
Be the first to like this
Published on
SS 304L, an austenitic ChromiumNickel stainless steel offering the optimum combination of corrosion resistance, strength and ductility, is favorable for many mechanical components. The low carbon …
SS 304L, an austenitic ChromiumNickel stainless steel offering the optimum combination of corrosion resistance, strength and ductility, is favorable for many mechanical components. The low carbon content reduces susceptibility to carbide precipitation during welding. In case of single pass welding of thinner section of this alloy, pulsed current micro plasma arc welding was found beneficial due to its advantages over the conventional continuous current process. The paper focuses on developing mathematical models to predict grain size and hardness of pulsed current micro plasma arc welded SS304L joints. Four factors, five level, central composite rotatable design matrix is used to optimize the number of experiments. The mathematical models have been developed by response surface method. The adequacy of the models is checked by ANOVA technique. By using the developed mathematical models, grain size and hardness of the joints can be predicted with 99% confidence level. Contour plots are drawn to study the interaction effect of pulsed current micro plasma arc welding parameters on fusion zone grain size and hardness of SS304L steel.
Be the first to like this
Be the first to comment