Laboratory Medicine Practice GuidelinesUse of Tumor Markers in Liver, Bladder,Cervical, and Gastric CancersEdited by Catha...
The National Academy of Clinical Biochemistry                                                          Presents           ...
Copyright © 2010 by the American Association for Clinical Chemistry, Inc. All rights reserved.Single copies for personal u...
Table of Contents1.   Introduction                        12.   Tumor Markers in Liver Cancer       33.   Tumor Markers in...
Chapter      1IntroductionWe present here to clinical chemists, clinicians, and other prac-       document. As might be ex...
Chapter       2Tumor Markers in Liver CancerBACKGROUND                                                                  be...
4                                                     Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancer...
Tumor Markers in Liver Cancer                                                                                             ...
6                                                Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric CancersTabl...
Tumor Markers in Liver Cancer                                                                                    7α-Fucosy...
8                                                   Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers ...
Table 2. Recommendations for Use of AFP in Liver Cancer by Different Expert GroupsApplication               AASLD         ...
10                                                    Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancer...
Tumor Markers in Liver Cancer                                                                                             ...
12                                                      Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Canc...
Tumor Markers in Liver Cancer                                                                                             ...
14                                                   Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers...
Tumor Markers in Liver Cancer                                                                                             ...
16                                                      Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Canc...
Chapter      3Tumor Markers in Bladder CancerBACKGROUND                                                              suffi...
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers
Upcoming SlideShare
Loading in...5
×

Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers

6,833

Published on

Laboratory Medicine Practice Guidelines

Published in: Health & Medicine
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
6,833
On Slideshare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
185
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers

  1. 1. Laboratory Medicine Practice GuidelinesUse of Tumor Markers in Liver, Bladder,Cervical, and Gastric CancersEdited by Catharine M. Sturgeon and Eleftherios Diamandis
  2. 2. The National Academy of Clinical Biochemistry Presents LABORATORY MEDICINE PRACTICE GUIDELINESUse of TUmor markers in Liver, BLadder, CerviCaL, and GasTriC CanCers EDITED BY Catharine M. Sturgeon Eleftherios P. DiamandisCatharine M. Sturgeon H. Barton GrossmanDepartment of Clinical Biochemistry, Royal Infirmary of Department of Urology, The University of Texas M. D.Edinburgh, Edinburgh, UK Anderson Cancer Center, Houston, TXMichael J. Duffy Peter HayesDepartment of Pathology and Laboratory Medicine, St Scottish Liver Transplant Unit, Department of Medicine,Vincent’s University Hospital and UCD School of Medicine Royal Infirmary of Edinburgh, Edinburgh, United Kingdomand Medical Science, Conway Institute of Biomolecular andBiomedical Research, University College Dublin, Dublin, Ralf-Thorsten HoffmannIreland Department of Clinical Radiology, LMU-Klinikum- Grosshadern, University of Munich, GermanyBarry R. HoffmanDepartment of Pathology and Laboratory Medicine, Seth P. LernerMount Sinai Hospital, and Department of Laboratory Department of Urology, Baylor College of Medicine,Medicine and Pathobiology, University of Toronto, Houston, TXOntario, Canada Florian Lohe Department of Surgery, LMU-Klinikum-Grosshadern,Rolf Lamerz University of Munich, GermanyDepartment of Medicine, Klinikum of the University Munich,Grosshadern, Germany Johanna Louhimo Department of Clinical Chemistry, Helsinki UniversityHerbert A. Fritsche Central Hospital, FinlandDepartment of Laboratory Medicine, The University of TexasM. D. Anderson Cancer Center, Houston, TX Ihor Sawczuk Department of Urology, Hackensack University MedicalKatja Gaarenstroom Center, Hackensack, NJDepartment of Gynecology, Leiden University MedicalCenter, Leiden, the Netherlands Kazuhisa TaketaJohannes M.G. Bonfrer Clinical Trial Center, Brain Attack Center, Oota MemorialDepartment of Clinical Chemistry, Netherlands Cancer Hospital, Fukuyama, JapanInstitute, Amsterdam, the Netherlands Eleftherios P. DiamandisThorsten Ecke Department of Pathology and Laboratory Medicine, MountDepartment of Urology, Helios Hospital, Bad Saarow, Sinai Hospital, and Department of Laboratory Medicine andGermany Pathobiology, University of Toronto, Ontario, Canada
  3. 3. Copyright © 2010 by the American Association for Clinical Chemistry, Inc. All rights reserved.Single copies for personal use may be printed from authorized Internet sources such as theNACB’s home page (http://www.aacc.org/members/nacb/LMPG/Pages/default.aspx), provided it is printed in its entirety, including this notice.Printing of selected portions of the document is also permitted for personal use, provided the user also prints and attaches the title page andcover pages to the selected reprint or otherwise clearly identifies the reprint as having been produced by the NACB. Otherwise, this documentmay not be reproduced in whole or in part, stored in a retrieval system, translated into another language, or transmitted in any form withoutexpress written permission of the National Academy of Clinical Biochemistry. Such permission may be requested from NACB, 1850 K Street,Suite 625, Washington, DC, 20006-2213. Permission will ordinarily be granted, provided the NACB logo and the following notice appearprominently at the front of the document:Reproduced (translated) with permission of the National Academy of Clinical Biochemistry, Washington, DC.This document (PID 5780) was approved by the National Academy of Clinical Biochemistry Board of Directors in July 2008. The NACB isthe Academy of the American Association for Clinical Chemistry.
  4. 4. Table of Contents1. Introduction 12. Tumor Markers in Liver Cancer 33. Tumor Markers in Bladder Cancer 174. Tumor Markers in Cervical Cancer 255. Tumor Markers in Gastric Cancer 31 References 35 Acknowledgment 53 Appendix 55
  5. 5. Chapter 1IntroductionWe present here to clinical chemists, clinicians, and other prac- document. As might be expected, many of the NACB recom-titioners of laboratory and clinical medicine the latest update mendations are similar to those made by other groups, as isof the National Academy of Clinical Biochemistry (NACB) made clear from the tabular comparisons presented for eachLaboratory Medicine Practice Guidelines for the use of tumor malignancy (2).markers in liver, bladder, cervical, and gastric cancers. These To prepare these guidelines, the literature relevant to the useguidelines are intended to encourage more appropriate use of tumor markers was reviewed. Particular attention was givenof tumor marker tests by primary care physicians, hospital to reviews, including the few relevant systematic reviews, andphysicians, and surgeons, specialist oncologists, and other to guidelines issued by expert panels. If possible, the consen-health professionals. sus recommendations of the NACB panels reported here were Clinical practice guidelines are systematically developed based on available evidence (ie, were evidence based). NACBstatements intended to assist practitioners and patients in recommendations relating to general quality requirements formaking decisions about appropriate health care for specific tumor marker measurements, including tabulation of importantclinical circumstances (1). An explanation of the methods causes of false-positive tumor marker results that must also beused when developing these guidelines has previously been taken into account (eg, heterophilic antibody interference, high-published (2) and has been included as an Appendix to this dose hooking) have previously been published (3). 1
  6. 6. Chapter 2Tumor Markers in Liver CancerBACKGROUND because it is already generally accepted that where surveil- lance has been systematically implemented, it is beneficial forHepatocellular carcinoma (HCC) is the fifth most common selected cirrhotic patients (29). In developed countries, aboutcancer in men and the eighth most common cancer in women 30%-40% of patients with HCC are now diagnosed sufficientlyworldwide (4,5). It is also the third most common cause of early for curative treatments.cancer-related death (6), with 500,000 new cases diagnosed Because many patients with early disease are asymptom-annually. The age-adjusted worldwide incidence varies by geo- atic (30,31), HCC is frequently diagnosed late, by which time itgraphic area, increasing from 5.5/100,000 of the population in is often untreatable (32). Suspicion of disease may first arise inthe US and Europe to 14.9/100,000 in Asia and Africa (7). The patients with liver cirrhosis who develop ascites, encephalopa-higher incidence observed in Europe during the past decade thy, or jaundice (33). Some patients initially present with upperprobably reflects the increasing number of cases of hepatitis C abdominal pain, weight loss, early satiety, or a palpable mass ininfection (8,9) and liver cirrhosis (10), both strong predisposing the upper abdomen (31). Other symptoms include obstructivefactors for HCC (11). jaundice, diarrhea, bone pain, dyspnea, intraperitoneal bleed- In most parts of Asia and Africa, hepatitis B virus infection ing, paraneoplastic syndromes [eg, hypoglycemia (34), eryth-is most relevant (12), with ingestion of aflatoxin B1 from con- rocytosis (35), hypercalcemia (36,37)], severe watery diarrheataminated food an additional contributory factor (13). In the West (37), or cutaneous features (eg, dermatomyositis; 38).and Japan, hepatitis C virus infection is the main risk factor (7,14- Diagnostic imaging modalities include ultrasound, com-17), although patients with alcoholic cirrhosis or hemochroma- puted tomography (CT), and MRI (6,39). Ultrasound is widelytosis are also at increased risk (18). In these parts of the world, available, noninvasive, and commonly used in patients witholder patients are more likely than young patients to develop HCC to assess hepatic blood supply and vascular invasion byHCC (15,16). In contrast, in developing countries HCC more fre- the tumor, as well as intraoperatively to detect small tumor nod-quently affects younger individuals who have chronic hepatitis ules. Although CT of the liver is sometimes used to investigateB (19), with carriers having twice the relative risk of develop- abnormalities identified on ultrasound, it is rarely used for pri-ing the disease. Cirrhotic patients have a higher risk than noncir- mary screening. American Association for the Study of Liverrhotic patients, with annual HCC incidences of 2%-6.6% (20) and Diseases (AASLD) guidelines specifically state that there are0.4% (21), respectively. Worldwide, 380 million individuals are no data to support surveillance with CT scanning (40). MRIinfected with hepatitis B and 170 million with hepatitis C (22). provides high-resolution images of the liver.Protective vaccination is possible for hepatitis B but not hepatitis Specimens for histopathology are usually obtained byC. New therapeutic antiviral strategies (eg, pegylated α-interferon biopsy under ultrasound or CT guidance. Risks of biopsycombined with ribavirin or other drugs such as lamivudine) are include tumor spread along the needle track (1%-2.7% over-available for treatment of hepatitis B and C (23-25). all) (41,42). The histological appearance of HCC ranges from The rationale behind screening for HCC by regular liver well-differentiated to poorly differentiated lesions of largeultrasound and tumor marker measurement in high-risk but multinucleate anaplastic tumor giant cells, with frequent cen-asymptomatic groups is that screening facilitates early iden- tral necrosis. There is ongoing debate about the relevance oftification of tumors when they are still potentially curable. In grading the dysplasia in predicting HCC.patients with cirrhosis or chronic viral hepatitis monitored in Except in Japan, patients are rarely diagnosed with HCC atthis way, an increasing serum α-fetoprotein (AFP) concentra- the very early stage of carcinoma in situ malignancy (43), whention may provide the first indication of malignancy, prompting 5-year survival rates are 89%-93% after resection and 71%additional imaging of the liver and additional investigations after percutaneous treatment (44). Patients with early-stage(26). In an asymptomatic patient, a predominant solid nodule HCC have 1 tumor nodule of < 5 cm or 2-3 nodules each < 3that is not consistent with hemangioma is suggestive of HCC cm. Prognosis depends on the number and size of the nodule(s),(27), whereas hypervascular lesions associated with elevated liver function at the time of diagnosis, and the choice of treat-AFP (> 400 μg/L) are almost diagnostic for malignancy. Ide- ment (45,46). The much greater disease heterogeneity seen inally, randomized, controlled trials should be carried out to more advanced disease complicates the selection of optimaldemonstrate the efficacy of screening in terms of decreased treatment, which in turn is reflected in the considerable varia-disease-related mortality and improved survival and cost effec- tion in survival rates reported in randomized, controlled trialstiveness (28). It is unlikely that such trials will be undertaken, (eg, 1-year, 10%-72%, 2-year, 8%-50% ; 47). 3
  7. 7. 4 Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers Curative treatments are offered to 30%-40% of HCC (LOE) for its clinical use (58; level 1, evidence from a single,patients in referral centers in Western countries and to 60%- high-powered, prospective, controlled study that is specifically90% of patients in Japan (6). Hepatic resection is the treatment designed to test the marker, or evidence from a metaanalysis,of choice in noncirrhotic patients, with 5-year survivals of 70% pooled analysis, or overview of level II or III studies; level II,achievable in carefully selected patients. Similarly high sur- evidence from a study in which marker data are determined invival rates can be achieved by transplantation in appropriately relationship to a prospective therapeutic trial that is performedselected cirrhotic patients (eg, with 1 nodule < 5 cm in diam- to test therapeutic hypothesis but not specifically designed toeter or up to 3 nodules < 3 cm each). Modern management of test marker utility; level III, evidence from large prospectiveHCC has recently been reviewed (40,48,49). studies; level IV; evidence from small retrospective studies; Potential treatments include percutaneous ablation, level V, evidence from small pilot studies). Of the markerschemoembolization, and chemotherapy. Percutaneous treat- listed, only AFP is widely used in clinical practice.ments provide the best treatment options for early unresectableHCC, destruction of neoplastic cells being achieved by chemi-cal (alcohol, acetic acid) or physical (radiofrequency, micro- TUMOR MARKERS IN LIVER CANCER:wave, laser, cryoablation) treatments (50). Percutaneous ethanol NACB RECOMMENDATIONSinjection has been associated with few adverse events, responserates of up to 90%-100% and 5-year survival rates as high as A summary of recommendations from representative guidelines50% (51) in selected patient groups. Radiofrequency ablation or published on the use of AFP in HCC is presented in Table 2,ethanol injection are very successful for patients with 1 tumor which also summarizes the current NACB guidelines for the use< 3 cm. Radiofrequency ablation is also effective, with compa- of markers in this malignancy. Below, we present a more detailedrable objective responses, fewer sessions needed (52) and better discussion of some of the markers listed in Tables 1 and 2.5-year survival rates for patients with larger tumors (53,54). Palliative treatments in advanced disease include arterialchemoembolization, with survival advantages in well-selectedcandidates (47). Embolization agents such as gelfoam admin- α-FETOPROTEINistered with selective chemotherapy agents (eg, doxorubicin,mitomycin, or cisplatin) mixed with lipiodol (chemoemboliza- AFP is a 70-kD glycoprotein consisting of 591 amino acids andtion) can delay tumor progression and vascular invasion in 15%- 4% carbohydrate residues, encoded by a gene on chromosome55% of patients. On the basis of improved understanding and 4q11-q13 [for reviews see (59,60)]. Normally produced duringdetection of aberrant activation of several signaling cascades gestation by the fetal liver and yolk sac, AFP is highly elevatedinvolved in liver cell transformation, molecular targeted thera- in the circulation of newborns with concentrations decreasingpies for HCC are being developed (55). In multicenter phase III during the next 12 months to 10-20 μg/L.placebo-controlled trials one of these new drugs, the multiki-nase inhibitor sorafenib, has been shown to be modestly effec-tive in the treatment of advanced stage HCC [Barcelona Clinic Analytical Considerationsliver cancer classification (BCLC) stages B and C; 55-57]. Assay Methods, Standardization, and It is clear from the above discussion that early detection Reference Valuesof HCC, preferably when still asymptomatic, is desirable fora favorable outcome. The aim of this report is to present new AFP is currently measured by two-site immunometric assaysNACB Guidelines for the use of serum and tissue tumor mark- using monoclonal and/or polyclonal antibodies, with resultsers in the early detection of HCC and its management. To pre- similar to those of the RIAs that preceded them. Most com-pare these guidelines, the literature relevant to the use of tumor mercial assays are calibrated against WHO International Stan-markers in HCC was reviewed. Particular attention was given to dard (IS) 72/225. Clinical results are reported in mass unitsreviews, including systematic reviews, prospective randomized (μg/L) or in kilo-units per liter of IS 72/225, for which 1 IUtrials that included the use of markers, and guidelines issued by of AFP corresponds to 1.21 ng. The upper reference limit usedexpert panels. When possible, the consensus recommendations by most treatment centers is 10-15 μg/L (8.3-12.4 kU/L). AFPof the NACB Panel were based on available evidence (ie, were concentrations reportedly increase with age, the upper refer-evidence based). A summary of guidelines on these topics pub- ence limit increasing from 11.3 μg/L in persons < 40 years oldlished by other expert panels is also presented. to 15.2 μg/L in those > 40 years old (61). Ideally, reference values should be established for each assay, because there is some between-method variation in results.CURRENTLY AVAILABLE MARKERSFOR HCC AFP Carbohydrate MicroheterogeneityThe most widely investigated tissue-based and serum-based AFP is a glycoprotein and contains 4% carbohydrate as atumor markers for HCC are listed in Table 1, together with the single biantennary chain that is N-linked to asparagine-232 ofphase of development of each marker and the level of evidence the protein backbone (62,63). The microheterogeneity of this
  8. 8. Tumor Markers in Liver Cancer 5Table 1. Currently Available Serum and Tissue Markers for Liver CancerCancer Marker Proposed Uses Phase of Development LOE ReferenceTissue markersGPC3 Differentiating HCC from other hepatic Undergoing evaluation V 196, 197 disorders at the tissue levelGPC3 + heat shock Raised levels of 2 of the 3 markers Undergoing evaluation 511 protein 70 + glu- indicate a need for biopsy (accuracy tamine synthetase 78% at 100% specificity)Telomerase Independent prediction of recurrence Undergoing evaluation V 512-515 after HCC resectionProliferating cell Prediction of recurrence and survival in Undergoing evaluation V 516 nuclear antigenñla- small HCC beling indexKi-67 Assessment of prognosis after resection Undergoing evaluation V 517 of HCCMIB-1, E-cadherin, Prognostic marker for recurrence when Undergoing evaluation V 518 β-catenin selecting HCC patients for orthotopic liver transplantationSerum markersAFP Screening patients at high risk for HCC, In clinical use, but value not validated in III 89, 90, especially those with hepatitis Bñ a high-level evidence study 99-104 and hepatitis Cñrelated liver cirrhosis In conjunction with ultrasound, diagno- In clinical use, but value not validated in III 30, sis of HCC in patients at high risk of a high-level evidence study 106-115, disease 118-120 Assessing prognosis preoperatively Value not validated in a high-level III 32, 154, evidence study 166, 170, 179, 519 Monitoring HCC patients, in conjunc- In clinical use, but value not validated in III 89, 90, 99- tion with ultrasound, to detect early a high-level evidence study 103, 179 recurrenc Monitoring patients with no evidence of In clinical use, but value not validated in IV 98, 99, 101, disease after resection or transplan- a high-level evidence study 103, 168 tation Monitoring therapy in advanced disease In clinical use, but value not validated in IV 172, a high-level evidence study 174-178AFP–concanavalin A Differentiating source of elevated AFP Not in general clinical use, but V 64-66 binding from germ cell and metastatic liver effectively differentiates AFP source as tumors (high) from HCC (low) (glu- HCC or GCT; not validated in a high- cosaminylation index) level evidence studyAFP–LCA binding Differentiating malignant (high) from Not in general clinical use, but V 66, 520 nonmalignant (low) origin of elevated effective for AFP source origin on AFP, independent of location (fuco- suspicion of malignant vs benign liver sylation index) disease
  9. 9. 6 Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric CancersTable 1. (Contd.)Cancer Marker Proposed Uses Phase of Development LOE ReferenceHCC-specific AFP band Earlier detection of HCC than “diagnos- Not in clinical use V 69-71 on isoelectric focus- tic” AFP (> 500 µg/L), positive predic- ing (monosialylated tive value 73% vs 42%, respectively AFP)AFP lectin-affinity Prediction of more malignant stage and In limited clinical use as a commercially IV 67, 68, 74, subgroups (LCA- poor outcome. AFP-L3 is routinely available test in certain countries, but 75, 77- reactive LCA-L3; used in Japan when AFP exceeds value not validated by a high-level 85, 165, erythroagglutinating- cutoff level; AFP-P4 is more sensi- evidence study 521 phytohemagglutinin- tive, but is not used routinely E4 reactive AFP-P4 and P5)Circulating free Providing information complementary Undergoing evaluation V 522 AFP-IgM complexes to AFPDCP/prothrombin pro- Used with AFP during and after treat- Undergoing evaluation IV 84, 85, 173, duced by vitamin K ment to predict adverse outcome, 181-190, absence or antago- early recurrence, and malignant 192-194, nism II potential; false-positive results 523 may occur in patients with severe obstructive jaundice or vitamin K action impairment (e.g., patients on warfarin or some antibiotics); three commercial assays with differing ac- curacy are availableSoluble NH2 fragment Diagnosis and monitoring of HCC and Undergoing evaluation V 196, 199 of GPC-3, a heparan cirrhosis; enables detection of small- sulfate proteoglycan size HCC more sensitively than AFPGolgi protein 73 Resident Golgi glycoprotein, for Undergoing evaluation V 524 diagnosis of early HCCIso-γGTP Complementary to AFP as a diagnostic Undergoing evaluation V 525, 526 marker for HCCFerritin Monitoring HCC in patients whose No high-level evidence evaluation V 527, 528 tumors do not produce AFPVariant alkaline Complementary to AFP Undergoing evaluation V 529 phosphatase8α1-Antitrypsin Complementary to AFP Undergoing evaluation V 530, 531α1-Acid glycoprotein Complementary to AFP Undergoing evaluation V 532Osteopontin Complementary to AFP Undergoing evaluation V 533Aldolase A Complementary to AFP Undergoing evaluation V 534, 5355[prime]-Nucleotide Complementary to AFP; monitoring Undergoing evaluation V 536, 537 phosphodiesterase HCC in patients whose tumors do not produce AFPCK18, CK19, TPA, TPS Complementary to AFP Undergoing evaluation V 538, 539Circulating free Complementary to AFP in diagnosis of Undergoing evaluation V 540 squamous cell car- HCC cinoma antigen–IgM complexes
  10. 10. Tumor Markers in Liver Cancer 7α-Fucosyl-transferase Marker of progression of HCC Undergoing evaluation V 541α-L-fucosidase Complementary to AFP Undergoing evaluation V 542, 543Transforming growth Diagnosis of small HCC tumors Undergoing evaluation V 544 factor β1Urinary transforming Complementary to AFP Undergoing evaluation V 545 growth factor β1Intercellular cell adhe- Predictor of prognosis of HCC Undergoing evaluation V 546, 547 sion molecule 1Anti-p53 antibody Complementary to AFP in diagnosis of Undergoing evaluation V 548 HCCInterleukin 8 Predictor of prognosis of HCC Undergoing evaluation V 549Interleukin 6 Complementary to AFP in diagnosis of Undergoing evaluation V 550, 551 HCC, predictor of HCCInsulin-like growth Complementary to AFP Undergoing evaluation V 552 factor IITelomerase or telom- Diagnosis of HCC and predictor of its Undergoing evaluation V 553, 554 erase reverse tran- course of HCC (also assayed in scriptase mRNA ascitic fluid)Vascular endothelial Prognostic marker. Predictor of poor Undergoing evaluation V 555 growth factor outcomeVariant wild-type Predictor of unfavorable prognosis in Undergoing evaluation V 556, 557 estrogen receptor HCCVitamin B12-binding Diagnosis of the AFP-negative fibro- Undergoing evaluation V 558, 559 protein lammellar variant of HCCNeurotensin Diagnosis of the AFP-negative fibro- Undergoing evaluation V 560 lammellar variant of HCCFree nucleic acids Early detection and monitoring of HCC Undergoing evaluation V 210Circulating cell-free Predictive marker for distant metastasis Undergoing evaluation V 561 serum DNA of hepatitis C virusñrelated HCCEpigenetic abnormali- Early detection of HCC Undergoing evaluation V 211 ties such as p16 hypermethylationProteomics Early detection and monitoring of HCC Undergoing evaluation V 208, 209Plasma proteasome Marker of malignant transformation in Undergoing evaluation V 562 cirrhotic patients including those with low tumor massTumor cell markersCirculating tumor cells Assessment of prognosis pre and Undergoing investigation IV, V 200–204 in peripheral blood postoperatively; prediction of early detected by RT- recurrence and distant metastases PCR of AFP mRNA after surgery; assist in therapeutic decisions; clinical utility is contro- versial, and findings of published studies are inconsistent
  11. 11. 8 Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers Table 1. (Contd.) Cancer Marker Proposed Uses Phase of Development LOE Reference Genetic markers Plasma glutamate Assessment of early HCC in patients Undergoing evaluation V 215, 563 carboxy-peptidase, with chronic viral chronic hepatitis; phospholipases assessment of metastatic potential A2 G13 and G7 of HCC and other cDNA microarray-derived encoded proteins Melanoma antigen Complementary to AFP in monitoring Undergoing evaluation V 564, 565 gene 1, 3; synovial recurrence; candidate antigens for sarcoma on X immunotherapy chromosome 1, 2, 4, 5; sarcoplasmic calcium-binding protein 1; New York esophageal squamous cell carcinoma 1 Circulating methylated Detection and quantification of circu- Undergoing evaluation. V 566 DNA (ras association lating methylated ras association domain family 1A) domain family 1A useful for HCC screening, detection and prognosiscarbohydrate chain has been investigated extensively by use specificity increased to 100%, enabling reliable diagnosis of anof both lectin affinity electrophoresis (64-68) and isoelectric additional 10% of HCC cases that would not have been diag-focusing (69-73). Distinct glycoform patterns characteristic of nosed using AFP alone at a cutoff of 200 μg/L.malignant or benign tissue have been found, raising the pos- In a multicenter prospective 2-year longitudinal Northsibility of improving AFP specificity for HCC by measurement American study, serum AFP was compared with AFP-L3 andof an HCC-specific glycoform. des-γ-carboxy-prothrombin (DCP; an investigational tumor AFP glycoforms can be differentiated on the basis of their marker for HCC) in 372 patients with hepatitis C (83), includ-lectin-binding affinity (74-76). AFP from HCC patient sera, ing 40 initial HCC and 34 HCC follow-up cases and 298 ini-for example, binds more strongly to concanavalin A than does tially HCC-free cases (83). Sensitivity, specificity, and positive/AFP from nonseminomatous germ cell tumors, and both bind negative predictive values were, respectively, 61%, 71%, 34%,more strongly to Lens culinaris lectin (LCA) than does AFP and 88% for AFP (cutoff 20 μg/L) and 22%, 99%, 80%, andfrom patients with benign liver disease. The affinity for LCA 84% (cutoff 200 μg/L) compared with 37%, 92%, 52%, andis slightly higher for AFP from HCC (AFP-L3) than that from 85% for AFP-L3 alone (cutoff 10%) and 39%, 90%, 48%, andnonseminomatous germ cell tumors (AFP-L2). Assay kits are 86% for DCP alone (cutoff 7.5 μg/L; 83). When all three mark-now available commercially that specifically measure the AFP- ers were combined, these figures increased to 77%, 59%, 32%,L3 and AFP-P4 glycoforms (74,76). and 91%, respectively. In patients with raised AFP (20-200 Numerous reported studies from Japan and other Asian μg/L), high specificity was found for AFP-L3 and DCP (86.6%countries have demonstrated that an increase in the AFP-L3 and 90.2%, respectively). Of 29 HCC patients with AFP valuesfraction of serum AFP correlates more strongly than conven- < 20 μg/L, 13 had increased concentrations of AFP-L3 or DCP.tional serum AFP with adverse histological characteristics of Compared with total AFP, normal AFP-L3 and DCP concentra-HCC (eg, greater portal vein invasion, more advanced tumor tions correlated more strongly with an absence of HCC, with airrespective of size) and predicts unfavorable outcome (77-81). higher specificity and negative predictive value (83).In a study comparing measurement of AFP-L3 and AFP in a In a prospective study comparing AFP-L3 and DCP withUS referral population (166 patients with HCC, 77 with chronic AFP in 99 US patients with histologically confirmed HCC, sen-liver disease, and 29 with benign liver mass), AFP-L3 concen- sitivity rates were 62%, 73%, and 68%, respectively, with thetrations were found to be relevant only at AFP concentrations highest sensitivity (86%) obtained when all three markers werebetween 10 and 200 μg/L (82). Within this range, AFP-L3 combined (84). AFP-L3 was significantly related to portal veinexhibited sensitivity of 71% and specificity of 63% at a cutoff invasion and patient outcome, suggesting it could be a usefulof 10%. At a cutoff of > 35% sensitivity decreased to 33% but prognostic marker for HCC (84). Use of the same three markers
  12. 12. Table 2. Recommendations for Use of AFP in Liver Cancer by Different Expert GroupsApplication AASLD Asian BrSocGE EASL EGTM ESMO French Japanese NCCN 2010 NACB 2010 2005 Oncology 26 2003 131 137 1999 2009 4 SOR 132 EBClGl 135 40 Summit 2001 2007/2008 136 127, 128 LOE SOREarly detection of Yes (but Yes (At Yes Yes Yes Yes Yes Yes Yes Yes III B/C HCC by 6-month AFP to 3- to (ultrasound (including determination of be used 6-month with or AFP, AFP (with abdominal only if intervals) without AFP-L3, ultrasound) in high risk ultrasound AFP) DCP) groups (i.e. patients not Tumor Markers in Liver Cancer with chronic hepatitis B available) or C virus or cirrhosis)Indicator of increased None None None Yes None None None Yes Yes Yes III C risk of HCC when published published published published published published increased or increasing AFP is accompanied by negative ultrasoundConfirmation of Yes (AFP Yes (AFP > Yes Yes Yes Yes (AFP > None Yes (AFP > Yes (AFP > Yes (AFP > III B/C diagnosis of HCC > 200 400 μg/L) (AFP 400 μg/L) published 200 μg/L) 400 μg/L) 200 μg/L) μg/L) > 400 μg/L)Prediction of prognosis None None None Yes None None None None None Yes, in III B/C published published published published published published published published combination with existing factorsPosttreatment Yes None Yes Yes Yes Yes None Yes Yes IV C monitoring (where published published pretreatment AFP raised) as an adjunct to imagingMonitoring Yes None Yes None Yes Yes None Yes, Yes, IV C after surgery, published published published especially in especially in transplantation absence of absence of or percutaneous measurable measurable therapy disease diseaseMonitoring advanced None None Yes None None Yes None Yes, Yes, IV C disease published published published published published especially in especially in absence of absence of measurable measurable disease disease 9 Abbreviations: Br Soc GE, British Society of Gastroenterology; EGTM, European Group on Tumor Markers; ESMO, European Society for Medical Oncology; SOR, strength of recommendation; Japanese EBClGl, Japanese evidence-based clinical guidelines.
  13. 13. 10 Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancersto predict HCC recurrence after curative percutaneous ablation in serum AFP or suspicious screen-detected nodules is best per-has been investigated in 416 HCC patients, 277 of whom had formed in specialist referral centers.recurrence during the follow-up period (85). Pre- and postabla- The incidence of HCC in patients with chronic hepatitistion AFP > 100 μg/L and AFP-L3 > 15% were both significant is lower than in patients with cirrhosis, which may decreasepredictors of recurrence and thus may complement imaging the benefit of screening in the former. Japanese studies suggestmodalities in evaluating treatment efficacy (85). A large and that differences in the natural history of hepatitis B and C meanwell-designed case-control study comparing AFP, AFP-L3, and that hepatitis B patients are more likely to develop HCC, evenDCP has recently been conducted in seven academic medical when young and asymptomatic (105).centers in the US (86). The study cohort included 417 patients In one study, 1,069 hepatitis B virus–infected patients withwith cirrhosis and 419 with HCC [77 with BCLC very early proven cirrhosis had to be screened to detect 14 cases of HCC,(BCLC 0) and 131 with early (BCLC A) stage disease]. Receiver of which only six were at a sufficiently early stage to be amena-operating characteristic (ROC) analysis revealed that AFP had ble to surgical cure (106). The frequency of detection of curablehigher sensitivity (67%) than DCP or AFP-L3 for patients with malignancy was even lower in a study of 118 French patientsBCLC 0 stage disease (86). Additional research is required to with Child-Pugh A or B cirrhosis who were screened at 6-monthassess the value of AFP and related markers as surrogate end intervals with ultrasound, AFP, and DCP. Only one of 14 detectedpoints for true health outcomes in clinical trials (87,88). HCC cases (7%) was surgically resectable at the time of diag- nosis (107). However, other studies have demonstrated benefit in screening chronic hepatitis B carriers for HCC. A population- based Alaskan prospective screening study of 2230 carriersAFP in Screening and Early Detection with cirrhosis who were positive for hepatitis B surface antigen Cirrhotic patients with AFP concentrations that are persis- (108,109) demonstrated that 64%-87% of detected HCCs weretently elevated are at increased risk of developing HCC com- limited to single foci and that 43%-75% of tumors were < 3pared with those with AFP concentrations that fluctuate or cm in size, which enabled curative surgery in 29%-66% of theremain within reference intervals (29% vs 13% vs 2.4%, respec- detected cancers (12,110,111). In another study, tumor size wastively; 6). Lower serum AFP concentrations are frequently significantly reduced and survival improved (35% vs 10% at 30encountered when HCC is detected during screening (89), and months) when HCC was detected by screening (112).small HCC tumors are AFP negative in up to 40% of cases (90). There is some evidence that screening high-risk popula-AFP immunostaining of well-differentiated small HCCs is often tions for HCC can be cost-effective in high-prevalence regionsnegative (91), rendering tissue AFP uninformative. In these such as Hong Kong (113) and that screening imparts a survivalinstances, tumors may be detectable only by ultrasound (92). advantage, as demonstrated in an asymptomatic Asian Hawai-Malignant lesions undetectable by imaging are likely to reach 2 ian population with chronic hepatitis B or C and cirrhosis (114)cm in diameter in about 4-12 months (93,94). To detect tumors and also in an Italian study of cirrhotic patients with screen-≤ 2 cm in diameter, a suggested interval for surveillance in cir- detected HCC (115). These conclusions are supported byrhotic patients is 6 months, with the use of both serum AFP and results of a randomized, controlled trial of screening of 18,816ultrasound (95). Comparison of studies is often difficult owing to patients age 35-59 years recruited in urban Shanghai betweendifferences in study design. In addition, opinions differ as to how 1993 and 1995 who had hepatitis B infection or a history ofeffectively AFP measurement contributes to programs for early chronic hepatitis (116). Biannual screening with AFP and ultra-detection or surveillance (96). Reliable markers are needed to sound reduced HCC mortality by 37%. Although results of acomplement ultrasound, because the interpretation of ultrasound screening study of 5,581 hepatitis B carriers between 1989 andis operator dependent and can be difficult to perform in patients 1995 in Qidong county demonstrated that screening with AFPwho are obese or have underlying cirrhosis (97). resulted in earlier diagnosis of liver cancer, the gain in lead In a systematic review of AFP test characteristics for diag- time did not result in any overall reduction in mortality (117).nosis of HCC in HCV patients (98), only five of 1,239 studies It seems likely that this finding reflects differences in therapymet all the authors’ inclusion criteria (99-103). In these five in the two studies, 75% of patients with subclinical HCC iden-studies, with the use of an AFP cutoff of 20 μg/L, sensitivity tified in the Shanghai study having received radical treatmentranged from 41% to 65%, specificity from 80% to 94%, posi- compared with only 25% in the Qidong study (116).tive likelihood ratio from 3.1 to 6.8, and negative likelihood A national survey of practice in the US (118) has docu-ratio from 0.4 and 0.6, additional demonstrating the limited mented that a majority of institutions routinely screen patientsvalue of AFP as a screening test. In 19 of 24 studies of patients with cirrhosis for HCC, especially those with high-risk etiolo-with hepatitis C published from 1985 to 2002, AFP sensitivi- gies. Systematic screening with twice yearly AFP and liverties and specificities for HCC were 45%-100% and 70%-95%, ultrasound is considered by many to offer the best hope forrespectively, at cut points between 10 and 19 μg/L (104). Ultra- early diagnosis of HCC in healthy carriers positive for hepatitissound has been reported to have higher sensitivity (71%) and B surface antigen who have additional risk factors (eg, activespecificity (93%) than serum AFP, but the positive predictive chronic hepatitis, cirrhosis) and in patients with cirrhosis ofvalue of ultrasound is low, at about 14% (30). Because the suc- any etiology (119). Markov analysis has clearly demonstratedcess of ultrasound detection is critically dependent on the skill that in US patients with cirrhosis arising from chronic hepati-of the ultrasonographer, investigation of patients with increases tis C, screening for HCC is as cost-effective as other accepted
  14. 14. Tumor Markers in Liver Cancer 11screening protocols (120). Biannual AFP and annual ultrasound published in 2001 (132) state that the diagnosis of HCC shouldgave the greatest gain in terms of quality-adjusted life-years, be based on histopathological examination of 1 or more liverwhile still maintaining a cost-effectiveness ratio of < $50,000/ samples obtained by open surgery, laparoscopy, or ultrasound/quality-adjusted life-year. The authors suggested that biannual CT-guided biopsy (standard) with the option of fine-needleAFP with annual CT screening might even be cost effective aspiration for cytology if liver biopsy is impossible.(120). Results of a later systematic review and economic analy- In a recent US retrospective study in which patients withsis indicated that AFP measured biannually and ultrasound per- hepatic lesions suspicious for HCC underwent both fine-needleformed every 6 months provide the most effective surveillance aspiration and core biopsy, results were correlated with thosestrategy in high-risk patients (121). Because of high costs, how- from commonly used noninvasive methods (133). Patientsever, the authors questioned whether ultrasound should be rou- with positive biopsy results had significantly higher serumtinely offered to those with serum AFP < 20 μg/L, in view of the AFP concentrations than those with negative biopsy results,cost-benefit ratio, which depends on the etiology of cirrhosis. although the two groups were otherwise similar. Biopsy results These conclusions are generally supported by results of a had greater sensitivity, specificity, and predictive value com-recent modeling study in which effectiveness and cost-effec- pared with noninvasive diagnostic criteria. The authors recom-tiveness of surveillance for HCC were evaluated in separate mended an increased role for image-guided biopsy of suspicionand mixed cohorts of individuals with cirrhosis due to alco- lesions > 1 cm in size to allow adequate treatment planning,holic liver disease, hepatitis B, or hepatitis C (122). Algorithms and commented that the risks of biopsy appear small and theincluding the use of AFP and/or ultrasound at 6- and 12-month potential benefits significant (133).intervals were compared. In the mixed cohort, the model found It is of course essential to be aware of the caveats of usethat AFP and ultrasound performed every 6 months to be most of AFP, including the benign and malignant diseases that mayeffective, tripling the number of patients with operable tumors cause raised serum AFP and the fact that a value within referenceat diagnosis and almost halving the number of deaths from intervals never necessarily excludes malignancy (99,134). AnHCC compared with no surveillance. Based on this report, the elevated AFP detected by a single measurement may be transientmost cost-effective strategy would involve triage with 6-month (eg, arising from an inflammatory flare of underlying chronicAFP measurements. It was concluded that in the UK National viral hepatitis), whereas elevated but stable concentrationsHealth Service, surveillance of individuals with cirrhosis at decrease the likelihood that HCC is the causal agent. Sequen-high risk for HCC should be considered to be both effective tial measurements of serum AFP may therefore provide usefuland cost-effective (122). information, but this is still under investigation and not yet fully Given the widespread use of AFP measurements and liver validated for routine clinical practice. A steadily rising patternultrasound to screen prospectively for the onset of HCC in of elevated AFP should always be rigorously investigated usingcirrhotic patients, particularly those who are suitable candidates ultrasound and other imaging techniques, which if initially nega-for curative therapy (109,123,124), there is an urgent need to tive should be repeated to identify any possible occult hepaticestablish and validate optimal follow-up protocols when suspi- malignancy (131).cious nodules are detected (10,125,126). In 2003, the British Society of Gastroenterology pre- Recently published Japanese evidence-based clinical guide- sented guidelines on the use of serial tumor marker measure-lines for diagnosis and treatment of HCC differentiate the risk ments to screen for HCC (26). The expert group concludedof HCC in patients with cirrhosis as being super high (hepati- that in high-risk groups, screening by abdominal ultrasoundtis B/C–related cirrhosis) or high (chronic hepatitis B/C or liver and AFP compared with no surveillance detected HCC ofcirrhosis with a cause other than hepatitis B/C; 127,128). For smaller size. Such detection enables a greater proportion ofthe super high-risk group, ultrasound examination and measure- curative therapies, with earlier detection leading to improvedments of AFP, DCP, and AFP-L3 are recommended at intervals of long-term survival and/or cost savings. It was suggested3-4 months, with a dynamic CT or MRI scan every 6-12 months. that surveillance for HCC should be restricted to males andFor the high-risk group, ultrasound and tumor-marker measure- females with cirrhosis due to hepatitis B or C virus or geneticments are recommended every 6 months. Addition of DCP or hemochromatosis and to males with cirrhosis due to primaryAFP-L3 is considered necessary because these are diagnostic biliary cirrhosis and alcoholic cirrhosis (if abstinent or likelymarkers whereas AFP is a marker of risk (129,130). Detection of to comply with treatment). The likelihood of HCC arising ina nodular lesion by ultrasound and/or a continuous rise in AFP (> cirrhosis of other etiology was considered to be low. Surveil-200 μg/L), DCP [in arbitrary units (AU) with 1 AU = 1 μg pro- lance using AFP and abdominal ultrasound was recommendedthrombin] (> 40 mAU/mL), or AFP-L3 (> 15%) requires further at 6-month intervals, with appropriate equipment and skilledevaluation by dynamic CT or MRI (127,128). operators essential for the ultrasound component. Patients The European Association for the Study of the Liver should be counseled on the implications of early diagnosis(EASL) has recommended that nodules < 1 cm in diameter be and its lack of proven benefit (26).followed up with repeat ultrasound and AFP in 6 months, that These recommendations are in accord with National Com-fine-needle biopsy and histology be added to investigate nodules prehensive Cancer Network (NCCN) guidelines, which recom-of 1-2 cm (false-positive rate 30%-40%), and that additional mend surveillance using both AFP and ultrasound in patients atnoninvasive diagnostic criteria (eg, two imaging techniques) be risk for HCC (135). Those considered as being at risk includeemployed for tumors > 2 cm (131). French recommendations patients with cirrhosis associated with hepatitis B or alcohol,
  15. 15. 12 Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancersgenetic hemochromatosis, autoimmune hepatitis, nonalcoholic of 150 μg/L based on ROC analysis (sensitivity 54%, specific-steatohepatitis, primary biliary cirrhosis, or α1-antitrypsin ity 95.9%, comparing results for patients with HCC and benigndeficiency. Surveillance is also recommended for individuals chronic liver disease; 144). Using the same ROC technique, anwithout cirrhosis who are hepatitis B carriers or have other Italian group demonstrated the same specificity of 99.4% withrisk factors (eg, active viral replication, high hepatitis B virus cutoffs of 200 and 400 μg/L, but with higher sensitivity at theDNA concentrations, family history of HCC, Asian males > 40 lower cutoff (99). The 2001 EASL guidelines state that AFP >years old, females > 50 years old, Africans < 20 years old). The 400 μg/L together with detection of a suspicious liver node onNCCN recommends additional imaging if serum AFP is ris- imaging is diagnostic of HCC (131). This guideline is in according or after identification of a liver mass nodule on ultrasound with recommendations of the Asian Oncology Summit panel,(135). The 2009 consensus statement of the Asian Oncology which concluded that a characteristic image on dynamic CT orSummit also recommends liver ultrasound and measurement dynamic MRI, regardless of tumor size, will suffice for diagno-of AFP concentrations every 3-6 months in all patients with sis of HCC, and obviate the need for biopsy, with AFP > 400liver cirrhosis, regardless of etiology, with the caveat that such μg/L diagnostic in patients with liver cirrhosis or chronic hepa-surveillance is best established in hepatitis B virus–related titis (136). This group also recommended that needle biopsy beliver cirrhosis, for which the LOE is relatively high (136). The avoided when curative surgery is possible. Both the AASLDAASLD currently recommends use of AFP for surveillance but (40) and Japanese expert panels (131) state that in patients withonly when ultrasound is not available (40). This organization a suspicious liver node on imaging, AFP concentrations > 200also states that HCC screening should be “offered in the setting μg/L are also suspicious and should be investigated. After exclu-of a program or a process in which screening tests and recall sion of hepatic inflammation, a sustained rise in AFP is sugges-procedures have been standardized and in which quality con- tive of HCC and should prompt further liver imaging studies,trol procedures are in place” (40). whereas stable or decreasing results make it less likely. In accord with these and other recommendations Circulating AFP concentrations in patients presenting with(26,131,132,135,137; Table 2), the NACB supports the use of HCC range from within the reference interval to as high as 10determinations of AFP every 6 months and abdominal ultra- × 106 μg/L (ie, 10 g/L), with pretreatment concentrations >sound to screen prospectively for the onset of HCC in high-risk 1,000 μg/L in approximately 40% of patients (145). AFP haspatients, especially those with liver cirrhosis related to hepati- been reported to be higher in patients with HCC arising fromtis B or C virus. chronic viral conditions compared to those with alcoholic liver disease (146) and in younger (147) and male (147) patients. Nacb Liver cancer Panel Recommendation 1 In one cohort study of 239 patients with chronic hepatitis, 277 aFP in Screening Patients at High Risk for Hcc with cirrhosis, and 95 with HCC, AFP gave sensitivities for HCC of 79% and 52.6% at decision points of 20 μg/L and 200 AFP should be measured and abdominal ultrasound performed μg/L, respectively, with corresponding specificities of 78% at 6-month intervals in patients at high risk of HCC, especially and 99.6% (148). According to some Japanese investigators in those with liver cirrhosis related to hepatitis B and hepatitis (149), any circulating AFP value > 10 μg/L in patients with C virus. AFP concentrations that are > 20 μg/L and increas- chronic liver disease should be regarded as suspicious of HCC ing should prompt further investigation even if ultrasound is and prompt further investigation (eg, using AFP-L3 [LCA] or negative [LOE, III/IV; French Strength of Recommendation AFP-P4 [E-PHA] lectin tests and imaging). These investigators (SOR), C]. advocate a lower decision point of 10 μg/L rather than 20 μg/L to take into account the improvements in imaging that have led to more HCC being detected when AFP is < 20 μg/L. InAFP in Diagnosis Japan, for example, the percentage of HCC patients with AFPElevated serum AFP concentrations are not specific for HCC concentrations < 20 μg/L at presentation increased from 3.6%because increased concentrations also occur in normal preg- in 1978 to 38.1% in 2000. From 2001 to 2003, after a change innancy, in certain benign liver diseases, and in some malignan- AFP cutoff to < 15 μg/L, 36.4% of HCC patients had increasedcies. Non-HCC malignancies that may give rise to high AFP AFP concentrations (127). Introduction of a lower cutoff wasconcentrations include nonseminomatous germ cell tumors, for supported by a previous report that healthy Japanese individu-which AFP is an important tumor marker with well-established als do not have AFP concentrations > 10 μg/L (150), but thisclinical use (138). AFP may also be raised in stomach cancer, finding may apply only to the population studied.biliary tract cancer, and pancreatic cancers (139). Elevated The Japanese guidelines state that HCC can be diagnosedAFP concentrations exceeding 1,000 μg/L are, however, rare in by imaging (dynamic CT/MRI/contrast-enhanced ultrasound)these malignancies, occurring in < 1% of cases. or other techniques (hypervascularity in the arterial phase and Approximately 20%-40% of adult patients with hepatitis or wash-out in the portal venous phase; 127,128). Continuousliver cirrhosis have raised AFP concentrations (> 10 μg/L; 140). increases in AFP (> 200 μg/L) and/or DCP (> 40 mAU/mL)In these patients, an AFP concentration between 400 and 500 μg/L and/or AFP-L3 (> 15%) are highly suggestive of typical HCCwas initially generally accepted as the optimal decision point even in the absence of ultrasound evidence of an apparentto differentiate HCC from chronic liver disease (26,136,141- liver nodule (127) and should prompt the use of dynamic CT143). However, a Japanese study advocated an optimal cutoff or MRI (128).
  16. 16. Tumor Markers in Liver Cancer 13 According to recent guidelines from the AASLD, surveil- (32,155), Spain (156,157), and China (158) have also beenlance/screening in patients at risk for HCC should be performed published [see also (159,160)]. Of these, the Spanish BCLCusing ultrasound at intervals of 6-12 months and AFP alone staging system showed the best prognostic stratification (161)not be used unless ultrasound is not available (40), whereas and was also adopted in the AASLD guidelines (40). Mostthe NCCN guidelines recommend periodic screening with of these systems include as major prognostic factors sever-ultrasound and AFP every 6-12 months (135). On ultrasound ity of the underlying liver disease, tumor size, tumor exten-detection of a nodule < 1 cm, the AASLD panel recommends sion into adjacent structures, and presence of metastasesfollow-up by ultrasound at intervals of 3-6 months, reverting to <zref>152,<ths>155<zrefx>. According to AASLD guidelinesroutine surveillance if there is no growth after a period of up (40), for optimal assessment of the prognosis of HCC patients,to 2 years (40). In contrast, the NCCN guidelines recommend the staging system should include tumor stage, liver function,imaging control by CT/MRI/ultrasound every 3-4 months for and physical status and consider life expectancy, all of whichnodules < 1 cm, reverting to routine surveillance if the nodule are included in the Spanish BCLC system.does not increase in size for 18 months (135). Nodules of 1-2 The Chinese staging system (AFP cutoff 500 μg/L; 158)cm that are detected by ultrasound in cirrhotic liver should be and two European staging systems include AFP. The Frenchinvestigated by two dynamic studies (eg, CT, MRI) and treated system includes the Karnofsky index, ultrasonographic portalas HCC if their appearance is consistent with this diagnosis, vein obstruction, and serum bilirubin, alkaline phosphatase,but if not characteristic, the lesion should be biopsied. and AFP (cutoff 35 μg/L; 154). Based on the score, patients For a nodule > 2 cm at initial diagnosis with typical HCC are classified as being at low, moderate, or high risk for death,features (eg, classic arterial enhancement on triphasic CT or with 1-year survival rates of 72%, 34%, and 7%, respectively.MRI) or cases in which AFP is > 200 μg/L, results can be con- Another classification, proposed by the Cancer of the Liversidered diagnostic of HCC, and biopsy unnecessary, but if the Italian Program (155), includes Child-Pugh stage, morphol-lesion is not characteristic, or the liver is noncirrhotic, biopsy ogy, portal vein thrombosis, and serum AFP (cutoff 400 μg/L).is recommended. For small lesions that are negative on biopsy, By use of a simple scoring system, patients are assigned toultrasound or CT follow-up at 3- to 6-month intervals is recom- one of seven categories with validated median survival ratesmended, with repeat biopsy if the lesion enlarges but remains (155). Both classifications incorporate AFP as an indicator ofatypical. Space-occupying lesions hypoperfused by portal tumor spread and burden, cellular differentiation, and aggres-blood are considered an early sign of HCC even in the absence sive potential. With the aim of improving available systems forof a coincident rise in circulating AFP. postoperative risk classification, a nomogram based on clinico- The use of AFP as an adjunct in the diagnosis of HCC is pathological variables including serum AFP, patient age, tumorrecommended by EASL (131), the British Society of Gastroen- size and margin status, postoperative blood loss, presence ofterology (26), the European Group on Tumor Markers (137), satellite lesions, and vascular invasion has recently been devel-and the NCCN (135). These recommendations are supported oped (162). The nomogram reportedly enables accurate predic-by the NACB Panel, which also stresses the importance of tion of postoperative survival and risk stratification in patientsserial AFP measurements together with consideration of sus- undergoing liver resection for HCC and is currently undergo-tained increases in AFP even at low concentrations (Table 2). ing evaluation (162). It has been suggested that considering AFP and alkaline Nacb Liver cancer Panel Recommendation 2 phosphatase, Child-Pugh score, and the absence or presence aFP in the Early Detection of Hcc in Patients at High Risk of ascites could improve outcome prediction (46,154,155). An Italian study of prognostic factors in 176 patients with In patients at risk for HCC, sustained increases in serum HCC demonstrated that low albumin (< 33 μg/L), high bili- AFP may be used in conjunction with ultrasound to aid rubin (> 22.5 μmol/L), elevated AFP (> 32.5 kU/L), portal early detection of HCC and guide further management. vein thrombosis, and an untreatable lesion were independent Ultrasound detected nodules < 1 cm should be monitored risk factors for worse survival (163). Survival depended most at 3-month intervals with ultrasound. Nodules of 1-2 cm in strongly on the degree of functional liver impairment, pres- cirrhotic liver should be investigated by two imaging modal- ence of hepatitis B virus infection, type of diagnosis, and ities (eg, CT and MRI). If the appearance of the nodules is aggressiveness of the tumor. A more recent nationwide Japa- consistent with HCC, they should be treated as such, with nese survey of prognostic factors influencing survival after biopsy required if not. If lesions are > 2 cm in size, AFP is liver resection in HCC patients demonstrated improvement in > 200 μg/L, and the ultrasound appearance is typical of outcomes and operative mortality rates over the past decade HCC, results may be considered diagnostic of HCC and (164). Age, degree of liver damage, AFP concentration, maxi- biopsy is not necessary (LOE, III; SOR, B). mal tumor dimension, number of tumors, intrahepatic extent of tumor, extrahepatic metastasis, portal and hepatic vein invasion, surgical curability, and free surgical margins wereAFP in Prognosis all independent prognostic factors for HCC patients undergo- The TNM system (151) and the Okuda classification (152) ing liver resection (164).are the most frequently used staging systems for HCC. Prog- Large studies using multivariate analyses confirm thatnostic classifications from Japan (153), France (154), Italy raised AFP concentrations predict poor prognosis compared
  17. 17. 14 Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancerswith AFP-negative cases in HCC (32,154,165). In a retrospec- a significantly prolonged decrease in AFP than in those withtive study of 309 HCC patients stratified according to pretreat- slowly increasing concentrations (175,176). In patients receiv-ment AFP concentrations (< 20, 20-399, or ≥ 400 μg/L), patients ing new and effective combined systemic therapies (177), 75%with higher AFP concentrations tended to have larger tumors, have shown dramatic decreases in serum AFP, with concentra-but there was no correlation with Okuda stage, degree of tumor tions normalizing completely in some patients. Progressivedifferentiation, or extrahepatic metastasis (166). In contrast, a disease was found in patients with continued AFP increasemore recent, large, Italian multicenter survey that used the same and doubling times between 6.5 and 112 days (mean 41 days),three AFP groups in 1,158 HCC patients (167) revealed a low again correlating with survival (172). Similar results weresensitivity (54%) for AFP in diagnosis of HCC, but confirmed observed after radiotherapy for primary and secondary liverits prognostic value by demonstrating its significant correlation tumors. Decreases in tumor markers reflected tumor regres-with tumor size, lesion focality, TNM and Okuda stage, Edmon- sion more consistently than later changes in tumor size andson score, and survival (P < 0.0001) in treated as well as in volume as determined by CT (178). Discrepancies betweenuntreated patients. tumor marker and imaging results may be due to residual According to other authors (168,169), AFP, as well as fibrosis and other factors that can complicate interpretation oftumor size, seems to be an independent predictor of survival. CT scans (178).Survival of patients with serum AFP > 10,000 μg/L at diagno- A recent phase III randomized trial of systemic chemo-sis was significantly shorter than in those with AFP < 200 μg/L therapy in HCC patients evaluated clinical and radiological(median survival time 7.6 vs 33.9 months, respectively; 170). outcome and included prospectively collected serial AFP mea-AFP concentrations > 1,000 μg/L predict a relatively worse surements (179). In 117 patients with initially elevated serumprognosis, even after attempted curative resection (70). Serum AFP (cutoff 20 μg/L) and an AFP response (≥ 20% decrease)AFP concentrations < 12,000 μg/L are required to meet UK after the second cycle of chemotherapy, 47 had improvedcriteria for liver transplantation (171). survival compared with 70 AFP nonresponders (13.5 vs 5.6 AFP doubling time has also been reported to be an impor- months; P < 0.0001). AFP concentrations were strongly associ-tant prognostic factor (172). Persistence of a positive AFP-L3 ated with radiological response (P < 0.0001) and also with sur-fraction after intervention also has been reported to indicate vival (multivariate analysis: hazard ratio 0.413, P < 0.0001). Itresidual or recurrent disease (77). The NACB supports the was therefore concluded that in HCC patients undergoing sys-prognostic use of pretreatment serum AFP concentration in temic chemotherapy, serial AFP determinations may be usefulcombination with other prognostic factors (Table 2). both for prognosis and for monitoring treatment response, as well as providing a surrogate marker for the evaluation of new Nacb Liver cancer Panel Recommendation 3 therapeutic agents (179). Similarly, authors of a recent study aFP for Determining Prognosis from Massachusetts General Hospital Cancer Center and Har- vard Medical School concluded that serum AFP change during In combination with other prognostic factors, AFP concen- treatment may serve as a useful surrogate marker for clinical trations may provide prognostic information in untreated outcome in patients with advanced HCC receiving systemic HCC patients and in those undergoing liver resection, with therapy (180). high concentrations indicating poor prognosis (LOE, IV; According to the French Strength of Recommendation SOR, C). (SOR) guidelines (132), there is no consensus about patterns or modalities of follow-up other than clinical examination and sur- veillance plans that may incorporate ultrasound, AFP measure-AFP in Monitoring Patients After Treatment ment, abdominal CT scan, chest x-ray, and/or MRI, with optimal For patients with increased AFP concentrations before choice and timing of these dependent on treatment options. Thetherapy, monitoring treatment of HCC by use of serial AFP NCCN is more specific, recommending post-treatment follow-updeterminations is a well-accepted procedure. After complete of HCC patients that includes imaging every 3 to 6 months forremoval of the tumor, AFP concentrations typically decrease, 2 years and then annually, with AFP (if initially elevated) mea-with a half-life of 3.5-4 days. Incomplete resection yields sured every 3 months for 2 years, and then every 6 months (135).a longer half-life, which is associated with poorer survival Similarly, ESMO recommends that patients undergoing curative(166,172), whereas failure of the AFP to normalize implies resection should be followed up with liver imaging and AFPresidual malignancy or severe liver damage. Determination of measurement for 2 years at 3- to 6-month intervals, and thenthe AFP-L3 fraction can help to differentiate these two condi- annually, because curative therapy can be offered to a minoritytions (81,142,173). However, normalization of AFP does not of patients after relapse (4). After liver transplantation, follow-upnecessarily indicate complete clearance of the disease. Recur- should be more frequent (ie, monthly for 6 months, then oncerence after transplantation may occur, even when AFP is stable every 3 months up to 1 year post-transplantation, then twice aand within normal limits (168,172,174), presumably reflecting year up to 2 years, and annually thereafter; 4).the presence of micrometastases too small to produce measur- In accord with other expert groups (131,132,135), theable serum concentrations. NACB recommends serial determinations of serum AFP (if Changes in AFP concentrations also reflect tumor response elevated before treatment) to monitor efficacy of treatment,after chemotherapy, with longer survival in patients showing course of disease, and recurrence, and supports the frequency
  18. 18. Tumor Markers in Liver Cancer 15of measurement recommended by the NCCN (135). iate analysis showed that after histological grade and tumor differentiation, DCP was the strongest predisposing factor for Nacb Liver cancer Panel Recommendation 4 later development of portal venous invasion (188), whereas in Monitoring Treatment ROC analysis results suggested it was an effective predic- tor of HCC recurrence after resection (189). In another study Measurement of AFP at follow-up visits is recommended 237 HCC patients were categorized into four groups accord- to monitor disease status after liver resection or liver trans- ing to concentrations of DCP (less than or greater than 62.5 plantation for detection of recurrence or after ablative mAkU/L) and AFP (less than or greater than 100 μg/L; 190). therapies and application of palliative treatment. Although The 22 patients with low AFP and high DCP were predomi- monitoring intervals are as yet undefined, current practice nantly male and had large lesions but few nodules. Outcome suggests following patients every 3 months for 2 years and was particularly poor in patients who had high concentrations then every 6 months (LOE, IV; SOR, C). of both DCP and AFP (190). According to a more recent report comparing serum AFP and DCP determinations in 1,377 HCC and 355 chronic liver disease patients the utility of DCP wasTumor Markers Other Than AFP lower in smaller tumors (< 3 cm diameter) than in larger onesDes-γ-Carboxy-Prothrombin (> 5 cm diameter; 191). A retrospective analysis of 199 HCC patients with early- DCP, also known as prothrombin produced by vitamin stage HCC in Child-Pugh A cirrhotic patients treated by resec-K absence or antagonism II (PIVKA II), is an abnormal pro- tion or radiofrequency ablation (RFA) showed similar 3- andthrombin devoid of coagulation activity and is potentially a 5-year survival rates (90%/79% vs 87%/75%; 192). One- andmarker for HCC. Mainly developed and investigated in Japan, 3-year tumor recurrence-free survival rates were higher in theDCP was first described in the US in 1984 (181) and critically patients treated by resection (83%/51% vs 83%/42% for RFA;reviewed there in 1993 (182). A single commercially available P = 0.011; 192). With multivariate analysis, prothrombin timeEIA kit from Japan has dominated the market for DCP testing. ≥ 80% was found to be an independent prognostic factor forThe sensitivity of this method has been markedly improved the resected group whereas platelet count ≥ 100,000 and DCPsince 1996 and is currently 10 mkU/L. concentration < 100 AU/L were prognostic for the RFA group. A number of published investigations have reported DCP At DCP concentrations ≥ 100 AU/L the treatment proceduresensitivities for the diagnosis of HCC ranging from 54% to 70% became a significant prognostic factor for survival. Theseat a decision point of 40 mAkU/L, with corresponding specifici- results suggest that a high DCP concentration reflects bio-ties in cirrhotic patients between 87% and 95%. AFP tested con- logical aggressiveness and that surgical resection rather thancurrently in the same patients has shown, at a decision point of RFA treatment is advantageous in these patients. The prognos-20 μg/L, 47%-72% sensitivity and 72%-86% specificity. Com- tic value of pretreatment concentrations of AFP (cutoff 400bined DCP/AFP sensitivity was about 80% (183-186). DCP, μg/L), AFP-L3 (cutoff 15%), and DCP (cutoff 100 AU/L) hasAFP, and combined DCP/AFP sensitivities for solitary HCC (< 2 been investigated in HCC patients after curative treatment bycm) were 30%-53%, 13%, and 57%, respectively, and for larger hepatectomy (n = 345) and compared to locoregional thermaltumors (> 3 cm) were 78%-81%, 49%-69%, and 84%-94%, ablation (n = 456; 173). Multivariate analysis results in hepate-respectively, (183,184,186). The sensitivity of both markers was ctomy patients indicated that no tumor marker was associatedbetter for moderately to poorly differentiated tumors (DCP, 68%; with decreased survival. In patients who had undergone locore-AFP, 61%; DCP/AFP, 85%; n = 41) than for well-differentiated gional thermal ablation, elevation of AFP-L3 (P = 0.0171) ortumors (DCP, 13%; AFP, 33%; DCP/AFP, 40%; n = 15; 186). DCP (P = 0.0004) was significantly associated with decreasedBoth DCP and AFP concentrations correlated with tumor size survival and DCP was also associated with increased rate ofand grading, but not significantly with each other. recurrence (P < 0.0001). A cross-sectional case control study that compared serum An investigation of AFP, AFP-L3, and DCP in 240 patientsAFP and DCP in a US population has confirmed the appar- with hepatitis B or C (144 HCC, 47 chronic hepatitis, and 49ent superiority of DCP as a tumor marker for HCC (187). The cirrhotic cases) at optimal cutoffs according to ROC analysisstudy included 48 healthy adults, 51 patients with chronic (DCP, 84 AU/L; AFP, 25 μg/L; AFP-L3, 10%) yielded sensitiv-hepatitis (mostly hepatitis C), 53 individuals with compen- ity, specificity, and positive predictive value rates of 87%, 85%,sated cirrhosis, and 55 people with proven HCC. With the use and 86.8% for DCP; 69%, 87%, and 69.8% for AFP; and 56%,of ROC analysis, DCP was found to perform better than AFP 90%, and 56.1% for AFP-L3 (193). DCP concentrations werein differentiating HCC from cirrhosis (sensitivity 90% vs 77%, below cutoff in all non-HCC cases but increased in all HCCspecificity 91% vs 71%, positive predictive value 85% vs 81%, cases including those with single lesions. DCP correlated withnegative predictive value 90% vs 74%, area under the ROC tumor size, high AFP concentrations with diffuse type HCC,curve 0.921 vs 0.815). There was no improvement over DCP and all three markers with metastatic HCC. The authors recom-alone when the 2 markers were combined. mended routine use of DCP for HCC detection. DCP has also been reported to have prognostic signifi- False-positive elevated DCP concentrations are found incance. In a study of HCC patients treated by percutaneous patients with severe obstructive jaundice due to intrahepaticethanol injection or microwave coagulation therapy, multivar- cholestasis or in conditions in which the action of vitamin K
  19. 19. 16 Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancersis impaired (eg, in individuals with longstanding vitamin K HCC cells by reverse transcription (RT)-PCR of AFP mRNAdeficiency and those who have ingested warfarin and some has been suggested by some groups to be useful in predict-wide-spectrum antibiotics; 194). Despite these limitations, DCP ing HCC recurrence and poor outcome (200,201), althoughis a promising emerging marker with considerable potential. other investigators have questioned its value (202-204). Other techniques under investigation include genetic profil- ing, transcriptomics (205-207), proteome analysis (208,209),Glypican-3 and determination of free nucleic acids (210) and epigeneticGlypican-3 (GPC-3), initially termed MXR7 (195), is another abnormalities (eg, p16 hypermethylation) in serum or plasmapromising new tissue and serum marker for HCC. The gene (211). Also being explored are the prognostic implicationsglypican 3 (GPC3) codes for a member of the glypican family of CpG-island hypermethylation and DNA hypomethylationof glycosyl-phosphatidylinositol–anchored cell-surface hepa- (212), microRNA profiling (213), and exploration of liverran sulfate proteoglycans (196). GPC-3 was first detected via cancer stem cells (214). Fifty upregulated HCC marker genes,its mRNA, which was increased in 75% of tissue samples from which are potential tumor marker candidates, have been iden-patients with primary and recurrent HCC but in only 3.2% of tified in hepatitis C virus–associated HCC by use of cDNAsamples from normal liver tissue (195). These data were later microarray analysis of surgical liver samples from patientsconfirmed immunohistochemically (196,197). Elevated GPC-3 infected with hepatitis C virus (215).mRNA concentrations were also found in the serum of HCC The NACB panel does not recommend the use of any HCC-patients (195). Sensitivity exceeded that of AFP (88% vs 55%) related biomarkers except AFP for the routine surveillance offor the entire group of HCC patients tested as well as for those patients with or at risk of HCC. The NACB does, however,with smaller HCC tumors < 3 cm (77% vs 43%). In a later support further evaluation of the clinical utility of potentialstudy of 34 HCC patients (196), sensitivity was somewhat markers for which there is increasing published evidence (eg,lower (53%) and similar to that of AFP (54%). However, speci- AFP-L3, DCP, and GPC-3) in suitably designed prospectiveficity was excellent, with no significant elevations in healthy randomized clinical studies.sample donors or patients with acute hepatitis, and in only onethe 20 patients with chronic hepatitis and cirrhosis. The com- Nacb Liver cancer Panel Recommendation 5bined sensitivity of the two markers was 82%. Neither marker Tumor Markers Other Than aFPcorrelated with the other. Although another group has demonstrated the presence of AFP is currently the only marker that can be recommendedthe C-terminus in serum (198), a recent report on the GPC protein for clinical use in liver malignancies. New liver cancersuggests that the only fragment present in the circulation is the markers offer promise but their contribution to the currentamino terminal, which constitutes the GPC-3 soluble serological standard of care is unknown and further investigations inmarker (sGPC-3; 199). With the use of an ELISA with highly properly designed clinical trials are needed (LOE, not appli-specific monoclonal antibodies to analyze sera from 69 HCC cable; SOR, C).patients, 38 liver cirrhosis patients, and 96 healthy adults, ROCanalysis yielded sensitivity/specificity rates of 51%/90% forsGPC-3 (cutoff 2 μg/L) comparable to those of AFP (55%/90%; Key Points: Tumor Markers in HCCcutoff 20 μg/L). The sensitivity of the two markers in a subset HCC is one of the most common cancers worldwide, and is fre-of early-stage HCC was essentially unchanged, and there was no quently preceded by chronic viral hepatitis B or C or alcoholiccorrelation between sGPC-3 and AFP in the 69 patients who had liver disease. If treatment of these diseases is instituted early, theHCC. The combined marker sensitivity was 72%. This prelimi- risk of HCC can be decreased or abolished. In patients who havenary study suggests that sGPC-3 may have some promise and already developed HCC, surgical resection or transplantation withthat larger clinical trials to investigate its potential are merited. curative intent requires early local detection of small lesions. The clinical utility of AFP measurement, together with ultrasound and other more sensitive imaging techniques, is already well estab-Other Serum Markers for Liver Cancer lished for this application, whereas other tumor markers require further investigation. Future developments in molecular geneticsMany other serum markers have been reported for HCC and proteomic analysis may lead to earlier diagnosis and more(Table 1). Pre- and post-treatment detection of circulating effective treatment of HCC patients.
  20. 20. Chapter 3Tumor Markers in Bladder CancerBACKGROUND sufficiently accurate to predict biological behavior or to guide treatment reliably, especially in high-risk cases (223-225). NewEach year in the US, nearly 71,000 new cases of bladder cancer markers to aid diagnosis, assess prognosis, identify optimalare diagnosed and approximately 14,000 people die from this treatment, and monitor progression of urological cancers aredisease (216). The prevalence of bladder cancer in the US is urgently required.estimated at almost 500,000 cases. Almost twice as many cases Bladder cancer may be regarded as a genetic disease causedof bladder cancer occur in men than in women, with cigarette by the multistep accumulation of genetic and epigenetic factorssmoking the leading cause (217). Other risk factors include (226-228). Nonmuscle invasive bladder tumors are generallyexposure to industrial carcinogens and chronic infection with treated by transurethral resection of the bladder with or withoutSchistosomiasis haematobium. intravesical treatments with bacille Calmette-Guérin immuno- The most common symptom of bladder cancer is inter- therapy or intravesical chemotherapy. Muscle invasive tumorsmittent hematuria (80%-85% of patients). Other urinary tract are usually treated by cystectomy, or with bladder-sparingsymptoms include increased frequency, urgency, and dysuria therapies that consist of chemotherapy and radiation. Patients(15%-20% of patients). The diagnosis is usually established who have metastatic disease require systemic chemotherapyby cystoscopic evaluation, prompted by hematuria or urinary with multiple anticancer agents (229). A thorough understand-tract symptoms, and biopsy. In some cases, urine cytology is ing of cancer progression pathways facilitates development ofpositive for tumor cells. Bladder cancer is staged according to drug therapies against specific tumor targets (225).the degree of tumor invasion into the bladder wall (218). Car- The majority of bladder cancer patients are diagnosedcinoma in situ (stage Tis) and stages Ta and T1 are grouped as with nonmuscle invasive tumors. Even though these tumorsnonmuscle invasive bladder cancers because they are restricted can be completely resected, there is a high risk of recurrence;to the inner epithelial lining of the bladder and do not involve 50%-70% of these patients will develop tumor recurrencethe muscle wall. Of the nonmuscle invasive tumors, stage Ta within 5 years. With intensive medical surveillance, the 5-yeartumors are confined to the mucosa, whereas stage T1 tumors survival rates for these patients range from 95% to 75% for Tainvade the lamina propria. T1 tumors are regarded as being and T1 tumors, respectively. However, almost 25% of patientsmore aggressive than Ta tumors (219). Muscle invasive tumors with Ta and T1 noninvasive tumors will eventually develop(stages T2, T3, and T4) extend into the muscle (stage T2), the invasive disease. The 5-year survival rate decreases with tumorperivesical fat layer beyond the muscle (stage T3), and adjacent invasiveness and the presence of metastasis. Patients with stageorgans (T4). Metastatic tumors involve lymph nodes (N1-3) or T2 tumors have a 5-year survival rate of 60%, but only 35% ofdistant organs (M1). patients with stage T3 tumors and 10% of patients with stage The most common cell type of bladder cancer is transitional T4 metastatic tumors survive 5 years (218) .cell carcinoma, although adenocarcinomas, squamous cell car- Lifelong surveillance is therefore required for bladdercinomas, and sarcomas also occur. The cellular morphology cancer patients who are initially diagnosed with nonmus-of nonmuscle invasive bladder tumors is graded according to cle invasive disease. Current patient-monitoring protocolsthe degree of cellular differentiation. The grading consists of generally consist of regularly scheduled cystoscopic evalua-well-differentiated (grade 1), moderately differentiated (grade tions, usually together with urine cytology, performed every2), and poorly differentiated (grade 3) tumors. Grading of cell 3 months during the first 2 years of follow-up, twice a yearmorphology is important for establishing prognosis because during years 3 and 4, and annually thereafter, until diseasegrade 3 tumors are the most aggressive and the most likely to recurrence is documented (230).become invasive. Use of the WHO classification from 2004 is Urine tumor markers have been proposed for use aswidely advocated, because it facilitates uniform diagnosis of diagnostic aids in patients who present with hematuria, astumors (220). A modified grading system (WHO International prognostic indicators of disease recurrence and survival,Society of Urological Pathology 1998), which is increasingly and as early detectors of recurrent disease in monitoredbeing used (221), eliminates the numerical grades and catego- patients. Potential applications of urine tumor marker tests inrizes most bladder cancers as either low grade or high grade. patient surveillance include serial tests for earlier detection The heterogeneity of urological tumors—in terms of of recurrent disease, adjuncts to urine cytology to improveboth histological origin and clinical behavior (222)—means the detection of disease recurrence, less expensive and morethat clinical parameters such as tumor grade and stage are not objective alternatives to urine cytology, and indicators to 17

×