CPHAP 036 Insuficiencia Renal Aguda

  • 10,635 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
No Downloads

Views

Total Views
10,635
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
0
Comments
2
Likes
21

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide
  • Usualmente acompañada de hiperkalemia, acidosis metabólica, hipertensión.
  • El tratamiento puede ser conservador, diálisis o transplante renal. A nivel mundial, las causas más frecuentes de IRA en niños es síndrome urémico hemolítico o depleción de volumen.
  • IRA prerrenal puede ser resultado de una súbita disminución de la perfusión renal secundario a una depleción del volumen intravascular. La hipoperfusión puede producir lesión isquémica o tóxica a las células renales, con la subsecuente disminución del filtrado glomerular. Como compensación, el organismo intenta reestablecer la perfusión renal y restaurar el volumen intravascular por diferentes mecanismos. Las arteriolas aferentes intentan mantener el flujo sanguíneo renal al relajar el tono vascular , disminuyendo la resistencia vascular renal. La disminución de la perfusión renal también estimula la secreción de catecolaminas y vasopresina , así como activación del sistema renina-angiotensina, produciendo vasoconstricción. Con la hipoperfusión renal, se producen prostaglandinas (como prostaciclina), ayudando a mantener la perfusión renal al producir vasodilatación de la microvasculatura. Por lo tanto, la administración de la aspirina o algún AINE para aliviar al paciente durante un periodo de hipoperfusión renal realmente podría empeorar una IRA puesto que estos medicamentos pueden inhibir los mecanismos compensatorios de las prostaglandinas. En un estado de hipoperfusión, como una estenosis de la arteria renal, la presión intraglomerular se mejora por la liberación de angiotensina II, incrementando la resistencia arteriolar eferente. El óxido nítrico, un potente vasodilatador, y la activación del sistema calicreína-cinina, también juega un rol importante en los mecanismos compensatorios de la IRA. Estos roles aun estan bajo estudio, y necesitan clarificarse puesto que su influencia puede afectar el estado de la IRA. La insuficiencia prerrenal también ocurre como resultado de la contracción de volumen o disminución de volumen sanguíneo efectivo. Las causas de contracción de volumen incluyen: deshidratación por gastroenteritis, pérdidas urinarias secundarias a nefropatía perdedora de sal, diabetes insípida central o nefrogénica, uso de diuréticos, hemorragia, estados patológicos que producen líquidos en tercer espacio (síndrome nefrótico, sepsis, pancreatitis) y síndromes de filtración capilar. La disminución del volumen sanguíneo efectivo ocurre con enfermedad que producen disfunción cardíaca, como insuficiencia cardíaca congestiva, tamponade cardíaco y arritmias. Los lactantes se encuentran en riesgo incrementado para una pérdida excesiva de volumen debido a la incapacidad de los riñones de concentrar la orina al máximo, y de conservar la sal y agua de forma adecuada. Aún más, debido a que un lactante presenta una mayor área de superficie corporal en relación a su índice de masa corporal, las pérdidas insensibles de agua a través de la piel pueden aumentar significativamente la pérdida de volumen, especialmente durante enfermedades febriles. Puede desarrollarse oliguria o anuria en la presencia de IRA prerrenal debido a que la activación del sistema renina angiotensina aldosterona lleva a la liberacion de hormona antidiuretica en un intento de incrementar la absorcion de sodio y agua. Otras sustancias vasoactivas intrinsecas que Other intrinsic vasoactive substances that play roles during acute prerenal failure are: adenosine, which is a potent vasoconstrictor within the renal vasculature, but a vasodilator in the peripheral vasculature; nitric oxide, which is a vasodilator; and endothelin, which also is a potent vasoconstrictor. The therapeutic role of these specific agents or other agents that affect their concentrations in the treatment of ARF is being studied.
  • IRA prerrenal puede ser resultado de una súbita disminución de la perfusión renal secundario a una depleción del volumen intravascular. La hipoperfusión puede producir lesión isquémica o tóxica a las células renales, con la subsecuente disminución del filtrado glomerular. Como compensación, el organismo intenta reestablecer la perfusión renal y restaurar el volumen intravascular por diferentes mecanismos. Las arteriolas aferentes intentan mantener el flujo sanguíneo renal al relajar el tono vascular , disminuyendo la resistencia vascular renal. La disminución de la perfusión renal también estimula la secreción de catecolaminas y vasopresina , así como activación del sistema renina-angiotensina, produciendo vasoconstricción. Con la hipoperfusión renal, se producen prostaglandinas (como prostaciclina), ayudando a mantener la perfusión renal al producir vasodilatación de la microvasculatura. Por lo tanto, la administración de la aspirina o algún AINE para aliviar al paciente durante un periodo de hipoperfusión renal realmente podría empeorar una IRA puesto que estos medicamentos pueden inhibir los mecanismos compensatorios de las prostaglandinas. En un estado de hipoperfusión, como una estenosis de la arteria renal, la presión intraglomerular se mejora por la liberación de angiotensina II, incrementando la resistencia arteriolar eferente. El óxido nítrico, un potente vasodilatador, y la activación del sistema calicreína-cinina, también juega un rol importante en los mecanismos compensatorios de la IRA. Estos roles aun estan bajo estudio, y necesitan clarificarse puesto que su influencia puede afectar el estado de la IRA. La insuficiencia prerrenal también ocurre como resultado de la contracción de volumen o disminución de volumen sanguíneo efectivo. Las causas de contracción de volumen incluyen: deshidratación por gastroenteritis, pérdidas urinarias secundarias a nefropatía perdedora de sal, diabetes insípida central o nefrogénica, uso de diuréticos, hemorragia, estados patológicos que producen líquidos en tercer espacio (síndrome nefrótico, sepsis, pancreatitis) y síndromes de filtración capilar. La disminución del volumen sanguíneo efectivo ocurre con enfermedad que producen disfunción cardíaca, como insuficiencia cardíaca congestiva, tamponade cardíaco y arritmias. Los lactantes se encuentran en riesgo incrementado para una pérdida excesiva de volumen debido a la incapacidad de los riñones de concentrar la orina al máximo, y de conservar la sal y agua de forma adecuada. Aún más, debido a que un lactante presenta una mayor área de superficie corporal en relación a su índice de masa corporal, las pérdidas insensibles de agua a través de la piel pueden aumentar significativamente la pérdida de volumen, especialmente durante enfermedades febriles. Puede desarrollarse oliguria o anuria en la presencia de IRA prerrenal debido a que la activación del sistema renina angiotensina aldosterona lleva a la liberacion de hormona antidiuretica en un intento de incrementar la absorcion de sodio y agua. Otras sustancias vasoactivas intrinsecas que Other intrinsic vasoactive substances that play roles during acute prerenal failure are: adenosine, which is a potent vasoconstrictor within the renal vasculature, but a vasodilator in the peripheral vasculature; nitric oxide, which is a vasodilator; and endothelin, which also is a potent vasoconstrictor. The therapeutic role of these specific agents or other agents that affect their concentrations in the treatment of ARF is being studied.
  • IRA prerrenal puede ser resultado de una súbita disminución de la perfusión renal secundario a una depleción del volumen intravascular. La hipoperfusión puede producir lesión isquémica o tóxica a las células renales, con la subsecuente disminución del filtrado glomerular. Como compensación, el organismo intenta reestablecer la perfusión renal y restaurar el volumen intravascular por diferentes mecanismos. Las arteriolas aferentes intentan mantener el flujo sanguíneo renal al relajar el tono vascular , disminuyendo la resistencia vascular renal. La disminución de la perfusión renal también estimula la secreción de catecolaminas y vasopresina , así como activación del sistema renina-angiotensina, produciendo vasoconstricción. Con la hipoperfusión renal, se producen prostaglandinas (como prostaciclina), ayudando a mantener la perfusión renal al producir vasodilatación de la microvasculatura. Por lo tanto, la administración de la aspirina o algún AINE para aliviar al paciente durante un periodo de hipoperfusión renal realmente podría empeorar una IRA puesto que estos medicamentos pueden inhibir los mecanismos compensatorios de las prostaglandinas. En un estado de hipoperfusión, como una estenosis de la arteria renal, la presión intraglomerular se mejora por la liberación de angiotensina II, incrementando la resistencia arteriolar eferente. El óxido nítrico, un potente vasodilatador, y la activación del sistema calicreína-cinina, también juega un rol importante en los mecanismos compensatorios de la IRA. Estos roles aun estan bajo estudio, y necesitan clarificarse puesto que su influencia puede afectar el estado de la IRA. La insuficiencia prerrenal también ocurre como resultado de la contracción de volumen o disminución de volumen sanguíneo efectivo. Las causas de contracción de volumen incluyen: deshidratación por gastroenteritis, pérdidas urinarias secundarias a nefropatía perdedora de sal, diabetes insípida central o nefrogénica, uso de diuréticos, hemorragia, estados patológicos que producen líquidos en tercer espacio (síndrome nefrótico, sepsis, pancreatitis) y síndromes de filtración capilar. La disminución del volumen sanguíneo efectivo ocurre con enfermedad que producen disfunción cardíaca, como insuficiencia cardíaca congestiva, tamponade cardíaco y arritmias. Los lactantes se encuentran en riesgo incrementado para una pérdida excesiva de volumen debido a la incapacidad de los riñones de concentrar la orina al máximo, y de conservar la sal y agua de forma adecuada. Aún más, debido a que un lactante presenta una mayor área de superficie corporal en relación a su índice de masa corporal, las pérdidas insensibles de agua a través de la piel pueden aumentar significativamente la pérdida de volumen, especialmente durante enfermedades febriles. Puede desarrollarse oliguria o anuria en la presencia de IRA prerrenal debido a que la activación del sistema renina angiotensina aldosterona lleva a la liberacion de hormona antidiuretica en un intento de incrementar la absorcion de sodio y agua. Otras sustancias vasoactivas intrinsecas que Other intrinsic vasoactive substances that play roles during acute prerenal failure are: adenosine, which is a potent vasoconstrictor within the renal vasculature, but a vasodilator in the peripheral vasculature; nitric oxide, which is a vasodilator; and endothelin, which also is a potent vasoconstrictor. The therapeutic role of these specific agents or other agents that affect their concentrations in the treatment of ARF is being studied.
  • IRA prerrenal puede ser resultado de una súbita disminución de la perfusión renal secundario a una depleción del volumen intravascular. La hipoperfusión puede producir lesión isquémica o tóxica a las células renales, con la subsecuente disminución del filtrado glomerular. Como compensación, el organismo intenta reestablecer la perfusión renal y restaurar el volumen intravascular por diferentes mecanismos. Las arteriolas aferentes intentan mantener el flujo sanguíneo renal al relajar el tono vascular , disminuyendo la resistencia vascular renal. La disminución de la perfusión renal también estimula la secreción de catecolaminas y vasopresina , así como activación del sistema renina-angiotensina, produciendo vasoconstricción. Con la hipoperfusión renal, se producen prostaglandinas (como prostaciclina), ayudando a mantener la perfusión renal al producir vasodilatación de la microvasculatura. Por lo tanto, la administración de la aspirina o algún AINE para aliviar al paciente durante un periodo de hipoperfusión renal realmente podría empeorar una IRA puesto que estos medicamentos pueden inhibir los mecanismos compensatorios de las prostaglandinas. En un estado de hipoperfusión, como una estenosis de la arteria renal, la presión intraglomerular se mejora por la liberación de angiotensina II, incrementando la resistencia arteriolar eferente. El óxido nítrico, un potente vasodilatador, y la activación del sistema calicreína-cinina, también juega un rol importante en los mecanismos compensatorios de la IRA. Estos roles aun estan bajo estudio, y necesitan clarificarse puesto que su influencia puede afectar el estado de la IRA. La insuficiencia prerrenal también ocurre como resultado de la contracción de volumen o disminución de volumen sanguíneo efectivo. Las causas de contracción de volumen incluyen: deshidratación por gastroenteritis, pérdidas urinarias secundarias a nefropatía perdedora de sal, diabetes insípida central o nefrogénica, uso de diuréticos, hemorragia, estados patológicos que producen líquidos en tercer espacio (síndrome nefrótico, sepsis, pancreatitis) y síndromes de filtración capilar. La disminución del volumen sanguíneo efectivo ocurre con enfermedad que producen disfunción cardíaca, como insuficiencia cardíaca congestiva, tamponade cardíaco y arritmias. Los lactantes se encuentran en riesgo incrementado para una pérdida excesiva de volumen debido a la incapacidad de los riñones de concentrar la orina al máximo, y de conservar la sal y agua de forma adecuada. Aún más, debido a que un lactante presenta una mayor área de superficie corporal en relación a su índice de masa corporal, las pérdidas insensibles de agua a través de la piel pueden aumentar significativamente la pérdida de volumen, especialmente durante enfermedades febriles. Puede desarrollarse oliguria o anuria en la presencia de IRA prerrenal debido a que la activación del sistema renina angiotensina aldosterona lleva a la liberacion de hormona antidiuretica en un intento de incrementar la absorcion de sodio y agua. Otras sustancias vasoactivas intrinsecas que Other intrinsic vasoactive substances that play roles during acute prerenal failure are: adenosine, which is a potent vasoconstrictor within the renal vasculature, but a vasodilator in the peripheral vasculature; nitric oxide, which is a vasodilator; and endothelin, which also is a potent vasoconstrictor. The therapeutic role of these specific agents or other agents that affect their concentrations in the treatment of ARF is being studied.
  • IRA prerrenal puede ser resultado de una súbita disminución de la perfusión renal secundario a una depleción del volumen intravascular. La hipoperfusión puede producir lesión isquémica o tóxica a las células renales, con la subsecuente disminución del filtrado glomerular. Como compensación, el organismo intenta reestablecer la perfusión renal y restaurar el volumen intravascular por diferentes mecanismos. Las arteriolas aferentes intentan mantener el flujo sanguíneo renal al relajar el tono vascular , disminuyendo la resistencia vascular renal. La disminución de la perfusión renal también estimula la secreción de catecolaminas y vasopresina , así como activación del sistema renina-angiotensina, produciendo vasoconstricción. Con la hipoperfusión renal, se producen prostaglandinas (como prostaciclina), ayudando a mantener la perfusión renal al producir vasodilatación de la microvasculatura. Por lo tanto, la administración de la aspirina o algún AINE para aliviar al paciente durante un periodo de hipoperfusión renal realmente podría empeorar una IRA puesto que estos medicamentos pueden inhibir los mecanismos compensatorios de las prostaglandinas. En un estado de hipoperfusión, como una estenosis de la arteria renal, la presión intraglomerular se mejora por la liberación de angiotensina II, incrementando la resistencia arteriolar eferente. El óxido nítrico, un potente vasodilatador, y la activación del sistema calicreína-cinina, también juega un rol importante en los mecanismos compensatorios de la IRA. Estos roles aun estan bajo estudio, y necesitan clarificarse puesto que su influencia puede afectar el estado de la IRA. La insuficiencia prerrenal también ocurre como resultado de la contracción de volumen o disminución de volumen sanguíneo efectivo. Las causas de contracción de volumen incluyen: deshidratación por gastroenteritis, pérdidas urinarias secundarias a nefropatía perdedora de sal, diabetes insípida central o nefrogénica, uso de diuréticos, hemorragia, estados patológicos que producen líquidos en tercer espacio (síndrome nefrótico, sepsis, pancreatitis) y síndromes de filtración capilar. La disminución del volumen sanguíneo efectivo ocurre con enfermedad que producen disfunción cardíaca, como insuficiencia cardíaca congestiva, tamponade cardíaco y arritmias. Los lactantes se encuentran en riesgo incrementado para una pérdida excesiva de volumen debido a la incapacidad de los riñones de concentrar la orina al máximo, y de conservar la sal y agua de forma adecuada. Aún más, debido a que un lactante presenta una mayor área de superficie corporal en relación a su índice de masa corporal, las pérdidas insensibles de agua a través de la piel pueden aumentar significativamente la pérdida de volumen, especialmente durante enfermedades febriles. Puede desarrollarse oliguria o anuria en la presencia de IRA prerrenal debido a que la activación del sistema renina angiotensina aldosterona lleva a la liberacion de hormona antidiuretica en un intento de incrementar la absorcion de sodio y agua. Otras sustancias vasoactivas intrinsecas que juegan un rol durante la insuficiencia renal aguda son: adenosina (un potente vasoconstrictor dentro de la vasculatura renal, pero vasodilatador en la vasculatura periférica), óxido nítrico (vasodilatador), endotelina (también un potente vasoconstrictor).
  • In prerenal failure, clinical history should reveal causes of volume depletion, such as dehydration due to vomiting or gastroenteritis, hemorrhage, cardiac failure, or thirdspace fluid losses. Laboratory findings indicative of prerenal failure include decreased urine output, normal urinary sediments, increased urine osmolality (400.0 mOsm in the older child and 350.0 mOsm in the neonate), low urinary sodium (10.0 mEq/L [10.0 mmol/L]), low fractional excretion of sodium (1% in the older child and 2.5% in the newborn), and an increased BUN-to-creatinine ratio. Renal ultrasonography and renal scan findings should be normal.
  • In prerenal failure, clinical history should reveal causes of volume depletion, such as dehydration due to vomiting or gastroenteritis, hemorrhage, cardiac failure, or thirdspace fluid losses. Laboratory findings indicative of prerenal failure include decreased urine output, normal urinary sediments, increased urine osmolality (400.0 mOsm in the older child and 350.0 mOsm in the neonate), low urinary sodium (10.0 mEq/L [10.0 mmol/L]), low fractional excretion of sodium (1% in the older child and 2.5% in the newborn), and an increased BUN-to-creatinine ratio. Renal ultrasonography and renal scan findings should be normal.
  • Laboratory findings indicative of prerenal failure include decreased urine output, normal urinary sediments, increased urine osmolality (400.0 mOsm in the older child and 350.0 mOsm in the neonate), low urinary sodium (10.0 mEq/L [10.0 mmol/L]), low fractional excretion of sodium (1% in the older child and 2.5% in the newborn), and an increased BUN-to-creatinine ratio. Renal ultrasonography and renal scan findings should be normal.
  • GMN postinfecciosa Fena esta disminuido
  • El tratamiento puede ser conservador, diálsis o transplante renal. A nivel mundial, las causas más frecuentes de IRA en niños es síndrome urémico hemolítico o depleción de volumen.
  • IRA prerrenal puede ser resultado de una súbita disminución de la perfusión renal secundario a una depleción del volumen intravascular. La hipoperfusión puede producir lesión isquémica o tóxica a las células renales, con la subsecuente disminución del filtrado glomerular. Como compensación, el organismo intenta reestablecer la perfusión renal y restaurar el volumen intravascular por diferentes mecanismos. Las arteriolas aferentes intentan mantener el flujo sanguíneo renal al relajar el tono vascular , disminuyendo la resistencia vascular renal. La disminución de la perfusión renal también estimula la secreción de catecolaminas y vasopresina , así como activación del sistema renina-angiotensina, produciendo vasoconstricción. Con la hipoperfusión renal, se producen prostaglandinas (como prostaciclina), ayudando a mantener la perfusión renal al producir vasodilatación de la microvasculatura. Por lo tanto, la administración de la aspirina o algún AINE para aliviar al paciente durante un periodo de hipoperfusión renal realmente podría empeorar una IRA puesto que estos medicamentos pueden inhibir los mecanismos compensatorios de las prostaglandinas. En un estado de hipoperfusión, como una estenosis de la arteria renal, la presión intraglomerular se mejora por la liberación de angiotensina II, incrementando la resistencia arteriolar eferente. El óxido nítrico, un potente vasodilatador, y la activación del sistema calicreína-cinina, también juega un rol importante en los mecanismos compensatorios de la IRA. Estos roles aun estan bajo estudio, y necesitan clarificarse puesto que su influencia puede afectar el estado de la IRA. La insuficiencia prerrenal también ocurre como resultado de la contracción de volumen o disminución de volumen sanguíneo efectivo. Las causas de contracción de volumen incluyen: deshidratación por gastroenteritis, pérdidas urinarias secundarias a nefropatía perdedora de sal, diabetes insípida central o nefrogénica, uso de diuréticos, hemorragia, estados patológicos que producen líquidos en tercer espacio (síndrome nefrótico, sepsis, pancreatitis) y síndromes de filtración capilar. La disminución del volumen sanguíneo efectivo ocurre con enfermedad que producen disfunción cardíaca, como insuficiencia cardíaca congestiva, tamponade cardíaco y arritmias. Los lactantes se encuentran en riesgo incrementado para una pérdida excesiva de volumen debido a la incapacidad de los riñones de concentrar la orina al máximo, y de conservar la sal y agua de forma adecuada. Aún más, debido a que un lactante presenta una mayor área de superficie corporal en relación a su índice de masa corporal, las pérdidas insensibles de agua a través de la piel pueden aumentar significativamente la pérdida de volumen, especialmente durante enfermedades febriles. Puede desarrollarse oliguria o anuria en la presencia de IRA prerrenal debido a que la activación del sistema renina angiotensina aldosterona lleva a la liberacion de hormona antidiuretica en un intento de incrementar la absorcion de sodio y agua. Otras sustancias vasoactivas intrinsecas que Other intrinsic vasoactive substances that play roles during acute prerenal failure are: adenosine, which is a potent vasoconstrictor within the renal vasculature, but a vasodilator in the peripheral vasculature; nitric oxide, which is a vasodilator; and endothelin, which also is a potent vasoconstrictor. The therapeutic role of these specific agents or other agents that affect their concentrations in the treatment of ARF is being studied.
  • La lesión del parénquima renal debido a un daño isquémico o tóxico puede producir disfunción celular. La porción gruesa medular del asa ascendente es muy vulnerable a la hipoxia debido a la baja tensión de oxígeno en el área medular, y debido a alto índice de consumo de oxígeno de la porción gruesa medular del asa ascendente. La porción recta del túbulo proximal también es vulnerable a la isquemia debido a sus altos requerimientos energéticos para llevar a acabo la fosforilación para el transporte de solutos. Los restos celulares y del borde en cepillo resultantes de necrosis celular se acumulan en el asa de Henle, bloqueando el flujo tubular. Esta obstrucción tubular produce una inversión de flujo hacia la circulación a través de los túbulos lesionados.
  • Clinical history may reveal dehydration, hypoxicischemic events, toxic ingestion, NSAID or other nephrotoxic medication use, signs and symptoms of sepsis, gross hematuria, or trauma. With intrinsic renal failure, the patient’s decreased urine output can be described as oliguria (0.5 mL/kg per hour in a child or 1 mL/kg per hour in an infant) or as anuria (no urine output). Laboratory examination of the urine sediment may demonstrate red blood cell casts, granular casts, and red blood cells, findings seen in glomerulonephritis. When evaluating for possible glomerulonephritis, other appropriate biochemical studies include streptococcal antibodies, hepatitis B and C panels, and complement studies. A low complement C3 value may indicate an underlying diagnosis of systemic lupus erythematosus or membranoproliferative or poststreptococcal glomerulonephritis. Streptococcal antibodies, including the antistreptolysin O titer, anti-DNAase B titer, and group A antibody to Streptococcus pyogenes titer, should be obtained, especially if hematuria or proteinuria are present and if the patient has a history of impetigo or an upper respiratory tract infection 10 to 14 days prior to presentation. Obtaining hepatitis Bs and C antigen and antibodies also should be considered to determine other possible causes of hematuria or proteinuria. For a patient in whom there is a high suspicion for glomerulonephritis, a biopsy may be warranted if the patient has, in addition to gross hematuria and proteinuria, rapidly rising BUN and creatinine serum values. Examination of the urine in cases of intrinsic renal failure demonstrates a low urine osmolality (350.0 mOsm) and a high urinary fractional excretion of sodium (2% in the older child and 2.5 to 3% in the newborn) (Table 3). Renal scans can be helpful in diagnosis because they can demonstrate the extent of kidney function. Technetium-99-diethylenetriaminepenta-acetic acid (99mTc-DTPA) or technetium-99-mercaptotriglyclglycine (99mTc-MAG-3) scans can delineate areas of normal or low perfusion associated with poor renal function and areas of significant parenchymal damage by demonstrating a delay in the accumulation of the radioisotope and an absence of isotopic excretion into the collecting system. If necessary, a renal biopsy is the next step in determining the cause of intrinsic renal failure. General indicators for renal biopsy include rapidly increasing serum creatinine concentration, the need to establish a diagnosis of acute versus chronic glomerulonephritis, positive serology for systemic diseases such as membranoproliferative glomerulonephritis or systemic lupus erythematosus, and azotemia with urinary findings of hematuria or proteinuria. A biopsy may demonstrate an active lesion in which immunosuppressive medications, such as steroids, may help to reverse the disease process and recover renal function.
  • Clinical history may reveal dehydration, hypoxicischemic events, toxic ingestion, NSAID or other nephrotoxic medication use, signs and symptoms of sepsis, gross hematuria, or trauma. With intrinsic renal failure, the patient’s decreased urine output can be described as oliguria (0.5 mL/kg per hour in a child or 1 mL/kg per hour in an infant) or as anuria (no urine output). Laboratory examination of the urine sediment may demonstrate red blood cell casts, granular casts, and red blood cells, findings seen in glomerulonephritis. When evaluating for possible glomerulonephritis, other appropriate biochemical studies include streptococcal antibodies, hepatitis B and C panels, and complement studies. A low complement C3 value may indicate an underlying diagnosis of systemic lupus erythematosus or membranoproliferative or poststreptococcal glomerulonephritis. Streptococcal antibodies, including the antistreptolysin O titer, anti-DNAase B titer, and group A antibody to Streptococcus pyogenes titer, should be obtained, especially if hematuria or proteinuria are present and if the patient has a history of impetigo or an upper respiratory tract infection 10 to 14 days prior to presentation. Obtaining hepatitis Bs and C antigen and antibodies also should be considered to determine other possible causes of hematuria or proteinuria. For a patient in whom there is a high suspicion for glomerulonephritis, a biopsy may be warranted if the patient has, in addition to gross hematuria and proteinuria, rapidly rising BUN and creatinine serum values. Examination of the urine in cases of intrinsic renal failure demonstrates a low urine osmolality (350.0 mOsm) and a high urinary fractional excretion of sodium (2% in the older child and 2.5 to 3% in the newborn) (Table 3). Renal scans can be helpful in diagnosis because they can demonstrate the extent of kidney function. Technetium-99-diethylenetriaminepenta-acetic acid (99mTc-DTPA) or technetium-99-mercaptotriglyclglycine (99mTc-MAG-3) scans can delineate areas of normal or low perfusion associated with poor renal function and areas of significant parenchymal damage by demonstrating a delay in the accumulation of the radioisotope and an absence of isotopic excretion into the collecting system. If necessary, a renal biopsy is the next step in determining the cause of intrinsic renal failure. General indicators for renal biopsy include rapidly increasing serum creatinine concentration, the need to establish a diagnosis of acute versus chronic glomerulonephritis, positive serology for systemic diseases such as membranoproliferative glomerulonephritis or systemic lupus erythematosus, and azotemia with urinary findings of hematuria or proteinuria. A biopsy may demonstrate an active lesion in which immunosuppressive medications, such as steroids, may help to reverse the disease process and recover renal function.
  • Laboratory examination of the urine sediment may demonstrate red blood cell casts, granular casts, and red blood cells, findings seen in glomerulonephritis. When evaluating for possible glomerulonephritis, other appropriate biochemical studies include streptococcal antibodies, hepatitis B and C panels, and complement studies.
  • GMN postinfecciosa Fena esta disminuido
  • Laboratory examination of the urine sediment may demonstrate red blood cell casts, granular casts, and red blood cells, findings seen in glomerulonephritis. When evaluating for possible glomerulonephritis, other appropriate biochemical studies include streptococcal antibodies, hepatitis B and C panels, and complement studies. Streptococcal antibodies, including the antistreptolysin O titer, anti-DNAase B titer, and group A antibody to Streptococcus pyogenes titer, should be obtained, especially if hematuria or proteinuria are present and if the patient has a history of impetigo or an upper respiratory tract infection 10 to 14 days prior to presentation. Obtaining hepatitis Bs and C antigen and antibodies also should be considered to determine other possible causes of hematuria or proteinuria. For a patient in whom there is a high suspicion for glomerulonephritis, a biopsy may be warranted if the patient has, in addition to gross hematuria and proteinuria, rapidly rising BUN and creatinine serum values.
  • A low complement C3 value may indicate an underlying diagnosis of systemic lupus erythematosus or membranoproliferative or poststreptococcal glomerulonephritis.
  • Streptococcal antibodies, including the antistreptolysin O titer, anti-DNAase B titer, and group A antibody to Streptococcus pyogenes titer, should be obtained, especially if hematuria or proteinuria are present and if the patient has a history of impetigo or an upper respiratory tract infection 10 to 14 days prior to presentation. Obtaining hepatitis Bs and C antigen and antibodies also should be considered to determine other possible causes of hematuria or proteinuria. For a patient in whom there is a high suspicion for glomerulonephritis, a biopsy may be warranted if the patient has, in addition to gross hematuria and proteinuria, rapidly rising BUN and creatinine serum values. Examination of the urine in cases of intrinsic renal failure demonstrates a low urine osmolality (350.0 mOsm) and a high urinary fractional excretion of sodium (2% in the older child and 2.5 to 3% in the newborn) (Table 3). Renal scans can be helpful in diagnosis because they can demonstrate the extent of kidney function. Technetium-99-diethylenetriaminepenta-acetic acid (99mTc-DTPA) or technetium-99-mercaptotriglyclglycine (99mTc-MAG-3) scans can delineate areas of normal or low perfusion associated with poor renal function and areas of significant parenchymal damage by demonstrating a delay in the accumulation of the radioisotope and an absence of isotopic excretion into the collecting system. If necessary, a renal biopsy is the next step in determining the cause of intrinsic renal failure. General indicators for renal biopsy include rapidly increasing serum creatinine concentration, the need to establish a diagnosis of acute versus chronic glomerulonephritis, positive serology for systemic diseases such as membranoproliferative glomerulonephritis or systemic lupus erythematosus, and azotemia with urinary findings of hematuria or proteinuria. A biopsy may demonstrate an active lesion in which immunosuppressive medications, such as steroids, may help to reverse the disease process and recover renal function.
  • Streptococcal antibodies, including the antistreptolysin O titer, anti-DNAase B titer, and group A antibody to Streptococcus pyogenes titer, should be obtained, especially if hematuria or proteinuria are present and if the patient has a history of impetigo or an upper respiratory tract infection 10 to 14 days prior to presentation. Obtaining hepatitis Bs and C antigen and antibodies also should be considered to determine other possible causes of hematuria or proteinuria. For a patient in whom there is a high suspicion for glomerulonephritis, a biopsy may be warranted if the patient has, in addition to gross hematuria and proteinuria, rapidly rising BUN and creatinine serum values. Examination of the urine in cases of intrinsic renal failure demonstrates a low urine osmolality (350.0 mOsm) and a high urinary fractional excretion of sodium (2% in the older child and 2.5 to 3% in the newborn) (Table 3). Renal scans can be helpful in diagnosis because they can demonstrate the extent of kidney function. Technetium-99-diethylenetriaminepenta-acetic acid (99mTc-DTPA) or technetium-99-mercaptotriglyclglycine (99mTc-MAG-3) scans can delineate areas of normal or low perfusion associated with poor renal function and areas of significant parenchymal damage by demonstrating a delay in the accumulation of the radioisotope and an absence of isotopic excretion into the collecting system. If necessary, a renal biopsy is the next step in determining the cause of intrinsic renal failure. General indicators for renal biopsy include rapidly increasing serum creatinine concentration, the need to establish a diagnosis of acute versus chronic glomerulonephritis, positive serology for systemic diseases such as membranoproliferative glomerulonephritis or systemic lupus erythematosus, and azotemia with urinary findings of hematuria or proteinuria. A biopsy may demonstrate an active lesion in which immunosuppressive medications, such as steroids, may help to reverse the disease process and recover renal function.
  • Renal scans can be helpful in diagnosis because they can demonstrate the extent of kidney function. Technetium-99-diethylenetriaminepenta-acetic acid (99mTc-DTPA) or technetium-99-mercaptotriglyclglycine (99mTc-MAG-3) scans can delineate areas of normal or low perfusion associated with poor renal function and areas of significant parenchymal damage by demonstrating a delay in the accumulation of the radioisotope and an absence of isotopic excretion into the collecting system. If necessary, a renal biopsy is the next step in determining the cause of intrinsic renal failure. General indicators for renal biopsy include rapidly increasing serum creatinine concentration, the need to establish a diagnosis of acute versus chronic glomerulonephritis, positive serology for systemic diseases such as membranoproliferative glomerulonephritis or systemic lupus erythematosus, and azotemia with urinary findings of hematuria or proteinuria. A biopsy may demonstrate an active lesion in which immunosuppressive medications, such as steroids, may help to reverse the disease process and recover renal function.
  • If necessary, a renal biopsy is the next step in determining the cause of intrinsic renal failure. General indicators for renal biopsy include rapidly increasing serum creatinine concentration, the need to establish a diagnosis of acute versus chronic glomerulonephritis, positive serology for systemic diseases such as membranoproliferative glomerulonephritis or systemic lupus erythematosus, and azotemia with urinary findings of hematuria or proteinuria. A biopsy may demonstrate an active lesion in which immunosuppressive medications, such as steroids, may help to reverse the disease process and recover renal function.
  • El tratamiento puede ser conservador, diálsis o transplante renal. A nivel mundial, las causas más frecuentes de IRA en niños es síndrome urémico hemolítico o depleción de volumen.
  • Causes Postrenal failure results from obstruction to urinary flow. Causes of obstruction include renal calculi, bladder outlet obstruction, and internal or external ureteral compression (Table 2). Pathophysiology Obstruction of the ureter, bladder, or urethra can cause an increase in fluid pressure proximal to the obstruction. This increase in pressure, in turn, causes renal damage, resulting in decreased renal function. Diagnosis Clinical history may reveal signs or symptoms of an obstruction, such as gross hematuria and colicky pain, as seen in a patient who has renal stones. A history of prenatal ultrasonography demonstrating bilateral hydronephrosis and hydroureters suggests the presence of posterior urethral valves. The physical examination may reveal a palpable flank mass, as seen in a patient who has ureteropelvic obstruction. Urine output and urinary sediment findings may be variable. Patients who have obstructive renal failure frequently show a dilated renal pelvis on renal ultrasonography. In obstruction, a radioisotope scan shows isotope collection within the kidney or at any level of the ureter or bladder, with delayed or absent excretion of the isotope.
  • Causes Postrenal failure results from obstruction to urinary flow. Causes of obstruction include renal calculi, bladder outlet obstruction, and internal or external ureteral compression (Table 2). Pathophysiology Obstruction of the ureter, bladder, or urethra can cause an increase in fluid pressure proximal to the obstruction. This increase in pressure, in turn, causes renal damage, resulting in decreased renal function. Diagnosis Clinical history may reveal signs or symptoms of an obstruction, such as gross hematuria and colicky pain, as seen in a patient who has renal stones. A history of prenatal ultrasonography demonstrating bilateral hydronephrosis and hydroureters suggests the presence of posterior urethral valves. The physical examination may reveal a palpable flank mass, as seen in a patient who has ureteropelvic obstruction. Urine output and urinary sediment findings may be variable. Patients who have obstructive renal failure frequently show a dilated renal pelvis on renal ultrasonography. In obstruction, a radioisotope scan shows isotope collection within the kidney or at any level of the ureter or bladder, with delayed or absent excretion of the isotope.
  • Medical management of ARF includes maintaining renal perfusion and fluid and electrolyte balance, controlling blood pressure, treating anemia, providing adequate nutrition, adjusting medications for the degree of renal impairment, and initiating renal replacement therapy (dialysis) when indicated. Whether a patient should be cared for on the wards or in an intensive care setting depends on his or her clinical presentation. The patient who clearly has cardiopulmonary collapse, who requires close monitoring of vital signs, or who requires dialysis should be admitted to the intensive care unit.
  • Vasoactive Agents Vasoactive agents frequently are administered to improve a patient’s blood pressure and ensure adequate perfusion of the kidneys. Maintaining adequate perfusion may require close monitoring of central venous pressure, especially if the patient requires admission to the intensive care unit. Although low-dose dopamine can improve renal blood flow by causing vasodilation, it is debated in the literature whether “renal dosing” of dopamine (0.5 to 3.0 mcg/kg per minute) is beneficial. Fluids Fluid management depends on the patient’s hemodynamic status and urinary output. The patient who presents with oliguria and hemodynamic instability should be given a fluid bolus of 20 mL/kg of an isotonic solution such as normal saline, packed red blood cells, or even albumin, although albumin’s effectiveness is debated in the literature. These fluids should be administered as rapidly as possible, especially if the patient presents with sepsis. Repeat boluses may be given if the child remains hemodynamically unstable, as indicated by persistent low blood pressure or increased heart rate, decreased capillary refill, or no urinary output. A repeat bolus can be administered within minutes if the patient is in shock or until clinical improvement is evidenced.
  • Fluids Fluid management depends on the patient’s hemodynamic status and urinary output. The patient who presents with oliguria and hemodynamic instability should be given a fluid bolus of 20 mL/kg of an isotonic solution such as normal saline, packed red blood cells, or even albumin, although albumin’s effectiveness is debated in the literature. These fluids should be administered as rapidly as possible, especially if the patient presents with sepsis. Repeat boluses may be given if the child remains hemodynamically unstable, as indicated by persistent low blood pressure or increased heart rate, decreased capillary refill, or no urinary output. A repeat bolus can be administered within minutes if the patient is in shock or until clinical improvement is evidenced. Some nephrologists administer furosemide or mannitol to promote urination in an attempt to ease fluid management of ARF and increase the ability to give more nutrition. Both mannitol and furosemide increase urinary flow rate and decrease intratubular obstruction; both also may limit oxygen consumption in damaged cells. Results of investigatory studies suggest that administration of furosemide or mannitol alone does not change the need for renal replacement therapies such as dialysis. Both furosemide and mannitol cause significant diuresis. Furosemide promotes excretion of sodium and potassium by inhibiting the sodium-potassium-chloride cotransporter in the thick ascending limb of Henle, thus allowing more water in the tubules. Mannitol is an osmotic diuretic. Prior to administering furosemide or mannitol, intravascular volume should be restored and the fractional excretion of sodium determined to identify the type of renal failure (Table 3). The patient’s hemodynamic status should be assessed carefully before furosemide or mannitol administration. Once intravascular volume is re-established, fluid intake should be restricted to 400 mL/m2 per day (5% dextrose in water) plus urinary output and extrarenal losses, if the child has a urinary output of at least 1 mL/kg per hour, has pulmonary edema, has thirdspacing of fluids, or meets the criteria for having ARF. This formula accounts for insensible water loss from the respiratory and GI tracts as well as from excretory losses. Final fluid adjustments depend on daily weights and close monitoring of the patient’s intake and output.
  • Electrolitos Frequent electrolyte abnormalities seen in ARF that must be corrected include hyponatremia, hyperkalemia, acidosis, and hypocalcemia (Table 4). Hyponatremia (sodium concentrations 130.0 mEq/L [130.0 mmol/L]) usually is associated with hyponatremic dehydration. If the serum sodium concentration is greater than 120.0 mEq/L (120.0 mmol/L), fluid restriction or water removal with dialysis should be considered, and sodium should be corrected to at least 125.0 mEq/L (125.0 mmol/L) by using the following calculation: (125-plasma sodium) (Wt in kilograms)(0.6)mEq Na This amount of sodium should be delivered slowly over several hours. If the patient is asymptomatic and the sodium value is less than 120.0 mEq/L (120.0 mmol/L), rapid correction to 125.0 mEq/L (125.0 mmol/L) should be considered because of the increased risk for seizures. Rapid correction versus slow correction is based on duration of hyponatremia as well as the patient’s clinical appearance. If the patient is symptomatic and having seizures, 3% sodium chloride should be used for rapid correction of the sodium deficit to 125.0 mEq/L (125.0 mmol/L). Two equations can be used for administering 3% sodium chloride: a) 10 to 12 mL/kg of 3% NaCl infused over 1 hour b) Amount of 3% NaCl (mL)[XmEq/Lbody weight (kg)0.6 L/kg][0.513 mEq Na/mL 3% NaCl] where X(125 mEq/Lactual serum sodium) to raise serum sodium to 125.0 mEq/L (125.0 mmol/L) rapidly. Hyperkalemia is a life-threatening abnormality in ARF that must be treated aggressively and quickly. Hyperkalemia is defined as mild-to-moderate when the potassium concentration is between 6.0 and 7.0 mEq/L (6.0 and 7.0 mmol/L) and severe when the concentration is greater than 7.0 mEq/L (7.0 mmol/L) with any electrocardiographic changes. Hyperkalemia develops because of a decrease in renal function, abnormal tubular potassium secretion, potassium shift out of cells into the extracellular space due to acidosis, or breakdown of tubular cells. If hyperkalemia is suspected, the patient should undergo electrocardiography to look for tall, peaked T waves. Treatment of hyperkalemia should be initiated in patients whose potassium values are 6.0 mEq/L (6.0 mmol/L) or higher as well as in those who have peaked T waves, weakness, paresthesias, or tetany. Treatment of hyperkalemia includes infusion of 10% calcium gluconate (10 to 15 mL/kg) through a central venous line to stabilize the membrane potential; infusion of bicarbonate to shift the potassium intracellularly; infusion of insulin (0.1 to 0.5 U/kg) plus 10% to 25% glucose to allow for uptake of potassium from the extracellular space to the intracellular space; or administration of sodium polystyrene sulfonate (1 g/kg rectally or orally) to exchange sodium for potassium in the colonic mucosa. Once administered, the resin takes a few hours to be effective. If these attempts do not correct the patient’s hyperkalemia, dialysis should be initiated, especially if anuria is present. Once the decision to begin dialysis has been made, the previously noted measures should be continued until dialysis is available. Once dialysis has begun, all electrolytes should be monitored to assess rebound after the initial and subsequent potassium concentrations are lowered. Acidosis in the acute setting can be corrected by administering sodium bicarbonate intravenously if the acidosis is severe (bicarbonate, 8.0 to 10.0 mEq/L [8.0 to 10.0 mmol/L]). Calculation for the amount of bicarbonate to administer to correct the acidosis is: mEq of bicarbonate(desired-observed bicarbonate) kg0.5 The correction should be undertaken with care because this is only a temporizing measure, and overcorrecting the acidosis may cause hypocalcemia. Hypocalcemia results from several causes, including hyperphosphatemia, abnormal GI uptake, and skeletal resistance to parathyroid hormone. Hypocalcemia can be treated with intravenous calcium gluconate in acute severe situations, such as when the patient has tetany or cardiac arrhythmias. Oral calcium carbonate also is effective. Care should be taken when giving these products in the presence of hyperphosphatemia. Oral phosphate binders, such as calcium carbonate and calcium acetate, and noncalcium phosphate binders can be administered to decrease phosphorus concentrations. VitaminDproducts can be provided to prevent secondary hyperparathyroidism that can occur in patients whose ARF is prolonged (Table 5).
  • Electrolitos Frequent electrolyte abnormalities seen in ARF that must be corrected include hyponatremia, hyperkalemia, acidosis, and hypocalcemia (Table 4). Hyponatremia (sodium concentrations 130.0 mEq/L [130.0 mmol/L]) usually is associated with hyponatremic dehydration. If the serum sodium concentration is greater than 120.0 mEq/L (120.0 mmol/L), fluid restriction or water removal with dialysis should be considered, and sodium should be corrected to at least 125.0 mEq/L (125.0 mmol/L) by using the following calculation: (125-plasma sodium) (Wt in kilograms)(0.6)mEq Na This amount of sodium should be delivered slowly over several hours. If the patient is asymptomatic and the sodium value is less than 120.0 mEq/L (120.0 mmol/L), rapid correction to 125.0 mEq/L (125.0 mmol/L) should be considered because of the increased risk for seizures. Rapid correction versus slow correction is based on duration of hyponatremia as well as the patient’s clinical appearance. If the patient is symptomatic and having seizures, 3% sodium chloride should be used for rapid correction of the sodium deficit to 125.0 mEq/L (125.0 mmol/L). Two equations can be used for administering 3% sodium chloride: a) 10 to 12 mL/kg of 3% NaCl infused over 1 hour b) Amount of 3% NaCl (mL)[XmEq/Lbody weight (kg)0.6 L/kg][0.513 mEq Na/mL 3% NaCl] where X(125 mEq/Lactual serum sodium) to raise serum sodium to 125.0 mEq/L (125.0 mmol/L) rapidly. Hyperkalemia is a life-threatening abnormality in ARF that must be treated aggressively and quickly. Hyperkalemia is defined as mild-to-moderate when the potassium concentration is between 6.0 and 7.0 mEq/L (6.0 and 7.0 mmol/L) and severe when the concentration is greater than 7.0 mEq/L (7.0 mmol/L) with any electrocardiographic changes. Hyperkalemia develops because of a decrease in renal function, abnormal tubular potassium secretion, potassium shift out of cells into the extracellular space due to acidosis, or breakdown of tubular cells. If hyperkalemia is suspected, the patient should undergo electrocardiography to look for tall, peaked T waves. Treatment of hyperkalemia should be initiated in patients whose potassium values are 6.0 mEq/L (6.0 mmol/L) or higher as well as in those who have peaked T waves, weakness, paresthesias, or tetany. Treatment of hyperkalemia includes infusion of 10% calcium gluconate (10 to 15 mL/kg) through a central venous line to stabilize the membrane potential; infusion of bicarbonate to shift the potassium intracellularly; infusion of insulin (0.1 to 0.5 U/kg) plus 10% to 25% glucose to allow for uptake of potassium from the extracellular space to the intracellular space; or administration of sodium polystyrene sulfonate (1 g/kg rectally or orally) to exchange sodium for potassium in the colonic mucosa. Once administered, the resin takes a few hours to be effective. If these attempts do not correct the patient’s hyperkalemia, dialysis should be initiated, especially if anuria is present. Once the decision to begin dialysis has been made, the previously noted measures should be continued until dialysis is available. Once dialysis has begun, all electrolytes should be monitored to assess rebound after the initial and subsequent potassium concentrations are lowered. Acidosis in the acute setting can be corrected by administering sodium bicarbonate intravenously if the acidosis is severe (bicarbonate, 8.0 to 10.0 mEq/L [8.0 to 10.0 mmol/L]). Calculation for the amount of bicarbonate to administer to correct the acidosis is: mEq of bicarbonate(desired-observed bicarbonate) kg0.5 The correction should be undertaken with care because this is only a temporizing measure, and overcorrecting the acidosis may cause hypocalcemia. Hypocalcemia results from several causes, including hyperphosphatemia, abnormal GI uptake, and skeletal resistance to parathyroid hormone. Hypocalcemia can be treated with intravenous calcium gluconate in acute severe situations, such as when the patient has tetany or cardiac arrhythmias. Oral calcium carbonate also is effective. Care should be taken when giving these products in the presence of hyperphosphatemia. Oral phosphate binders, such as calcium carbonate and calcium acetate, and noncalcium phosphate binders can be administered to decrease phosphorus concentrations. VitaminDproducts can be provided to prevent secondary hyperparathyroidism that can occur in patients whose ARF is prolonged (Table 5).
  • Electrolitos Frequent electrolyte abnormalities seen in ARF that must be corrected include hyponatremia, hyperkalemia, acidosis, and hypocalcemia (Table 4). Hyponatremia (sodium concentrations 130.0 mEq/L [130.0 mmol/L]) usually is associated with hyponatremic dehydration. If the serum sodium concentration is greater than 120.0 mEq/L (120.0 mmol/L), fluid restriction or water removal with dialysis should be considered, and sodium should be corrected to at least 125.0 mEq/L (125.0 mmol/L) by using the following calculation: (125-plasma sodium) (Wt in kilograms)(0.6)mEq Na This amount of sodium should be delivered slowly over several hours. If the patient is asymptomatic and the sodium value is less than 120.0 mEq/L (120.0 mmol/L), rapid correction to 125.0 mEq/L (125.0 mmol/L) should be considered because of the increased risk for seizures. Rapid correction versus slow correction is based on duration of hyponatremia as well as the patient’s clinical appearance. If the patient is symptomatic and having seizures, 3% sodium chloride should be used for rapid correction of the sodium deficit to 125.0 mEq/L (125.0 mmol/L). Two equations can be used for administering 3% sodium chloride: a) 10 to 12 mL/kg of 3% NaCl infused over 1 hour b) Amount of 3% NaCl (mL)[XmEq/Lbody weight (kg)0.6 L/kg][0.513 mEq Na/mL 3% NaCl] where X(125 mEq/Lactual serum sodium) to raise serum sodium to 125.0 mEq/L (125.0 mmol/L) rapidly.
  • Hyperkalemia is a life-threatening abnormality in ARF that must be treated aggressively and quickly. Hyperkalemia is defined as mild-to-moderate when the potassium concentration is between 6.0 and 7.0 mEq/L (6.0 and 7.0 mmol/L) and severe when the concentration is greater than 7.0 mEq/L (7.0 mmol/L) with any electrocardiographic changes. Hyperkalemia develops because of a decrease in renal function, abnormal tubular potassium secretion, potassium shift out of cells into the extracellular space due to acidosis, or breakdown of tubular cells. If hyperkalemia is suspected, the patient should undergo electrocardiography to look for tall, peaked T waves. Treatment of hyperkalemia should be initiated in patients whose potassium values are 6.0 mEq/L (6.0 mmol/L) or higher as well as in those who have peaked T waves, weakness, paresthesias, or tetany. Treatment of hyperkalemia includes infusion of 10% calcium gluconate (10 to 15 mL/kg) through a central venous line to stabilize the membrane potential; infusion of bicarbonate to shift the potassium intracellularly; infusion of insulin (0.1 to 0.5 U/kg) plus 10% to 25% glucose to allow for uptake of potassium from the extracellular space to the intracellular space; or administration of sodium polystyrene sulfonate (1 g/kg rectally or orally) to exchange sodium for potassium in the colonic mucosa. Once administered, the resin takes a few hours to be effective. If these attempts do not correct the patient’s hyperkalemia, dialysis should be initiated, especially if anuria is present. Once the decision to begin dialysis has been made, the previously noted measures should be continued until dialysis is available. Once dialysis has begun, all electrolytes should be monitored to assess rebound after the initial and subsequent potassium concentrations are lowered. Acidosis in the acute setting can be corrected by administering sodium bicarbonate intravenously if the acidosis is severe (bicarbonate, 8.0 to 10.0 mEq/L [8.0 to 10.0 mmol/L]). Calculation for the amount of bicarbonate to administer to correct the acidosis is: mEq of bicarbonate(desired-observed bicarbonate) kg0.5 The correction should be undertaken with care because this is only a temporizing measure, and overcorrecting the acidosis may cause hypocalcemia. Hypocalcemia results from several causes, including hyperphosphatemia, abnormal GI uptake, and skeletal resistance to parathyroid hormone. Hypocalcemia can be treated with intravenous calcium gluconate in acute severe situations, such as when the patient has tetany or cardiac arrhythmias. Oral calcium carbonate also is effective. Care should be taken when giving these products in the presence of hyperphosphatemia. Oral phosphate binders, such as calcium carbonate and calcium acetate, and noncalcium phosphate binders can be administered to decrease phosphorus concentrations. VitaminDproducts can be provided to prevent secondary hyperparathyroidism that can occur in patients whose ARF is prolonged (Table 5).
  • Hyperkalemia is a life-threatening abnormality in ARF that must be treated aggressively and quickly. Hyperkalemia is defined as mild-to-moderate when the potassium concentration is between 6.0 and 7.0 mEq/L (6.0 and 7.0 mmol/L) and severe when the concentration is greater than 7.0 mEq/L (7.0 mmol/L) with any electrocardiographic changes. Hyperkalemia develops because of a decrease in renal function, abnormal tubular potassium secretion, potassium shift out of cells into the extracellular space due to acidosis, or breakdown of tubular cells. If hyperkalemia is suspected, the patient should undergo electrocardiography to look for tall, peaked T waves. Treatment of hyperkalemia should be initiated in patients whose potassium values are 6.0 mEq/L (6.0 mmol/L) or higher as well as in those who have peaked T waves, weakness, paresthesias, or tetany. Treatment of hyperkalemia includes infusion of 10% calcium gluconate (10 to 15 mL/kg) through a central venous line to stabilize the membrane potential; infusion of bicarbonate to shift the potassium intracellularly; infusion of insulin (0.1 to 0.5 U/kg) plus 10% to 25% glucose to allow for uptake of potassium from the extracellular space to the intracellular space; or administration of sodium polystyrene sulfonate (1 g/kg rectally or orally) to exchange sodium for potassium in the colonic mucosa. Once administered, the resin takes a few hours to be effective. If these attempts do not correct the patient’s hyperkalemia, dialysis should be initiated, especially if anuria is present. Once the decision to begin dialysis has been made, the previously noted measures should be continued until dialysis is available. Once dialysis has begun, all electrolytes should be monitored to assess rebound after the initial and subsequent potassium concentrations are lowered. Acidosis in the acute setting can be corrected by administering sodium bicarbonate intravenously if the acidosis is severe (bicarbonate, 8.0 to 10.0 mEq/L [8.0 to 10.0 mmol/L]). Calculation for the amount of bicarbonate to administer to correct the acidosis is: mEq of bicarbonate(desired-observed bicarbonate) kg0.5 The correction should be undertaken with care because this is only a temporizing measure, and overcorrecting the acidosis may cause hypocalcemia. Hypocalcemia results from several causes, including hyperphosphatemia, abnormal GI uptake, and skeletal resistance to parathyroid hormone. Hypocalcemia can be treated with intravenous calcium gluconate in acute severe situations, such as when the patient has tetany or cardiac arrhythmias. Oral calcium carbonate also is effective. Care should be taken when giving these products in the presence of hyperphosphatemia. Oral phosphate binders, such as calcium carbonate and calcium acetate, and noncalcium phosphate binders can be administered to decrease phosphorus concentrations. VitaminDproducts can be provided to prevent secondary hyperparathyroidism that can occur in patients whose ARF is prolonged (Table 5).
  • Hyperkalemia is a life-threatening abnormality in ARF that must be treated aggressively and quickly. Hyperkalemia is defined as mild-to-moderate when the potassium concentration is between 6.0 and 7.0 mEq/L (6.0 and 7.0 mmol/L) and severe when the concentration is greater than 7.0 mEq/L (7.0 mmol/L) with any electrocardiographic changes. Hyperkalemia develops because of a decrease in renal function, abnormal tubular potassium secretion, potassium shift out of cells into the extracellular space due to acidosis, or breakdown of tubular cells. If hyperkalemia is suspected, the patient should undergo electrocardiography to look for tall, peaked T waves. Treatment of hyperkalemia should be initiated in patients whose potassium values are 6.0 mEq/L (6.0 mmol/L) or higher as well as in those who have peaked T waves, weakness, paresthesias, or tetany. Treatment of hyperkalemia includes infusion of 10% calcium gluconate (10 to 15 mL/kg) through a central venous line to stabilize the membrane potential; infusion of bicarbonate to shift the potassium intracellularly; infusion of insulin (0.1 to 0.5 U/kg) plus 10% to 25% glucose to allow for uptake of potassium from the extracellular space to the intracellular space; or administration of sodium polystyrene sulfonate (1 g/kg rectally or orally) to exchange sodium for potassium in the colonic mucosa. Once administered, the resin takes a few hours to be effective. If these attempts do not correct the patient’s hyperkalemia, dialysis should be initiated, especially if anuria is present. Once the decision to begin dialysis has been made, the previously noted measures should be continued until dialysis is available. Once dialysis has begun, all electrolytes should be monitored to assess rebound after the initial and subsequent potassium concentrations are lowered. Acidosis in the acute setting can be corrected by administering sodium bicarbonate intravenously if the acidosis is severe (bicarbonate, 8.0 to 10.0 mEq/L [8.0 to 10.0 mmol/L]). Calculation for the amount of bicarbonate to administer to correct the acidosis is: mEq of bicarbonate(desired-observed bicarbonate) kg0.5 The correction should be undertaken with care because this is only a temporizing measure, and overcorrecting the acidosis may cause hypocalcemia. Hypocalcemia results from several causes, including hyperphosphatemia, abnormal GI uptake, and skeletal resistance to parathyroid hormone. Hypocalcemia can be treated with intravenous calcium gluconate in acute severe situations, such as when the patient has tetany or cardiac arrhythmias. Oral calcium carbonate also is effective. Care should be taken when giving these products in the presence of hyperphosphatemia. Oral phosphate binders, such as calcium carbonate and calcium acetate, and noncalcium phosphate binders can be administered to decrease phosphorus concentrations. VitaminDproducts can be provided to prevent secondary hyperparathyroidism that can occur in patients whose ARF is prolonged (Table 5).
  • Treatment of hyperkalemia should be initiated in patients whose potassium values are 6.0 mEq/L (6.0 mmol/L) or higher as well as in those who have peaked T waves, weakness, paresthesias, or tetany. Treatment of hyperkalemia includes infusion of 10% calcium gluconate (10 to 15 mL/kg) through a central venous line to stabilize the membrane potential; infusion of bicarbonate to shift the potassium intracellularly; infusion of insulin (0.1 to 0.5 U/kg) plus 10% to 25% glucose to allow for uptake of potassium from the extracellular space to the intracellular space; or administration of sodium polystyrene sulfonate (1 g/kg rectally or orally) to exchange sodium for potassium in the colonic mucosa. Once administered, the resin takes a few hours to be effective. If these attempts do not correct the patient’s hyperkalemia, dialysis should be initiated, especially if anuria is present. Once the decision to begin dialysis has been made, the previously noted measures should be continued until dialysis is available. Once dialysis has begun, all electrolytes should be monitored to assess rebound after the initial and subsequent potassium concentrations are lowered. Acidosis in the acute setting can be corrected by administering sodium bicarbonate intravenously if the acidosis is severe (bicarbonate, 8.0 to 10.0 mEq/L [8.0 to 10.0 mmol/L]). Calculation for the amount of bicarbonate to administer to correct the acidosis is: mEq of bicarbonate(desired-observed bicarbonate) kg0.5 The correction should be undertaken with care because this is only a temporizing measure, and overcorrecting the acidosis may cause hypocalcemia. Hypocalcemia results from several causes, including hyperphosphatemia, abnormal GI uptake, and skeletal resistance to parathyroid hormone. Hypocalcemia can be treated with intravenous calcium gluconate in acute severe situations, such as when the patient has tetany or cardiac arrhythmias. Oral calcium carbonate also is effective. Care should be taken when giving these products in the presence of hyperphosphatemia. Oral phosphate binders, such as calcium carbonate and calcium acetate, and noncalcium phosphate binders can be administered to decrease phosphorus concentrations. VitaminDproducts can be provided to prevent secondary hyperparathyroidism that can occur in patients whose ARF is prolonged (Table 5).
  • If these attempts do not correct the patient’s hyperkalemia, dialysis should be initiated, especially if anuria is present. Once the decision to begin dialysis has been made, the previously noted measures should be continued until dialysis is available. Once dialysis has begun, all electrolytes should be monitored to assess rebound after the initial and subsequent potassium concentrations are lowered. Acidosis in the acute setting can be corrected by administering sodium bicarbonate intravenously if the acidosis is severe (bicarbonate, 8.0 to 10.0 mEq/L [8.0 to 10.0 mmol/L]). Calculation for the amount of bicarbonate to administer to correct the acidosis is: mEq of bicarbonate(desired-observed bicarbonate) kg0.5 The correction should be undertaken with care because this is only a temporizing measure, and overcorrecting the acidosis may cause hypocalcemia. Hypocalcemia results from several causes, including hyperphosphatemia, abnormal GI uptake, and skeletal resistance to parathyroid hormone. Hypocalcemia can be treated with intravenous calcium gluconate in acute severe situations, such as when the patient has tetany or cardiac arrhythmias. Oral calcium carbonate also is effective. Care should be taken when giving these products in the presence of hyperphosphatemia. Oral phosphate binders, such as calcium carbonate and calcium acetate, and noncalcium phosphate binders can be administered to decrease phosphorus concentrations. VitaminDproducts can be provided to prevent secondary hyperparathyroidism that can occur in patients whose ARF is prolonged (Table 5).
  • Hypocalcemia results from several causes, including hyperphosphatemia, abnormal GI uptake, and skeletal resistance to parathyroid hormone. Hypocalcemia can be treated with intravenous calcium gluconate in acute severe situations, such as when the patient has tetany or cardiac arrhythmias. Oral calcium carbonate also is effective. Care should be taken when giving these products in the presence of hyperphosphatemia. Oral phosphate binders, such as calcium carbonate and calcium acetate, and noncalcium phosphate binders can be administered to decrease phosphorus concentrations. VitaminDproducts can be provided to prevent secondary hyperparathyroidism that can occur in patients whose ARF is prolonged (Table 5).
  • Hypertension in ARF usually is due to volume overload or changes in vascular tone. If volume overload is present, diuresis with furosemide or dialysis should be initiated to return the patient to hemodynamic stability. If increased vascular tone is the cause of hypertension, intravenous antihypertensive treatment may be necessary. Intravenous antihypertensive medications should be used if the patient cannot take oral medications (ie, intubation) or if severe hypertension exists (systolic or diastolic blood pressures at least at the 99th percentile for age, sex, and height). Sodium nitroprusside is an effective antihypertensive drug, but its use requires monitoring of thiocyanate concentrations because the kidney excretes this byproduct of metabolized nitroprusside. Intravenous labetalol, nicardipine, enalaprilat, and diazoxide have been administered to patients who have ARF to manage hypertensive crises. In cases where hypertension is not as severe, short-acting nifedipine can be administered (Table 6).
  • Proper nutrition is a major issue in patients who have ARF. Because these patients can be in a catabolic state, malnutrition is common. Infants who have ARF can be given a formula low in phosphorus. Older children can be fed formulas that provide proteins of high biologic value. If the patient cannot be fed enterally, supplemental intravenous alimentation should begin. Caloric intake should be aimed at providing greater than 70% of calories as carbohydrates (as dextrose up to 25%) and less than 20% as lipids, with biologic value proteins up to 0.5 to 2 g/kg per day.
  • The kidneys clear many medications. If the patient who has ARF already is taking medications that are excreted by the kidney, the dosing of these drugs should be evaluated to determine if the dosages or intervals between doses should be adjusted to account for the degree of renal impairment.
  • Renal Replacement Therapy When conservative medical management is unsuccessful in restoring renal function, dialysis is the therapy of choice. Indications for initiating dialysis include congestive heart failure, anemia, hyperkalemia, severe acidosis, pericarditis, and inadequate nutrition. For the acute presentation that requires dialysis, continuous venovenous (CVVH) or continuous arteriovenous hemofiltration (CAVH), acute hemodialysis, or acute peritoneal dialysis are appropriate forms of emergent dialysis for the pediatric patient. CVVH or CAVH allows fluid removal in the face of very low blood pressures. Also, neither CVVH nor CAVH interferes with providing adequate nutrition, enterally or parentally, for the patient in the intensive care unit.
  • Hiperkalemia, acidosis, uremia, hipervolemia. Renal Replacement Therapy When conservative medical management is unsuccessful in restoring renal function, dialysis is the therapy of choice. Indications for initiating dialysis include congestive heart failure, anemia, hyperkalemia, severe acidosis, pericarditis, and inadequate nutrition. For the acute presentation that requires dialysis, continuous venovenous (CVVH) or continuous arteriovenous hemofiltration (CAVH), acute hemodialysis, or acute peritoneal dialysis are appropriate forms of emergent dialysis for the pediatric patient. CVVH or CAVH allows fluid removal in the face of very low blood pressures. Also, neither CVVH nor CAVH interferes with providing adequate nutrition, enterally or parentally, for the patient in the intensive care unit.
  • Hypocalcemia results from several causes, including hyperphosphatemia, abnormal GI uptake, and skeletal resistance to parathyroid hormone. Hypocalcemia can be treated with intravenous calcium gluconate in acute severe situations, such as when the patient has tetany or cardiac arrhythmias. Oral calcium carbonate also is effective. Care should be taken when giving these products in the presence of hyperphosphatemia. Oral phosphate binders, such as calcium carbonate and calcium acetate, and noncalcium phosphate binders can be administered to decrease phosphorus concentrations. VitaminDproducts can be provided to prevent secondary hyperparathyroidism that can occur in patients whose ARF is prolonged (Table 5).

Transcript

  • 1.  
  • 2. Dr. Héctor U. Cuevas Castillejos
  • 3.
    • Coordinador:
    • Dra. Rebeca Gómez-Chico
    • Nefrología Pediátrica
    • Hospital Infantil de México Federico Gómez
  • 4.
    • Coordinador:
    • Dr. Tomasso Bochicchio Riccardelli
    • Nefrología
    • Instituto Mexicano de Transplantes
  • 5. Insuficiencia Renal Aguda
    • Disminución aguda de la función renal
      • ↑ N itrógeno ureico sanguíneo (BUN)
      • ↑ Creatinina sérica
      • ↑ Hiperkalemia
      • ↑ Presión arterial
      • Acidosis metabólica
    Whyte, DA; Fine, RN. Acute Renal Failure in Children. Pediatrics in Review Vol.29 No.9 September 2008
  • 6. Insuficiencia Renal Aguda
    • Evolución:
      • Recuperación total de la función renal
      • Recuperación parcial de la función renal
      • Progresión a insuficiencia renal crónica
    Vachvanichsanong P, Dissaneewate P, Lim A. Childhood Acute Renal Failure: 22-Year Experience in a University Hospital in Southern Thailand. Pediatrics, Sep 2006; 118: e786 - e791.
  • 7. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda
      • Prerrenal
      • Renal
      • Postrenal
  • 8. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Prerrenal
      • Hipoperfusión Renal
        • Depleción del volumen intravascular
        • Contracción de volumen
        • ↓ volumen sanguíneo efectivo
    Whyte, DA; Fine, RN. Acute Renal Failure in Children. Pediatrics in Review Vol.29 No.9 September 2008
  • 9. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Prerrenal
      • Hipoperfusión Renal
        • Depleción del volumen intravascular
          • Arteriolas aferentes relajan el tono vascular y disminuyen la resistencia vascular renal
          • ↑ Catecolaminas, vasopresina, sistema renina angiotensina -> vasoconstricción
          • ↑ prostaglandinas -> vasodilatación de la microvasculatura
  • 10. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Prerrenal
      • Hipoperfusión Renal
        • Contracción de volumen
          • Deshidratación por gastroenteritis
          • Pérdidas urinarias secundarias a nefropatía perdedora de sal
          • Diabetes insípida central o nefrogénica
          • Uso de diuréticos
          • Hemorragia
          • Formación de tercer espacio (síndrome nefrótico, sepsis, pancreatitis)
  • 11. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Prerrenal
      • Hipoperfusión Renal
        • ↓ Volumen sanguíneo efectivo
          • Insuficiencia cardíaca congestiva
          • Tamponade cardíaco
          • Arritmias
  • 12. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Prerrenal
      • Los recién nacidos se encuentran en riesgo incrementado para una pérdida excesiva de volumen
        • Incapacidad de los riñones de concentrar la orina al máximo
        • Incapacidad de conservar la sal y agua de forma adecuada.
        • Mayor pérdida insensible de agua a través de la piel
    Whyte, DA; Fine, RN. Acute Renal Failure in Children. Pediatrics in Review Vol.29 No.9 September 2008
  • 13. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Prerrenal
      • Diagnóstico
        • Historia clínica
        • Laboratorios
  • 14. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Prerrenal
      • Diagnóstico
        • Historia clínica
          • Gastroenteritis
          • Hemorragia
          • Insuficiencia cardíaca
          • Formación de tercer espacio
  • 15. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Prerrenal
      • Diagnóstico
        • Laboratorios
          • Disminución del gasto urinario
          • Sedimento urinario normal
          • Incremento de la osmolalidad urinaria (400 mOsm en el niño mayor y 350 mOsm en el neonato)
          • Bajo sodio urinario (10 mEq/L [10 mmol/L]
          • Disminución de la fracción de excreción de sodio urinario (1% en el niño mayor y 2.5% en el neonato)
          • Un incremento del índice BUN/creatinina
          • USG renal normal
  • 16. Whyte, DA; Fine, RN. Acute Renal Failure in Children. Pediatrics in Review Vol.29 No.9 September 2008
  • 17. Whyte, DA; Fine, RN. Acute Renal Failure in Children. Pediatrics in Review Vol.29 No.9 September 2008 Anormalidades Electrolíticas observadas en la Insuficiencia Renal Aguda Signos y Síntomas Manejo Comentario Acidosis Metabólica
    • Bicarbonato de sodio si el pH < 7.2 o HCO3 < 12 mEq /L (12 mmol /L) [ 0.6 x peso corporal x HCO3 deseado – HCO3 observado] / 2
    • O
    • 0.5 a 1.0 mEq/kg IV en una hora
    • Puede provocar hipocalcemia
    Hiperkalemia
    • Bicarbonato de sodio intravenoso 1 mEq /L en 10 a 30 minutos
    • Gluconato de calcio (10%) IV 0.5% - 1.0 ml/kg en 5 a 15 minutos
    • Glucosa 0.5 g/kg con insulina 0.1 U/kg IV en 30 minutos
    • Beta agonistas 5 – 10 mg via nebulizaciones
    • Sulfonato de poliestireno sódico 1 gramo/kg vía rectal / vía oral
    • Puede causar hipernatremia, hipocalcemia,
    • Arritmias, hipercalcemia, bradicardia,
    • Hipoglucemia, taquicardia
    • Taquicardia, hipertensión
    • Hipernatremia, constipación
    • Hiperfosfatema / Hipocalcemia
    • Carbonato de calcio vía oral 45 – 65 mg/kg al día. En caso de tetania, administrar gluconato de calcio (10%) IV 0.5 – 1 ml/kg (hasta 10 ml)
  • 18. Whyte, DA; Fine, RN. Acute Renal Failure in Children. Pediatrics in Review Vol.29 No.9 September 2008 Causas de Insuficiencia Renal Aguda Prerrenal Déficit de Volumen Extracelular
    • Pérdidas Gastrointestinales
    • Vómitos
    • Diarrea
    • Disminución de la ingesta
    • Pérdida de líquidos (SNG, estoma)
    • Incremento de las Pérdidas Urinarias
    • Diuresis osmótica (manitol, glucosuria)
    • Diabetes insípida (central, nefrogénica)
    • Pérdida de la capacidad de concentración urinaria
    • Insuficiencia Renal
    • “ Medullary Washout”
    • Utilización de Diuréticos
    • Insuficiencia Adrenal
    • Pérdidas Sanguíneas
    • Hemorragia
    • Redistribución de Líquido Extracelular
    • Hipoalbuminemia
    • Síndrome Nefrótico
    • Insuficiencia Hepática
    • Vasodilatación
    • Sepsis
    • Anafilaxis
    • Pérdida de Líquidos a través de la Piel
    • Sudoración excesiva
    • Fibrosis Quística
    • Enfermedades inflamatorias cutáneas
    • Quemaduras
    • Edema
    • Lesión intestinal
    • Peritonitis
    • Pancreatitis
  • 19. Whyte, DA; Fine, RN. Acute Renal Failure in Children. Pediatrics in Review Vol.29 No.9 September 2008 Causas de Insuficiencia Renal Aguda Prerrenal Disfunción Cardíaca Enfermedad Cardíaca Congénita Cardiomiopatía Arritmias Enfermedad Valvular Adquirida Tamponade
  • 20. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda
      • Prerrenal
      • Renal
      • Postrenal
  • 21. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Renal
      • Lesión Parenquimatosa
        • Espasmo vascular
        • Coagulación intravascular
        • Lesión microvascular
    Mannix R, Tan ML, Wright R, Baskin M. Acute Pediatric Rhabdomyolysis: Causes and Rates of Renal Failure. Pediatrics, Nov 2006; 118: 2119 - 2125.
  • 22. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Renal
      • Las causas más frecuentes
        • Necrosis tubular aguda
        • Nefritis intersticial
        • Síndrome Urémico Hemolítico
        • Glomérulonefritis
        • Fármacos nefrotóxicos
    Whyte, DA; Fine, RN. Acute Renal Failure in Children. Pediatrics in Review Vol.29 No.9 September 2008
  • 23. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Renal
      • Fisiopatología
        • La lesión del parénquima renal puede ocurrir por daño isquémico o tóxico
          • La porción gruesa medular del asa de Henle
          • La porción recta del túbulo proximal
        • Los restos celulares secundarios a necrosis se acumulan en el asa de Henle, bloqueando el flujo tubular.
  • 24. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Renal
      • Diagnóstico
        • Historia Clínica
        • Laboratorios
        • Estudios de imagen
        • Biopsia renal
  • 25. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Renal
      • Diagnóstico
        • Historia Clínica
          • Deshidratación
          • Eventos hipóxico-isquémicos
          • Nefrotoxicidad
          • Sepsis
          • Hematuria
          • Trauma
  • 26. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Renal
      • Diagnóstico
        • Laboratorios
          • Examen del sedimento urinario:
            • Cilindros eritrocitarios
            • Cilindros granulosos
            • Eritrocitos
            • C3 disminuido
            • Osmolalidad
            • FENA
  • 27. Whyte, DA; Fine, RN. Acute Renal Failure in Children. Pediatrics in Review Vol.29 No.9 September 2008
  • 28. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Renal
      • Diagnóstico
        • Laboratorios
          • Examen del sedimento urinario:
            • Cilindros eritrocitarios
            • Cilindros granulosos
            • Eritrocitos
            • C3 disminuido
            • Osmolalidad
            • FENA
    } Glomerulonefritis
    • Antiestreptolisinas
    • Panel de hepatitis B y C
    • Estudios del complemento
  • 29. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Renal
      • Diagnóstico
        • Laboratorios
          • Examen del sedimento urinario:
            • Cilindros eritrocitarios
            • Cilindros granulosos
            • Eritrocitos
            • C3 disminuido
            • Osmolalidad
            • FENA
    } Lupus, GMN membranoproliferativa o postestreptocóccica
  • 30. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Renal
      • Diagnóstico
        • Laboratorios
          • Examen del sedimento urinario:
            • Cilindros eritrocitarios
            • Cilindros granulosos
            • Eritrocitos
            • C3 disminuido
            • Osmolalidad
            • FENA
    Disminuida (350 mOsm) }
  • 31. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Renal
      • Diagnóstico
        • Laboratorios
          • Examen del sedimento urinario:
            • Cilindros eritrocitarios
            • Cilindros granulosos
            • Eritrocitos
            • C3 disminuido
            • Osmolalidad
            • FENA
    } Aumentado (3% en el lactante, 2% en el niño mayor)
  • 32. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Renal
      • Diagnóstico
        • Estudios de imagen
          • 99mTc-DTPA
          • 99mTc-MAG-3
    } Identifican áreas de perfusión normal o disminuida: retardo en la acumulación del radioisótopo y ausencia de excreción del isótopo en el sistema colector-}
  • 33. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Renal
      • Diagnóstico
        • Biopsia
          • Rápido incremento de la creatinina sérica
          • Determinación de una GMN aguda vs. Crónica
          • Serología positiva para enfermedades sistémicas
          • Azotemia asociada a proteinuria y hematuria
          • Identificar una lesión activa (ante la cual, los medicamentos inmunosupresores pueden ser de utilidad para revertir el daño)
  • 34. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda
      • Prerrenal
      • Renal
      • Postrenal
  • 35. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Postrenal
      • Obstrucción al tracto urinario
        • Cálculos renales
        • Compresión ureteral interna o externa
        • Obstrucción vesical
    Turner ME, Weinstein J, Kher K. Acute Renal Failure Secondary to Pyelonephritis. Pediatrics, May 1996; 97: 742 - 743.
  • 36. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda Postrenal
      • Diagnóstico
        • Historia Clínica (Hematuria, dolor tipo cólico)
        • Exploración física (masa palpable en flancos)
        • Gasto urinario y sedimento urinario pueden ser variables
        • USG: pelvis renal dilatada
        • Radioisótopos: acúmulo renal con excreción retardada o ausente
    Turner ME, Weinstein J, Kher K. Acute Renal Failure Secondary to Pyelonephritis. Pediatrics, May 1996; 97: 742 - 743.
  • 37. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda
      • Manejo
        • Mantener la perfusión renal
          • Aporte hídrico
          • Aporte electrolítico
        • Control de la presión arterial
        • Corregir la anemia
        • Nutrición
        • Ajuste de fármacos para el grado de disfunción renal
        • Iniciar terapia de reemplazo (diálisis)
    Whyte, DA; Fine, RN. Acute Renal Failure in Children. Pediatrics in Review Vol.29 No.9 September 2008
  • 38. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda
      • Manejo
        • Mantener la perfusión renal
          • Agentes Vasoactivos
            • Monitoreo de la presión venosa central
            • Dosis baja de dopamina produce vasodilatación (“Dosis renal”)
  • 39. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda
      • Manejo
        • Mantener la perfusión renal
          • Aporte Hídrico
            • Depende del estado hemodinámico y gasto urinario
            • ¿Furosemide? Manitol?
            • En cuanto se reestablezca el volumen intravascular, la ingesta de líquidos debe restringirse a 400 ml/m2 por día (G5%)
            • Los ajustes hídricos dependen del peso diario y monitoreo estrecho del balance hídrico del paciente
  • 40. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda
      • Manejo
        • Mantener la perfusión renal
          • Aporte Electrolítico para corregir:
            • Hiponatremia
            • Hiperkalemia
            • Acidosis
            • Hipocalcemia
  • 41. Insuficiencia Renal Aguda
    • Corrección del Na
    • Na > 120 mEq/L:
      • Restricción hídrica / diálisis
      • Corrección del Na al menos a 125 mEq/L, en varias horas
        • (125 – Na Plasmático) X (Peso en kgs) X (0.6) mEq Na
    Whyte, DA; Fine, RN. Acute Renal Failure in Children. Pediatrics in Review Vol.29 No.9 September 2008
  • 42. Insuficiencia Renal Aguda
    • Corrección del Na
    • Na < 120 mEq/L:
      • Paciente asintomático: Corrección rápida de Na (riesgo de convulsiones)
        • (125 – Na Plasmático) X (Peso en kgs) X (0.6) mEq Na
      • Paciente sintomático y con convulsiones : Corrección rápida
        • NaCl 3% -> 125 mEq
        • 10 – 12 ml/kg de NaCl 3% en infusión para una hora
        • NaCl 3% (ml) X [*mEq/L peso corporal (kg) X 0.6 L/kg] X [0.513 mEq Na/mL NaCl 3% ]
      • * = (125 mEq/L Na sérico actual) para incrementar el Na sérico a 125 mEq/L rápidamente
  • 43. Insuficiencia Renal Aguda
    • Corrección del K
    • La hiperkalemia se debe a
      • Disminución de la función renal
      • Secreción tubular anormal de potasio
      • Salida al espacio extracelular del potasio (por acidosis)
      • Necrosis de las células tubulares renales
    Whyte, DA; Fine, RN. Acute Renal Failure in Children. Pediatrics in Review Vol.29 No.9 September 2008
  • 44. Insuficiencia Renal Aguda
    • Corrección del K
    • Debe corregirse rápida y agresivamente
      • Leve – Moderada: 6 – 7 mEq/L
      • Severa: > 7 mEq/L con cualquier cambio en el EKG
    Whyte, DA; Fine, RN. Acute Renal Failure in Children. Pediatrics in Review Vol.29 No.9 September 2008
  • 45. Insuficiencia Renal Aguda
    • Corrección del K
    • El tratamiento debe instaurarse cuando
      • Hiperkalemia de 6 mEq/L o más
      • Ondas T altas y picudas
      • Paresia
      • Parestesias
      • Tetania
  • 46. Insuficiencia Renal Aguda
    • Corrección del K
      • Infusión de gluconato de calcio al 10% (10 a 15 ml/kg) a través de un catéter venoso central para estabilizar el potencial de membrana
      • Infusión de bicarbonato para desplazar el potasio hacia el espacio intracelular (K sérico: 8 – 10 mEq/L) = mEq HCO3 (deseado – observado) Kg 0.5
      • Infusión de insulina (0.1 a 0.5 U/kg) + 10% - 25% de glucosa para permitir la entrada del potasio hacia el espacio intracelular
      • Administración de sulfonato de poliestireno sódico (1 gramo/kg) rectal o vía oral para el intercambio de Na por K en la mucosa colónica. Después de la administración, tarda algunas horas en surtir efecto.
  • 47. Insuficiencia Renal Aguda
    • Corrección del K
      • En caso de persistencia de la hiperkalemia:
        • Diálisis (sobre todo cuando exista anuria asociada)
  • 48. Insuficiencia Renal Aguda
    • Corrección del Calcio
      • Hipocalcemia secundaria a
        • Hiperfosfatemia
        • Disminución en la absorción intestinal
        • Resistencia esquelética a la parathormona
      • Administración de calcio puede ser vía oral o intravenosa, para tratamiento de eventos agudos (tetania, arritmias)
      • Tener precaución cuando existe hiperfosfatemia asociada
  • 49. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda
      • Manejo
        • Control de la presión arterial
          • Usualmente debido a sobrecarga hídrica o cambios en el tono vascular
          • En caso de sobrecarga hídrica: furosemide o diálisis
          • En caso de cambios en el tono vascular: antihipertensivos V.O. / I.V.
  • 50. Whyte, DA; Fine, RN. Acute Renal Failure in Children. Pediatrics in Review Vol.29 No.9 September 2008
  • 51. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda
      • Manejo
        • Corregir la anemia
        • Los pacientes no necesitan transfusiones a menos que exista sangrado activo, inestabilidad hemodinámica, o un hematocrito menor a 25% (0.25)
  • 52. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda
      • Manejo
        • Nutrición
          • Corrección del catabolismo
          • Lactantes: Fórmula baja en fósforo
          • Niños mayores: proteínas de alto valor biológico
          • Ingesta calórica debe proveer más del 70% de calorías como carbohidratos y menos de 20% de lípidos
          • Administrar proteínas de alto valor biológico 0.5 – 2 g/kg al día
  • 53. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda
      • Manejo
        • Ajuste de fármacos para el grado de disfunción renal
          • Debe evaluarse si los fármacos se están administrando a las dosis o intervalos ajustados acorde al grado de afectación renal
  • 54. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda
      • Manejo
        • Diálisis
          • Tratamiento de elección cuando el tratamiento médico falla en restaurar la función renal
          • No interfiere con la administración adecuada de nutrimentos enterales o parenterales
  • 55. Insuficiencia Renal Aguda
    • Insuficiencia Renal Aguda
      • Manejo
        • Indicaciones de Diálisis
          • Insuficiencia cardíaca congestiva
          • Anemia
          • Hiperkalemia
          • Acidosis severa
          • Pericarditis
          • Nutrición inadecuada
  • 56. Insuficiencia Renal Aguda
    • A
    Administración de vitamina D en la Insuficiencia Renal Aguda Análogos de la vitamina D Nombre Genérico Dosis Inicial 1,25- Dihidroxivitamina D3 Calcitriol
    • 0.01 – 0.05 mcg/kg al día vía oral (< 3 años de edad)
    • 0.25 mcg – 0.75 mcg al día (> 3 años de edad)
    Vitamina D2 Dihidrotaquisterol Vitamina D2 Doxercalciferol - Dosis oral e IV disponible para adolescentes y adultos Análogos sintéticos Vitamina D Paricalcitol
    • 0.04 – 0.1 mcg/kg IV tres veces a la semana (> 5 años de edad)
    1,25- Dihidroxivitamina D3 Alfacalcidol
    • 0.25 – 0.5 mcg/día vía oral, que puede ajustarse para mantener concentraciones de PTH normal
  • 57. Bibliografía
    • Whyte, DA; Fine, RN. Acute Renal Failure in Children. Pediatrics in Review Vol.29 No.9 September 2008
    • Vachvanichsanong P, Dissaneewate P, Lim A. Childhood Acute Renal Failure: 22-Year Experience in a University Hospital in Southern Thailand. Pediatrics, Sep 2006; 118: e786 - e791.
    • Mannix R, Tan ML, Wright R, Baskin M. Acute Pediatric Rhabdomyolysis: Causes and Rates of Renal Failure. Pediatrics, Nov 2006; 118: 2119 - 2125.
    • Turner ME, Weinstein J, Kher K. Acute Renal Failure Secondary to Pyelonephritis. Pediatrics, May 1996; 97: 742 - 743.
  • 58.
    • ¡Gracias!
    [email_address]