http://emergencymedic.blogspot.com Basics of ECG by Mohamed Ramadan
بسم الله الرحمن الرحيم
HISTORY <ul><li>1842- Italian scientist Carlo Matteucci realizes that electricity is associated with the heart beat </li><...
CONTD… <ul><li>1924 - the noble prize for physiology or medicine is given to William Einthoven for his work on EKG </li></...
 
MODERN ECG INSTRUMENT
What is an ECG? <ul><li>The electrocardiogram (ECG) is a representation  of the electrical events of the cardiac cycle. </...
With ECGs we can identify <ul><li>Chamber hypertrophy </li></ul><ul><li>Arrhythmias </li></ul><ul><li>IHD </li></ul><ul><l...
Depolarization <ul><li>Contraction of any muscle is associated with electrical changes called depolarization </li></ul><ul...
Pacemakers of the Heart <ul><li>SA Node  -  Dominant pacemaker with an intrinsic rate of 60 - 100 beats/minute. </li></ul>...
<ul><li>Standard calibration </li></ul><ul><ul><li>25 mm/s </li></ul></ul><ul><ul><li>0.1 mV/mm </li></ul></ul><ul><li>Ele...
Impulse Conduction & the ECG <ul><li>Sinoatrial node </li></ul><ul><li>AV node </li></ul><ul><li>Bundle of His </li></ul><...
The “PQRST ” <ul><li>T wave  -   Ventricular      repolarization </li></ul><ul><li>QRS  -   Ventricular    </li></ul><ul><...
The PR Interval <ul><li>Atrial depolarization  </li></ul><ul><li>+ </li></ul><ul><li>A-V nodal delay </li></ul><ul><li>(de...
NORMAL  ECG
The ECG Paper <ul><li>Horizontally </li></ul><ul><ul><li>One small box - 0.04 s </li></ul></ul><ul><ul><li>One large box -...
ECG Leads which measure the difference in electrical potential between two points 1. Bipolar Leads:  Two different points ...
ECG Leads The standard ECG has 12 leads: 3 Standard Limb Leads 3 Augmented Limb Leads 6 Precordial Leads
Standard Limb Leads
Standard Limb Leads
Augmented Limb Leads
All Limb Leads
Precordial Leads
Precordial Leads
Right Sided & Posterior Chest Leads
Arrangement of Leads on the ECG
Anatomic Groups  (anterior wall ):
Anatomic Groups (Septum)
Anatomic Groups (Lateral Wall )
Anatomic Groups (Inferior Wall)
Anatomic Groups (Summary)
  ECG  RULES <ul><li>10 rules of normal:- </li></ul>
RULE 1 P-R interval should be 3 to 5 little squares
  RULE 2 The width of the QRS complex should not exceed 3 small squares
RULE 3 The QRS complex should be dominantly upright in leads I and II
RULE 4 QRS and T waves tend to have the same general direction in the limb leads
RULE 5 All waves are negative in lead aVR
RULE 6 The R wave must grow from V1 to at least V4 The S wave  must grow from V1 to at least V3  and disappear in V6
RULE 7 The ST segment should start isoelectric  except in V1 and V2 where it may be elevated
RULE 8 The P waves should be upright in I, II, and V2 to V6
RULE 9 There should be no Q wave or only a small q less than 0.04 seconds in width in I, II, V2 to  V6
RULE 10 The T wave must be upright in I, II, V2 to V6
P wave <ul><li>Always positive in lead I and II  </li></ul><ul><li>Always negative in lead aVR  </li></ul><ul><li>< 2.5 sm...
<ul><li>Tall (> 2.5 mm), pointed P waves (P Pulmonale) </li></ul>Right Atrial Enlargement
<ul><li>Notched/bifid (‘M’ shaped) P wave (P ‘mitrale’) in limb leads </li></ul>Left Atrial Enlargement
P Pulmonale P Mitrale
<ul><li>Right atrial enlargement   </li></ul><ul><ul><li>Take a look at this ECG. What do you notice about the P waves? </...
<ul><li>Right atrial enlargement   </li></ul><ul><ul><li>To diagnose RAE you can use the following criteria: </li></ul></u...
<ul><li>Left atrial enlargement   </li></ul><ul><ul><li>Take a look at this ECG. What do you notice about the P waves? </l...
<ul><li>Left atrial enlargement   </li></ul><ul><ul><li>To diagnose LAE you can use the following criteria: </li></ul></ul...
<ul><li>WPW (Wolff-Parkinson-White) Syndrome </li></ul><ul><li>Accessory pathway (Bundle of Kent) allows early activation ...
<ul><li>First degree Heart Block </li></ul>Long P-R Interval
<ul><li>Narrow < 3 small square in width and 1-5 large square in amplitude </li></ul><ul><li>Non­pathological Q waves may ...
QRS in LVH & RVH
<ul><li>Sokolow & Lyon Criteria  </li></ul><ul><li>S in V1+ R in V5 or V6 > 35 mm  </li></ul><ul><li>S wave in V1 or R wav...
 
<ul><li>Tall R wave in V1&2 and tall S IN V5&6  </li></ul><ul><li>Strain pattern in lead V1&V2 </li></ul><ul><li>Rt axis d...
Conditions with Tall R in V1
Inferior Wall MI <ul><li>This is an inferior MI. Note the ST elevation in leads II, III and aVF. </li></ul>
Putting it all Together <ul><li>How about now? </li></ul>
Anterolateral MI <ul><li>This person’s MI involves  both  the anterior wall (V 2 -V 4 ) and the lateral wall (V 5 -V 6 , I...
Left Ventricular Hypertrophy <ul><li>Compare these two 12-lead ECGs. What stands out as different with the second one? </l...
Left Ventricular Hypertrophy <ul><li>Criteria exists to diagnose LVH using a 12-lead ECG.   </li></ul><ul><ul><li>For exam...
<ul><li>Right ventricular hypertrophy </li></ul><ul><ul><li>Take a look at this ECG. What do you notice about the axis and...
<ul><li>Right ventricular hypertrophy   </li></ul><ul><ul><li>To diagnose RVH you can use the following criteria: </li></u...
<ul><li>Right ventricular hypertrophy </li></ul><ul><ul><li>Compare the R waves in V1, V2 from a normal ECG and one from a...
<ul><li>Left ventricular hypertrophy </li></ul><ul><ul><li>Take a look at this ECG. What do you notice about the axis and ...
<ul><li>Left ventricular hypertrophy </li></ul><ul><ul><li>To diagnose LVH you can use the following criteria * : </li></u...
<ul><li>ST Segment is flat (isoelectric) </li></ul><ul><li>Elevation or depression of ST segment  by 1 mm or more </li></u...
Goldberger AL. Goldberger: Clinical Electrocardiography: A Simplified Approach. 7th ed: Mosby Elsevier; 2006. Variable Sha...
<ul><li>Normal T wave is  asymmetrical,  first half having a gradual slope than the second  </li></ul><ul><li>Abnormal T w...
T wave
<ul><li>Total duration of Depolarization and Repolarization </li></ul><ul><li>QT interval decreases when heart rate increa...
QT Interval
<ul><li>U wave related to afterdepolarizations which follow repolarization </li></ul><ul><li>U waves are small, round, sym...
<ul><li>Rule of 300/1500 </li></ul><ul><li>6 Second Rule </li></ul>Determining the Heart Rate
Count  the number of “big boxes” between two QRS complexes, and divide this into 300.  (smaller boxes with 1500)  for regu...
(300 / 6) = 50 bpm What is the heart rate?
(300 / ~ 4) = ~ 75 bpm What is the heart rate?
(300 / 1.5) = 200 bpm What is the heart rate?
It may be easiest to memorize the following table: The Rule of 300 No of big boxes Rate 1 300 2 150 3 100 4 75 5 60 6 50
ECGs record 6 seconds of rhythm per page, Count the number of beats present on the ECG Multiply by 10  For irregular rhyth...
20 x 10 = 200 bpm What is the heart rate?
Calculation of Heart Rate
<ul><li>Calculate the heart rate </li></ul>Question
<ul><li>The QRS axis represents overall direction of the  </li></ul><ul><li>heart’s electrical activity. </li></ul><ul><li...
Normal QRS axis from -30 °  to +90 ° . -30 °  to -90 °  is referred to as a left axis deviation (LAD) +90 °  to +180 °  is...
Determining the Axis The Quadrant Approach The Equiphasic Approach
Determining the Axis Predominantly Positive Predominantly Negative Equiphasic
<ul><li>QRS complex in leads I and aVF  </li></ul><ul><li>determine if they are predominantly positive or negative.  </li>...
Negative in I, positive in aVF    RAD Quadrant Approach: Example 1
Positive in I, negative in aVF    LAD Quadrant Approach: Example 2
<ul><li>Sinoatrial node </li></ul><ul><li>AV node </li></ul><ul><li>Bundle of His </li></ul><ul><li>Bundle Branches </li><...
<ul><li>Arrhythmias can arise from problems in the: </li></ul><ul><ul><li>Sinus node </li></ul></ul><ul><ul><li>Atrial cel...
<ul><li>The SA Node can: </li></ul><ul><li>fire too slow </li></ul><ul><li>fire too fast </li></ul><ul><li>Sinus Bradycard...
<ul><li>Atrial cells can: </li></ul><ul><li>fire occasionally from a focus  </li></ul><ul><li>fire continuously due to a l...
<ul><li>The AV junction can: </li></ul><ul><li>fire continuously due to a looping re-entrant circuit  </li></ul><ul><li>bl...
Sinus Bradycardia
Rhythm #1 30 bpm <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>regular normal 0.10 s <ul><li>P waves? </li></ul><u...
Rhythm #2 130 bpm <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>regular normal 0.08 s <ul><li>P waves? </li></ul><...
Junctional Rhythm
<ul><li>First Degree AV Block </li></ul><ul><li>Second Degree AV Block </li></ul><ul><li>Third Degree AV Block </li></ul>A...
<ul><li>Delay in the conduction through the conducting system </li></ul><ul><li>Prolong P-R interval </li></ul><ul><li>All...
<ul><li>Intermittent failure of AV conduction  </li></ul><ul><li>Impulse blocked by AV node </li></ul><ul><li>Types: </li>...
<ul><li>  The 3 rules of &quot;classic AV Wenckebach&quot;  </li></ul><ul><li>Decreasing RR intervals until pause;  </li><...
Mobitz type 1 (Wenckebach Phenomenon)
P waves may blocked somewhere in the AV junction, the His bundle. Mobitz type 2
<ul><li>CHB evidenced by the AV dissociation </li></ul><ul><li>A junctional escape rhythm at 45 bpm.  </li></ul><ul><li>Th...
3rd degree AV block with a left ventricular escape rhythm,  'B' the right ventricular pacemaker rhythm is shown. Third Deg...
Putting it all Together <ul><li>Do you think this person is having a myocardial infarction. If so, where? </li></ul>
Interpretation <ul><li>Yes , this person is having an acute anterior wall myocardial infarction. </li></ul>
Putting it all Together <ul><li>Now, where do you think this person is having a myocardial infarction? </li></ul>
Inferior Wall MI <ul><li>This is an inferior MI. Note the ST elevation in leads II, III and aVF. </li></ul>
Putting it all Together <ul><li>How about now? </li></ul>
Anterolateral MI <ul><li>This person’s MI involves  both  the anterior wall (V 2 -V 4 ) and the lateral wall (V 5 -V 6 , I...
Rhythm #4 60 bpm <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>occasionally irreg. none for 7 th  QRS 0.08 s (7th ...
<ul><li>Supraventricular premature beats </li></ul><ul><li>Atrial Fibrillation </li></ul><ul><li>Atrial Flutter </li></ul>...
Rhythm #5 100 bpm <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>irregularly irregular none 0.06 s <ul><li>P waves?...
Rhythm #6 70 bpm <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>regular flutter waves 0.06 s <ul><li>P waves? </li>...
Rhythm #7 74   148 bpm <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>Regular    regular Normal    none 0.08 s <...
PSVT <ul><li>Deviation from NSR </li></ul><ul><ul><li>The heart rate suddenly speeds up, often triggered by a PAC (not see...
Ventricular Arrhythmias <ul><li>Ventricular Tachycardia </li></ul><ul><li>Ventricular Fibrillation </li></ul>
Rhythm #8 160 bpm <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>regular none wide (> 0.12 sec) <ul><li>P waves? </...
Rhythm #9 none <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>irregularly irreg. none wide, if recognizable  <ul><l...
Diagnosing a MI <ul><li>To diagnose a myocardial infarction you need to go beyond looking at a rhythm strip and obtain a 1...
<ul><li>Some leads get a good view of the: </li></ul>Anterior portion of the heart Lateral portion of the heart Inferior p...
<ul><li>One way to diagnose an acute MI is to look for elevation of the ST segment. </li></ul>ST Elevation
<ul><li>Elevation of the ST segment (greater than 1 small box) in 2 leads is consistent with a myocardial infarction. </li...
<ul><li>Now, using these 3 diagrams let’s figure where to look for a lateral wall and inferior wall  and anteriorMI. </li>...
<ul><li>Remember the anterior portion of the heart is best viewed using leads V 1 - V 4 . </li></ul>Limb Leads Augmented L...
<ul><li>So what leads do you think the lateral portion of the heart is best viewed?  </li></ul>Limb Leads Augmented Leads ...
<ul><li>Now how about the inferior portion of the heart?  </li></ul>Limb Leads Augmented Leads Precordial Leads Leads II, ...
Putting it all Together <ul><li>Now, where do you think this person is having a myocardial infarction? </li></ul>
Bundle Branch Blocks
Bundle Branch Blocks <ul><li>So, conduction in  the Bundle Branches and Purkinje fibers are seen as the QRS complex on the...
Bundle Branch Blocks <ul><li>With Bundle Branch Blocks you will see two changes on the ECG. </li></ul><ul><ul><li>QRS comp...
 
Right Bundle Branch Blocks <ul><li>What QRS morphology is characteristic? </li></ul>V 1 For  RBBB  the wide QRS complex as...
RBBB
 
Left Bundle Branch Blocks <ul><li>What QRS morphology is characteristic? </li></ul>Normal For  LBBB  the wide QRS complex ...
 
 
 
HYPERKALEMIA
HYPERKALEMIA
 
SEVERE HYPERKALEMIA
HYPOKALEMIA
HYPOKALEMIA
HYPOKALEMIA
 
ACUTE PERICARDITIS
ACUTE PERICARDITIS
Thank you
Upcoming SlideShare
Loading in …5
×

E C G M O H A M E D R A M A D A N

1,120 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,120
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
90
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • Atrial depolarisation Electrically both atria act almost as one. They have relatively little muscle and generate a single, small P wave. P wave amplitude rarely exceeds two and a half small squares (0.25 mV). The duration of the P wave should not exceed three small squares (0.12 s). The wave of depolarisation is directed inferiorly and towards the left, and thus the P wave tends to be upright in leads I and II and inverted in lead aVR. Sinus P waves are usually most prominently seen in leads II and V1. A negative P wave in lead I may be due to incorrect recording of the electrocardiogram (that is, with transposition of the left and right arm electrodes), dextrocardia, or abnormal atrial rhythms. Normal P waves may have a slight notch, particularly in the precordial (chest) leads. Bifid P waves result from slight asynchrony between right and left atrial depolarisation. A pronounced notch with a peak­to­peak interval of &gt; 1 mm (0.04 s) is usually pathological, and is seen in association with a left atrial abnormality—for example, in mitral stenosis.
  • The R wave in lead V6 is smaller than the R wave in V5, since the V6 electrode is further from the left ventricle. The depth of the S wave, generally, should not exceed 30 mm in a normal individual (although &gt; 30 mm are occasionally recorded in normal young male adults) In another website it is also shown that small q wave seen in leads III and aVF Normal q-waves reflect normal septal activation (beginning on the LV septum); they are narrow (&lt;0.04s duration) and small (&lt;25% the amplitude of the R wave). They are often seen in leads I and aVL when the QRS axis is to the left of +60o, and in leads II, III, aVF when the QRS axis is to the right of +60o. Septal q waves should not be confused with the pathologic Q waves of myocardial infarction (http://medstat.med.utah.edu/kw/ecg/ecg_outline/Lesson3/index.html)
  • Sokolow + Lyon (Am Heart J, 1949;37:161) S V1+ R V5 or V6 &gt; 35 mm Cornell criteria (Circulation, 1987;3: 565-72) SV3 + R avl &gt; 28 mm in men SV3 + R avl &gt; 20 mm in women Framingham criteria (Circulation,1990; 81:815-820) R avl &gt; 11mm, R V4-6 &gt; 25mm S V1-3 &gt; 25 mm S V1 or V2 + R V5 or V6 &gt; 35 mm R I + S III &gt; 25 mm Romhilt + Estes (Am Heart J, 1986:75:752-58) Point score system
  • Sokolow + Lyon (Am Heart J, 1949;37:161) S V1+ R V5 or V6 &gt; 35 mm Cornell criteria (Circulation, 1987;3: 565-72) SV3 + R avl &gt; 28 mm in men SV3 + R avl &gt; 20 mm in women Framingham criteria (Circulation,1990; 81:815-820) R avl &gt; 11mm, R V4-6 &gt; 25mm S V1-3 &gt; 25 mm S V1 or V2 + R V5 or V6 &gt; 35 mm R I + S III &gt; 25 mm Romhilt + Estes (Am Heart J, 1986:75:752-58) Point score system
  • ST segment depression is always an abnormal finding, although often nonspecific (http://medstat.med.utah.edu/kw/ecg/ecg_outline/Lesson3/index.html)
  • As a general rule, T wave amplitude corresponds with the amplitude of the preceding R wave, though the tallest T waves are seen in leads V3 and V4. Tall T waves may be seen in acute myocardial ischaemia and are a feature of hyperkalaemia.
  • Poor Man&apos;s Guide to upper limits of QT: For HR = 70 bpm, QT&lt;0.40 sec; for every 10 bpm increase above 70 subtract 0.02 sec, and for every 10 bpm decrease below 70 add 0.02 sec. For example: QT &lt; 0.38 @ 80 bpm QT &lt; 0.42 @ 60 bpm
  • E C G M O H A M E D R A M A D A N

    1. 1. http://emergencymedic.blogspot.com Basics of ECG by Mohamed Ramadan
    2. 2. بسم الله الرحمن الرحيم
    3. 3. HISTORY <ul><li>1842- Italian scientist Carlo Matteucci realizes that electricity is associated with the heart beat </li></ul><ul><li>1876- Irish scientist Marey analyzes the electric pattern of frog’s heart </li></ul><ul><li>1895 - William Einthoven , credited for the invention of EKG </li></ul><ul><li>1906 - using the string electrometer EKG, </li></ul><ul><li>William Einthoven diagnoses some heart problems </li></ul>
    4. 4. CONTD… <ul><li>1924 - the noble prize for physiology or medicine is given to William Einthoven for his work on EKG </li></ul><ul><li>1938 -AHA and Cardiac society of great Britan defined and position of chest leads </li></ul><ul><li>1942- Goldberger increased Wilson’s Unipolar lead voltage by 50% and made Augmented leads </li></ul><ul><li>2005- successful reduction in time of onset of chest pain and PTCA by wireless transmission of ECG on his PDA. </li></ul>
    5. 6. MODERN ECG INSTRUMENT
    6. 7. What is an ECG? <ul><li>The electrocardiogram (ECG) is a representation of the electrical events of the cardiac cycle. </li></ul><ul><li>Each event has a distinctive waveform </li></ul><ul><li>the study of waveform can lead to greater insight into a patient’s cardiac pathophysiology. </li></ul>
    7. 8. With ECGs we can identify <ul><li>Chamber hypertrophy </li></ul><ul><li>Arrhythmias </li></ul><ul><li>IHD </li></ul><ul><li>Pericarditis </li></ul><ul><li>Electrolyte disturbances (i.e. hyperkalemia, hypokalemia) </li></ul><ul><li>Drug toxicity (i.e. digoxin and drugs which prolong the QT interval) </li></ul>
    8. 9. Depolarization <ul><li>Contraction of any muscle is associated with electrical changes called depolarization </li></ul><ul><li>These changes can be detected by electrodes attached to the surface of the body </li></ul>
    9. 10. Pacemakers of the Heart <ul><li>SA Node - Dominant pacemaker with an intrinsic rate of 60 - 100 beats/minute. </li></ul><ul><li>AV Node - Back-up pacemaker with an intrinsic rate of 40 - 60 beats/minute . </li></ul><ul><li>Ventricular cells - Back-up pacemaker with an intrinsic rate of 20 - 45 bpm . </li></ul>
    10. 11. <ul><li>Standard calibration </li></ul><ul><ul><li>25 mm/s </li></ul></ul><ul><ul><li>0.1 mV/mm </li></ul></ul><ul><li>Electrical impulse that travels towards the electrode produces an upright (“positive”) deflection </li></ul>
    11. 12. Impulse Conduction & the ECG <ul><li>Sinoatrial node </li></ul><ul><li>AV node </li></ul><ul><li>Bundle of His </li></ul><ul><li>Bundle Branches </li></ul><ul><li>Purkinje fibers </li></ul>
    12. 13. The “PQRST ” <ul><li>T wave - Ventricular repolarization </li></ul><ul><li>QRS - Ventricular </li></ul><ul><li>depolarization </li></ul><ul><li>P wave - atrial </li></ul><ul><li>depolarization </li></ul>
    13. 14. The PR Interval <ul><li>Atrial depolarization </li></ul><ul><li>+ </li></ul><ul><li>A-V nodal delay </li></ul><ul><li>(delay allows time for the atria to contract before the ventricles contract) </li></ul>
    14. 15. NORMAL ECG
    15. 16. The ECG Paper <ul><li>Horizontally </li></ul><ul><ul><li>One small box - 0.04 s </li></ul></ul><ul><ul><li>One large box - 0.20 s </li></ul></ul><ul><li>Vertically </li></ul><ul><ul><li>One large box - 0.5 mV </li></ul></ul>
    16. 17. ECG Leads which measure the difference in electrical potential between two points 1. Bipolar Leads: Two different points on the body 2. Unipolar Leads : One point on the body and a virtual reference point with zero electrical potential, located in the center of the heart
    17. 18. ECG Leads The standard ECG has 12 leads: 3 Standard Limb Leads 3 Augmented Limb Leads 6 Precordial Leads
    18. 19. Standard Limb Leads
    19. 20. Standard Limb Leads
    20. 21. Augmented Limb Leads
    21. 22. All Limb Leads
    22. 23. Precordial Leads
    23. 24. Precordial Leads
    24. 25. Right Sided & Posterior Chest Leads
    25. 26. Arrangement of Leads on the ECG
    26. 27. Anatomic Groups (anterior wall ):
    27. 28. Anatomic Groups (Septum)
    28. 29. Anatomic Groups (Lateral Wall )
    29. 30. Anatomic Groups (Inferior Wall)
    30. 31. Anatomic Groups (Summary)
    31. 32. ECG RULES <ul><li>10 rules of normal:- </li></ul>
    32. 33. RULE 1 P-R interval should be 3 to 5 little squares
    33. 34. RULE 2 The width of the QRS complex should not exceed 3 small squares
    34. 35. RULE 3 The QRS complex should be dominantly upright in leads I and II
    35. 36. RULE 4 QRS and T waves tend to have the same general direction in the limb leads
    36. 37. RULE 5 All waves are negative in lead aVR
    37. 38. RULE 6 The R wave must grow from V1 to at least V4 The S wave must grow from V1 to at least V3 and disappear in V6
    38. 39. RULE 7 The ST segment should start isoelectric except in V1 and V2 where it may be elevated
    39. 40. RULE 8 The P waves should be upright in I, II, and V2 to V6
    40. 41. RULE 9 There should be no Q wave or only a small q less than 0.04 seconds in width in I, II, V2 to V6
    41. 42. RULE 10 The T wave must be upright in I, II, V2 to V6
    42. 43. P wave <ul><li>Always positive in lead I and II </li></ul><ul><li>Always negative in lead aVR </li></ul><ul><li>< 2.5 small squares in duration </li></ul><ul><li>< 2.5 small squares in amplitude </li></ul><ul><li>Commonly biphasic in lead V1 </li></ul><ul><li>Best seen in leads II </li></ul>
    43. 44. <ul><li>Tall (> 2.5 mm), pointed P waves (P Pulmonale) </li></ul>Right Atrial Enlargement
    44. 45. <ul><li>Notched/bifid (‘M’ shaped) P wave (P ‘mitrale’) in limb leads </li></ul>Left Atrial Enlargement
    45. 46. P Pulmonale P Mitrale
    46. 47. <ul><li>Right atrial enlargement </li></ul><ul><ul><li>Take a look at this ECG. What do you notice about the P waves? </li></ul></ul>The P waves are tall, especially in leads II, III and avF. Ouch! They would hurt to sit on!!
    47. 48. <ul><li>Right atrial enlargement </li></ul><ul><ul><li>To diagnose RAE you can use the following criteria: </li></ul></ul><ul><ul><ul><li>II P > 2.5 mm , or </li></ul></ul></ul><ul><ul><ul><li>V1 or V2 P > 1.5 mm </li></ul></ul></ul>Remember 1 small box in height = 1 mm A cause of RAE is RVH from pulmonary hypertension. > 2 ½ boxes (in height) > 1 ½ boxes (in height)
    48. 49. <ul><li>Left atrial enlargement </li></ul><ul><ul><li>Take a look at this ECG. What do you notice about the P waves? </li></ul></ul>The P waves in lead II are notched and in lead V1 they have a deep and wide negative component. Notched Negative deflection
    49. 50. <ul><li>Left atrial enlargement </li></ul><ul><ul><li>To diagnose LAE you can use the following criteria: </li></ul></ul><ul><ul><ul><li>II > 0.04 s (1 box) between notched peaks , or </li></ul></ul></ul><ul><ul><ul><li>V1 Neg. deflection > 1 box wide x 1 box deep </li></ul></ul></ul>Normal LAE A common cause of LAE is LVH from hypertension.
    50. 51. <ul><li>WPW (Wolff-Parkinson-White) Syndrome </li></ul><ul><li>Accessory pathway (Bundle of Kent) allows early activation of the ventricle (delta wave and short PR interval) </li></ul>Short P-R Interval
    51. 52. <ul><li>First degree Heart Block </li></ul>Long P-R Interval
    52. 53. <ul><li>Narrow < 3 small square in width and 1-5 large square in amplitude </li></ul><ul><li>Non­pathological Q waves may present in I, III, aVL, V5, and V6 </li></ul><ul><li>Pathological Q wave > 2mm deep and > 1mm wide or > 25% amplitude of the subsequent R wave </li></ul>QRS Complexes
    53. 54. QRS in LVH & RVH
    54. 55. <ul><li>Sokolow & Lyon Criteria </li></ul><ul><li>S in V1+ R in V5 or V6 > 35 mm </li></ul><ul><li>S wave in V1 or R wave in V5 >5 large square </li></ul><ul><li>Strain pattern in lead V5&V6 </li></ul><ul><li>Left axis deviation </li></ul>Left Ventricular Hypertrophy
    55. 57. <ul><li>Tall R wave in V1&2 and tall S IN V5&6 </li></ul><ul><li>Strain pattern in lead V1&V2 </li></ul><ul><li>Rt axis deviation </li></ul>Right Ventricular Hypertrophy
    56. 58. Conditions with Tall R in V1
    57. 59. Inferior Wall MI <ul><li>This is an inferior MI. Note the ST elevation in leads II, III and aVF. </li></ul>
    58. 60. Putting it all Together <ul><li>How about now? </li></ul>
    59. 61. Anterolateral MI <ul><li>This person’s MI involves both the anterior wall (V 2 -V 4 ) and the lateral wall (V 5 -V 6 , I, and aVL)! </li></ul>
    60. 62. Left Ventricular Hypertrophy <ul><li>Compare these two 12-lead ECGs. What stands out as different with the second one? </li></ul>Normal Left Ventricular Hypertrophy Answer: The QRS complexes are very tall (increased voltage)
    61. 63. Left Ventricular Hypertrophy <ul><li>Criteria exists to diagnose LVH using a 12-lead ECG. </li></ul><ul><ul><li>For example: </li></ul></ul><ul><ul><ul><li>The R wave in V5 or V6 plus the S wave in V1 or V2 exceeds 35 mm. </li></ul></ul></ul><ul><li>However, for now, all you need to know is that the QRS voltage increases with LVH. </li></ul>
    62. 64. <ul><li>Right ventricular hypertrophy </li></ul><ul><ul><li>Take a look at this ECG. What do you notice about the axis and QRS complexes over the right ventricle (V1, V2)? </li></ul></ul>There is right axis deviation (negative in I, positive in II) and there are tall R waves in V1, V2.
    63. 65. <ul><li>Right ventricular hypertrophy </li></ul><ul><ul><li>To diagnose RVH you can use the following criteria: </li></ul></ul><ul><ul><ul><li>Right axis deviation , and </li></ul></ul></ul><ul><ul><ul><li>V1 R wave > 7mm tall </li></ul></ul></ul>A common cause of RVH is left heart failure.
    64. 66. <ul><li>Right ventricular hypertrophy </li></ul><ul><ul><li>Compare the R waves in V1, V2 from a normal ECG and one from a person with RVH. </li></ul></ul><ul><ul><li>Notice the R wave is normally small in V1, V2 because the right ventricle does not have a lot of muscle mass. </li></ul></ul><ul><ul><li>But in the hypertrophied right ventricle the R wave is tall in V1, V2. </li></ul></ul>Normal RVH
    65. 67. <ul><li>Left ventricular hypertrophy </li></ul><ul><ul><li>Take a look at this ECG. What do you notice about the axis and QRS complexes over the left ventricle (V5, V6) and right ventricle (V1, V2)? </li></ul></ul>There is left axis deviation (positive in I, negative in II) and there are tall R waves in V5, V6 and deep S waves in V1, V2. The deep S waves seen in the leads over the right ventricle are created because the heart is depolarizing left, superior and posterior (away from leads V1, V2).
    66. 68. <ul><li>Left ventricular hypertrophy </li></ul><ul><ul><li>To diagnose LVH you can use the following criteria * : </li></ul></ul><ul><ul><ul><li>R in V5 (or V6) + S in V1 (or V2) > 35 mm , or </li></ul></ul></ul><ul><ul><ul><li>avL R > 13 mm </li></ul></ul></ul>A common cause of LVH is hypertension. * There are several other criteria for the diagnosis of LVH. S = 13 mm R = 25 mm
    67. 69. <ul><li>ST Segment is flat (isoelectric) </li></ul><ul><li>Elevation or depression of ST segment by 1 mm or more </li></ul><ul><li>“ J” (Junction) point is the point between QRS and ST segment </li></ul>ST Segment
    68. 70. Goldberger AL. Goldberger: Clinical Electrocardiography: A Simplified Approach. 7th ed: Mosby Elsevier; 2006. Variable Shapes Of ST Segment Elevations in AMI
    69. 71. <ul><li>Normal T wave is asymmetrical, first half having a gradual slope than the second </li></ul><ul><li>Abnormal T waves are symmetrical, tall, peaked, biphasic or inverted. </li></ul><ul><li>Should be at least 1/8 but less than 2/3 of the amplitude of the R </li></ul><ul><li>T wave 1 X 2 large square </li></ul><ul><li>T wave follows the direction of the QRS deflection . </li></ul>T wave
    70. 72. T wave
    71. 73. <ul><li>Total duration of Depolarization and Repolarization </li></ul><ul><li>QT interval decreases when heart rate increases </li></ul><ul><li>For HR = 70 bpm, QT<0.40 sec. </li></ul><ul><li>4. QT interval should be 0.35­ 0.45 s, </li></ul><ul><li>5. Should not be more than half of the interval between adjacent R waves (R­R interval). </li></ul>QT interval
    72. 74. QT Interval
    73. 75. <ul><li>U wave related to afterdepolarizations which follow repolarization </li></ul><ul><li>U waves are small, round, symmetrical and positive in lead II, with amplitude < 2 mm </li></ul><ul><li>U wave direction is the same as T wave </li></ul><ul><li>More prominent at slow heart rates </li></ul>U wave
    74. 76. <ul><li>Rule of 300/1500 </li></ul><ul><li>6 Second Rule </li></ul>Determining the Heart Rate
    75. 77. Count the number of “big boxes” between two QRS complexes, and divide this into 300. (smaller boxes with 1500) for regular rhythms . Rule of 300
    76. 78. (300 / 6) = 50 bpm What is the heart rate?
    77. 79. (300 / ~ 4) = ~ 75 bpm What is the heart rate?
    78. 80. (300 / 1.5) = 200 bpm What is the heart rate?
    79. 81. It may be easiest to memorize the following table: The Rule of 300 No of big boxes Rate 1 300 2 150 3 100 4 75 5 60 6 50
    80. 82. ECGs record 6 seconds of rhythm per page, Count the number of beats present on the ECG Multiply by 10 For irregular rhythms. 6 Second Rule
    81. 83. 20 x 10 = 200 bpm What is the heart rate?
    82. 84. Calculation of Heart Rate
    83. 85. <ul><li>Calculate the heart rate </li></ul>Question
    84. 86. <ul><li>The QRS axis represents overall direction of the </li></ul><ul><li>heart’s electrical activity. </li></ul><ul><li>Abnormalities hint at: </li></ul><ul><li>Ventricular enlargement </li></ul><ul><li>Conduction blocks (i.e. hemiblocks) </li></ul>The QRS Axis
    85. 87. Normal QRS axis from -30 ° to +90 ° . -30 ° to -90 ° is referred to as a left axis deviation (LAD) +90 ° to +180 ° is referred to as a right axis deviation (RAD) The QRS Axis
    86. 88. Determining the Axis The Quadrant Approach The Equiphasic Approach
    87. 89. Determining the Axis Predominantly Positive Predominantly Negative Equiphasic
    88. 90. <ul><li>QRS complex in leads I and aVF </li></ul><ul><li>determine if they are predominantly positive or negative. </li></ul><ul><li>The combination should place the axis into one of the 4 quadrants below. </li></ul>The Quadrant Approach
    89. 91. Negative in I, positive in aVF  RAD Quadrant Approach: Example 1
    90. 92. Positive in I, negative in aVF  LAD Quadrant Approach: Example 2
    91. 93. <ul><li>Sinoatrial node </li></ul><ul><li>AV node </li></ul><ul><li>Bundle of His </li></ul><ul><li>Bundle Branches </li></ul>Impulse Conduction & the ECG
    92. 94. <ul><li>Arrhythmias can arise from problems in the: </li></ul><ul><ul><li>Sinus node </li></ul></ul><ul><ul><li>Atrial cells </li></ul></ul><ul><ul><li>AV junction </li></ul></ul><ul><ul><li>Ventricular cells </li></ul></ul>Arrhythmia Formation
    93. 95. <ul><li>The SA Node can: </li></ul><ul><li>fire too slow </li></ul><ul><li>fire too fast </li></ul><ul><li>Sinus Bradycardia </li></ul><ul><li>Sinus Tachycar dia </li></ul>Sinus Tachycardia may be an appropriate response to stress. SA Node Problems
    94. 96. <ul><li>Atrial cells can: </li></ul><ul><li>fire occasionally from a focus </li></ul><ul><li>fire continuously due to a looping re-entrant circuit </li></ul><ul><li>Premature Atrial Contractions (PACs) </li></ul><ul><li>Atrial Flutter </li></ul>Atrial Cell Problems
    95. 97. <ul><li>The AV junction can: </li></ul><ul><li>fire continuously due to a looping re-entrant circuit </li></ul><ul><li>block impulses coming from the SA Node </li></ul><ul><li>Paroxysmal Supraventricular Tachycardia </li></ul><ul><li>AV Junctional Blocks </li></ul>AV Junctional Problems
    96. 98. Sinus Bradycardia
    97. 99. Rhythm #1 30 bpm <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>regular normal 0.10 s <ul><li>P waves? </li></ul><ul><li>PR interval? </li></ul>0.12 s <ul><li>QRS duration? </li></ul>Interpretation? Sinus Bradycardia
    98. 100. Rhythm #2 130 bpm <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>regular normal 0.08 s <ul><li>P waves? </li></ul><ul><li>PR interval? </li></ul>0.16 s <ul><li>QRS duration? </li></ul>Interpretation? Sinus Tachycardia
    99. 101. Junctional Rhythm
    100. 102. <ul><li>First Degree AV Block </li></ul><ul><li>Second Degree AV Block </li></ul><ul><li>Third Degree AV Block </li></ul>AV Block
    101. 103. <ul><li>Delay in the conduction through the conducting system </li></ul><ul><li>Prolong P-R interval </li></ul><ul><li>All P waves are followed by QRS </li></ul><ul><li>Associated with : AC Rheumati Carditis, Digitalis, Beta Blocker, excessive vagal tone, ischemia, intrinsic disease in the AV junction or bundle branch system. </li></ul>First Degree AV Block
    102. 104. <ul><li>Intermittent failure of AV conduction </li></ul><ul><li>Impulse blocked by AV node </li></ul><ul><li>Types: </li></ul><ul><li>Mobitz type 1 (Wenckebach Phenomenon) </li></ul><ul><li>Mobitz type 2 </li></ul>Second Degree AV Block
    103. 105. <ul><li>  The 3 rules of &quot;classic AV Wenckebach&quot; </li></ul><ul><li>Decreasing RR intervals until pause; </li></ul><ul><li>2. Pause is less than preceding 2 RR intervals </li></ul><ul><li>3. RR interval after the pause is greater than RR prior to pause. </li></ul>Mobitz type 1 (Wenckebach Phenomenon )
    104. 106. Mobitz type 1 (Wenckebach Phenomenon)
    105. 107. P waves may blocked somewhere in the AV junction, the His bundle. Mobitz type 2
    106. 108. <ul><li>CHB evidenced by the AV dissociation </li></ul><ul><li>A junctional escape rhythm at 45 bpm. </li></ul><ul><li>The PP intervals vary because of ventriculophasic sinus arrhythmia; </li></ul>Third Degree Heart Block
    107. 109. 3rd degree AV block with a left ventricular escape rhythm, 'B' the right ventricular pacemaker rhythm is shown. Third Degree Heart Block
    108. 110. Putting it all Together <ul><li>Do you think this person is having a myocardial infarction. If so, where? </li></ul>
    109. 111. Interpretation <ul><li>Yes , this person is having an acute anterior wall myocardial infarction. </li></ul>
    110. 112. Putting it all Together <ul><li>Now, where do you think this person is having a myocardial infarction? </li></ul>
    111. 113. Inferior Wall MI <ul><li>This is an inferior MI. Note the ST elevation in leads II, III and aVF. </li></ul>
    112. 114. Putting it all Together <ul><li>How about now? </li></ul>
    113. 115. Anterolateral MI <ul><li>This person’s MI involves both the anterior wall (V 2 -V 4 ) and the lateral wall (V 5 -V 6 , I, and aVL)! </li></ul>
    114. 116. Rhythm #4 60 bpm <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>occasionally irreg. none for 7 th QRS 0.08 s (7th wide) <ul><li>P waves? </li></ul><ul><li>PR interval? </li></ul>0.14 s <ul><li>QRS duration? </li></ul>Interpretation? Ventricular extrasystole
    115. 117. <ul><li>Supraventricular premature beats </li></ul><ul><li>Atrial Fibrillation </li></ul><ul><li>Atrial Flutter </li></ul><ul><li>Paroxysmal Supraventricular Tachycardia </li></ul>Supraventricular Arrhythmias
    116. 118. Rhythm #5 100 bpm <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>irregularly irregular none 0.06 s <ul><li>P waves? </li></ul><ul><li>PR interval? </li></ul>none <ul><li>QRS duration? </li></ul>Interpretation? Atrial Fibrillation
    117. 119. Rhythm #6 70 bpm <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>regular flutter waves 0.06 s <ul><li>P waves? </li></ul><ul><li>PR interval? </li></ul>none <ul><li>QRS duration? </li></ul>Interpretation? Atrial Flutter
    118. 120. Rhythm #7 74  148 bpm <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>Regular  regular Normal  none 0.08 s <ul><li>P waves? </li></ul><ul><li>PR interval? </li></ul>0.16 s  none <ul><li>QRS duration? </li></ul>Interpretation? Paroxysmal Supraventricular Tachycardia (PSVT)
    119. 121. PSVT <ul><li>Deviation from NSR </li></ul><ul><ul><li>The heart rate suddenly speeds up, often triggered by a PAC (not seen here) and the P waves are lost. </li></ul></ul>
    120. 122. Ventricular Arrhythmias <ul><li>Ventricular Tachycardia </li></ul><ul><li>Ventricular Fibrillation </li></ul>
    121. 123. Rhythm #8 160 bpm <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>regular none wide (> 0.12 sec) <ul><li>P waves? </li></ul><ul><li>PR interval? </li></ul>none <ul><li>QRS duration? </li></ul>Interpretation? Ventricular Tachycardia
    122. 124. Rhythm #9 none <ul><li>Rate? </li></ul><ul><li>Regularity? </li></ul>irregularly irreg. none wide, if recognizable <ul><li>P waves? </li></ul><ul><li>PR interval? </li></ul>none <ul><li>QRS duration? </li></ul>Interpretation? Ventricular Fibrillation
    123. 125. Diagnosing a MI <ul><li>To diagnose a myocardial infarction you need to go beyond looking at a rhythm strip and obtain a 12-Lead ECG. </li></ul>Rhythm Strip 12-Lead ECG
    124. 126. <ul><li>Some leads get a good view of the: </li></ul>Anterior portion of the heart Lateral portion of the heart Inferior portion of the heart Views of the Heart
    125. 127. <ul><li>One way to diagnose an acute MI is to look for elevation of the ST segment. </li></ul>ST Elevation
    126. 128. <ul><li>Elevation of the ST segment (greater than 1 small box) in 2 leads is consistent with a myocardial infarction. </li></ul>ST Elevation (cont)
    127. 129. <ul><li>Now, using these 3 diagrams let’s figure where to look for a lateral wall and inferior wall and anteriorMI. </li></ul>Limb Leads Augmented Leads Precordial Leads MI Locations
    128. 130. <ul><li>Remember the anterior portion of the heart is best viewed using leads V 1 - V 4 . </li></ul>Limb Leads Augmented Leads Precordial Leads Anterior MI
    129. 131. <ul><li>So what leads do you think the lateral portion of the heart is best viewed? </li></ul>Limb Leads Augmented Leads Precordial Leads Leads I, aVL, and V 5 - V 6 Lateral MI
    130. 132. <ul><li>Now how about the inferior portion of the heart? </li></ul>Limb Leads Augmented Leads Precordial Leads Leads II, III and aVF Inferior MI
    131. 133. Putting it all Together <ul><li>Now, where do you think this person is having a myocardial infarction? </li></ul>
    132. 134. Bundle Branch Blocks
    133. 135. Bundle Branch Blocks <ul><li>So, conduction in the Bundle Branches and Purkinje fibers are seen as the QRS complex on the ECG. </li></ul>Therefore, a conduction block of the Bundle Branches would be reflected as a change in the QRS complex. Right BBB
    134. 136. Bundle Branch Blocks <ul><li>With Bundle Branch Blocks you will see two changes on the ECG. </li></ul><ul><ul><li>QRS complex widens (> 0.12 sec) . </li></ul></ul><ul><ul><li>QRS morphology changes (varies depending on ECG lead, and if it is a right vs. left bundle branch block) . </li></ul></ul>
    135. 138. Right Bundle Branch Blocks <ul><li>What QRS morphology is characteristic? </li></ul>V 1 For RBBB the wide QRS complex assumes a unique, virtually diagnostic shape in those leads overlying the right ventricle (V 1 and V 2 ). “ Rabbit Ears”
    136. 139. RBBB
    137. 141. Left Bundle Branch Blocks <ul><li>What QRS morphology is characteristic? </li></ul>Normal For LBBB the wide QRS complex assumes a characteristic change in shape in those leads opposite the left ventricle (right ventricular leads - V 1 and V 2 ). Broad, deep S waves
    138. 145. HYPERKALEMIA
    139. 146. HYPERKALEMIA
    140. 148. SEVERE HYPERKALEMIA
    141. 149. HYPOKALEMIA
    142. 150. HYPOKALEMIA
    143. 151. HYPOKALEMIA
    144. 153. ACUTE PERICARDITIS
    145. 154. ACUTE PERICARDITIS
    146. 155. Thank you

    ×