Your SlideShare is downloading. ×
0
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Scaphoid fracturesw
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Scaphoid fracturesw

604

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
604
On Slideshare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
9
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Scaphoid Fractures
  • 2. Scaphoid Fractures• The scaphoid is the most frequently fractured carpal bone, accounting for 71% of all carpal bone fractures.• Scaphoid fractures often occur in young and middle-aged adults, typically those aged 15-60 years.• About 5-12% of scaphoid fractures are associated with other fractures• 70-80% occur at the waist or mid-portion• 10-20% proximal pole
  • 3. Anatomy• The scaphoid lies at the radial border of the proximal carpal row, but its elongated shape and position allow bridging between the 2 carpal rows because it acts as a stabilizing rod.• The scaphoid has 5 articulating surfaces: – with the radius, lunate, capitate, trapezoid, and trapezium.• As a result, nearly the entire surface is covered by hyaline cartilage.
  • 4. Blood Supply• Vessels may enter only at the sites of ligamentous attachment: – the flexor retinaculum at the tubercle, – the volar ligaments along the palmar surface, – and the dorsal radiocarpal and radial collateral ligaments along the dorsal ridge.
  • 5. Blood Supply Classically described as 3 principal arterial groups, but in more recent investigations by Gelberman and Menon described 2: – Entering dorsally – Volar side limited to tubercle
  • 6. Blood Supply The primary blood supply comes from the dorsal branch of the radial artery, which divides into 2-4 branches before entering the waist of the scaphoid along the dorsal ridge. The branches course volar and proximal within the bone, supplying 70-85% of the scaphoid. The volar scaphoid branch also enters the bone as several perforators in the region of the tubercle; these supply the distal 20%-30% of the bone
  • 7. Blood Supply•All studies consistently demonstrated poor supplyto the proximal pole•The proximal pole is an intra-articular structurecompletely covered by hyaline cartilage with asingle ligamentous attachment–Deep radioscapholunate ligament•Is dependent on intraosseous blood supply
  • 8. Blood Supply Obletz and Halbstein in their study of vascular foramina in dried scaphoids found 13% without vascular perforations and 20% with only a single small foramen proximal to the waist Therefore postulated that atleast 30% of mid- third fracture would expect AVN of proximal pole…greater likelihood the more proximal the fracture
  • 9. Pathophysiology The primary mechanism of injury to the scaphoid bone is a fall on an outstretched hand. A scaphoid fracture is part of a spectrum of injuries based on 4 factors: – (1) the direction of 3-dimensional loading, – (2) the magnitude and duration of the force, – (3) the position of the hand and wrist at the time of injury, and – (4) the biomechanical properties of ligaments and bones. These factors affect the end result of the fall: distal radius fracture, ligamentous injury, scaphoid fracture, or a combination of these.
  • 10. Pathophysiology Essentially fractures of scaphoid have been explained as a failure of bone cause by compressive or tension load Compression, as explained by Cobey and White, against concave surface by head of capitate Position of radial and ulnar deviation thought to determine where it breaks Fryman subjected cadaver wrists to loading and observed that: – extension of 35 degrees of less resulted in distal forearm fractures – >90degrees resulted in carpal fractures Combination of radial deviation and wrist extension locks scaphoid within the scaphoid fossa
  • 11. Diagnosis Suggested by: – patient’s age, – mechanism of injury and – signs and symptoms Imaging – Xray – CT Scan – MRI – Bone Scan
  • 12. Radiography The 4 essential views (ie, PA, lateral, supinated and pronated obliques) identify majority of fractures. The scaphoid view is a PA radiograph with the wrist extended 30° and deviated ulnarly 20°. This view helps to stretch out the scaphoid and is also used for assessing the degree of scaphoid fracture angulation. A clenched-fist radiograph has also been useful for visualization of the scaphoid waist.
  • 13. CT Scans CT permits accurate anatomic assessment of the fracture. Bone contusions are not evaluated with CT, but true fractures can be excluded
  • 14. MRI• T1-weighted images obtained in a single plane (coronal) are typically sufficient to determine the presence of a scaphoid fracture.• Gaebler prospectively performed MRI on 32 patients, at average of 2.8 days post injury – 100% sensitivity and specificity• In recent study Dorsay has shown that immediate MRI provides cost benefit when compared to splintage and repeat xray• False positives due MRI’s sensitivity to marrow oedema
  • 15. Nuclear Imaging Radionuclide bone scanning typically is performed 3-7 days after the initial injury if the radiographic findings are normal. Best at 48hours, premature imaging may be obscured by traumatic synovitis Bone scan findings are considered positive for a fracture when intense, focal tracer accumulation is identified. Negative bone scan results virtually exclude scaphoid fracture Teil-van studied cost effectiveness and concluded that initial xray followed by bone scan at 2 weeks if patient is still symptomatic is most effective management option Teil-van also suggested that more sensitive and less expensive than MRI
  • 16. ?
  • 17. Classification Determining optimal treatment depends on accurate diagnosis and fracture classification Herbert devised an alpha-numeric system that combined fracture anatomy, stability and chronicity of injury.
  • 18. Herbert’s Classification  Type A (stable acute fractures) – A1: fracture of tubercle – A2: incomplete fracture  Type B (unstable acute fractures) – B1: distal oblique – B2: complete fracture through waist – B3: proximal pole fracture – B4: trans-scaphoid perilunate fracture dislocation of carpus
  • 19. Herbert’s Classification Type C (delayed union) Type D (established non-union) – D1: fibrous union – D2: pseudarthrosis
  • 20. Russe Classification Russe classified scaphoid fractures into 3 type according to the relationship of the fracture line to the long axis of the scaphoid – Horizontal – Oblique – Vertical (unstable)
  • 21. Classification according to location A: tubercle B: distal pole C: waist D:proximal pole
  • 22. Management Proximal pole – Depends on size and vascularity of fracture – Growing sentiment that most should be treated operatively because of high propensity for non-union and increased duration of immobilisation required for non-operative management – If large enough to accommodate a screw than every attempt should be made
  • 23. Management DeMaagd and Engber showed 11 of 12 patients with proximal pole fractures healed with Herbert screw Retting and Raskin had 100% union in 17 cases with Herbert screw If fragment too small then K-wires can be used
  • 24. Management Distal Pole – Are infrequent – Usually extra-articular with good blood supply – Best treated with short arm thumb spica for 3-6 weeks
  • 25. Management of waist fractures Most common type of fracture High rate of delayed and non-union – With delays in treatment adversely affect results Operative vs non-operative – Controversial
  • 26. Management of waist fractures Most stable fractures can be treated with below elbow thumb spica Unstable fractures best treated with compression screw fixation – >1mm displacement – Fragment angulation – Abnormal carpal alignment With advent of percutaneous techniques of cannulated screws under flouroscopic control trend towards operative management
  • 27. What about the undisplaced waist fractures??? Netherlands study: – Average time away from work 4.5 months Saeden in prospective randomised study with 12 year follow-up compared early operative vs cast immobilisation – Return to work quicker in operative – No significant long term difference in functional outcome between 2 groups Bond has shown return to work 7 weeks earlier and time of union 5 weeks quicker – Other papers disagree Some surgeons published union rates of 100% with surgery(Green’s volume 1 page 721)
  • 28. Complication$$• Malunion – Malunion may lead to limited motion about the wrist, decreased grip strength, and pain. – The most frequent pattern of malunion is persistent angular deformity, or the humpback deformity. – Malunion usually can be treated with osteotomy and bone grafting to correct angular deformity and length. • Literature confusing with no comparative studies to document improvement in hand function
  • 29. Complication$$• Delayed union and non-union – Delayed union is incomplete union after 4 months of cast immobilization. – Non-union is an unhealed fracture with smooth fibrocartilage covering the fracture site. – About 10-15% of all scaphoid fractures do not unite. – Some degree of delayed union or non-union occurs in nearly all proximal pole fractures and in 30% of scaphoid waist fractures
  • 30. Complication$$ Delayed union is anticipated if fracture treatment is delayed for several weeks. The risk of non-union increases after a delay of 4 weeks. These delays may be related to the patients failure to seek treatment for a presumed sprain, but they more frequently are related to improper or incomplete immobilization or a failure to diagnose and treat the acute fracture
  • 31. Delayed union treatment If the delayed union is stable and less than 6 months old relative to the time of injury, prolonged cast immobilization with or without electrical stimulation may be used. Treatment of choice for a symptomatic non-union is placement of a bone graft and fixation. – Russe corticocancellous iliac graft – Fisk-Fernandez volar wedge graft – Pronator pedicle graft • Braun ‘83 reported 100% union in 8 pts • Kawai, Kuhlmann, Papp reported 100% 37 pts – Pechlaner reporrted 25 free vascularised iliac grafts with 100% Success rates for the treatment of non-union are as high as 82%.
  • 32. AVN• Osteonecrosis occurs in 15-30% of all scaphoid fractures, and most of these involve the proximal pole.• Its incidence increases as the fracture line becomes more proximal; this decreases the probability that the blood supply to the proximal pole is preserved
  • 33. Salvage procedures Radial styloidectomy Distal scaphoid resection Proximal row carpectomy Partial arthrodesis

×