.pdf1576330771.pdf
1576330771.pdf
 
High Performance Germanium Double Gate N-MOSFET
High Performance Germanium Double Gate N-MOSFETHigh Performance Germanium Double Gate N-MOSFET
High Performance Germanium Double Gate N-MOSFET
 
A Comparative Study on Carbon Nanotube MOSFET, Silicon Nanowire MOSFET and Si...
A Comparative Study on Carbon Nanotube MOSFET, Silicon Nanowire MOSFET and Si...A Comparative Study on Carbon Nanotube MOSFET, Silicon Nanowire MOSFET and Si...
A Comparative Study on Carbon Nanotube MOSFET, Silicon Nanowire MOSFET and Si...
 
Metal oxide-semiconductorfetmosfet-090615015822-phpapp02
Metal oxide-semiconductorfetmosfet-090615015822-phpapp02Metal oxide-semiconductorfetmosfet-090615015822-phpapp02
Metal oxide-semiconductorfetmosfet-090615015822-phpapp02
 
small geometry effect and working of solar cell
small geometry effect and working of solar cellsmall geometry effect and working of solar cell
small geometry effect and working of solar cell
 
MOSFET.pptx
MOSFET.pptxMOSFET.pptx
MOSFET.pptx
 
MOSFET, SOI-FET and FIN-FET-ABU SYED KUET
MOSFET, SOI-FET and FIN-FET-ABU SYED KUETMOSFET, SOI-FET and FIN-FET-ABU SYED KUET
MOSFET, SOI-FET and FIN-FET-ABU SYED KUET
 
Analog vlsi
Analog vlsiAnalog vlsi
Analog vlsi
 
Research Report
Research ReportResearch Report
Research Report
 
Metal oxide-semiconductor (mos) fundamentals
Metal oxide-semiconductor (mos) fundamentalsMetal oxide-semiconductor (mos) fundamentals
Metal oxide-semiconductor (mos) fundamentals
 
Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications
Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications
Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications
 
POWER ELECTRONICS
POWER ELECTRONICSPOWER ELECTRONICS
POWER ELECTRONICS
 
VLSI-Desig
VLSI-DesigVLSI-Desig
VLSI-Desig
 
Mosfet detail
Mosfet detailMosfet detail
Mosfet detail
 

More from vidhya DS

Winter1516 lecture2
Winter1516 lecture2Winter1516 lecture2
Winter1516 lecture2vidhya DS
 
Cs231n convolutional neural networks for visual recognition
Cs231n convolutional neural networks for visual recognitionCs231n convolutional neural networks for visual recognition
Cs231n convolutional neural networks for visual recognitionvidhya DS
 
Lecture11 combinational logic dynamics
Lecture11 combinational logic dynamicsLecture11 combinational logic dynamics
Lecture11 combinational logic dynamicsvidhya DS
 

More from vidhya DS (9)

Winter1516 lecture2
Winter1516 lecture2Winter1516 lecture2
Winter1516 lecture2
 
Cs231n convolutional neural networks for visual recognition
Cs231n convolutional neural networks for visual recognitionCs231n convolutional neural networks for visual recognition
Cs231n convolutional neural networks for visual recognition
 
Lecture11 combinational logic dynamics
Lecture11 combinational logic dynamicsLecture11 combinational logic dynamics
Lecture11 combinational logic dynamics
 
Chapter3
Chapter3Chapter3
Chapter3
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
3673 mosfet
3673 mosfet3673 mosfet
3673 mosfet
 
Pdf
PdfPdf
Pdf
 
Assignments
AssignmentsAssignments
Assignments
 
Meritlist
MeritlistMeritlist
Meritlist
 

Recently uploaded

Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsSachinPawar510423
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingBootNeck1
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
home automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadhome automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadaditya806802
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdfCaalaaAbdulkerim
 
Industrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIESIndustrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIESNarmatha D
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - GuideGOPINATHS437943
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfRajuKanojiya4
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 

Recently uploaded (20)

young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documents
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event Scheduling
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
home automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadhome automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasad
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdf
 
Industrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIESIndustrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIES
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - Guide
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdf
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 

Fundamentals of the Metal–Oxide–Semiconductor Field‐Effect Transistor (MOSFET