Your SlideShare is downloading. ×
0
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Data Wranglers: Human data interpreters to close the feedback loop
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Data Wranglers: Human data interpreters to close the feedback loop

293

Published on

Presentation at LAK14, the fourth international conference on Learning Analytics and Knowledge, Indianapolis, March 2014.

Presentation at LAK14, the fourth international conference on Learning Analytics and Knowledge, Indianapolis, March 2014.

Published in: Education, Sports, Technology
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
293
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
7
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Data Wranglers: Human data interpreters to close the feedback loop Doug Clow Institute of Educational Technology The Open University, UK
  • 2. The Open University • Largest university in the UK • 200,000 students • 7,000 tutors • 1,000 academic staff • Supported open learning Milton Keynes
  • 3. At scale, each year • 600 courses • > 200,000 students • > 1 million assignments • > 1 billion views of OU/BBC coproductions • > 3 million Moodle transactions per day Photo (cc) Marieke IJsendoorn-Kuijpers http://www.flickr.com/photos/mape_s/333862026//
  • 4. data wrangling
  • 5. “Learning is a complex social activity” (Siemens, 2012) • Lots of data • Lots of tools • Humans to make sense Photo CC (BY) Tobias Lindman on Flickr: http://www.flickr.com/photos/cowb0y2000/6243008944/
  • 6. Data Wrangling • Institutional capacity building • 8 Wranglers • Faculty link • Regular reports
  • 7. Data • Delivery data • Completion, pass rates, demographics Pelophylax perezi Photo CC (BY-SA) Paulo Brandão on Flickr: http://www.flickr.com/photos/paulobrandao/3567716506/ • Student feedback • Activity data (Moodle)
  • 8. Photo CC (BY) Preneur d‟Image on Flickr: http://www.flickr.com/photos/surbykids/9368298544/ Report Process • Briefing discussion • Data analysis and report writing • Draft discussion • Final report
  • 9. Photo (cc)-BY-NC nataliej on Flickr: http://www.flickr.com/photos/nataliejohnson/2122722198/ • Scrutiny in draft • Standard document template • Executive summary • Recommendations Quality assurance
  • 10. Responsive „quick reports‟ Photo (CC)-BY Mark Dumont on Flickr: http://www.flickr.com/photos/wcdumonts/9256493975/ Doing extras
  • 11. reaction
  • 12. users data
  • 13. users data
  • 14. users data
  • 15. examples
  • 16. 0 100 200 300 400 500 600 700 800 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Forum Wiki Pages Quiz Unique visits per week to VLE components for one course
  • 17. Course use of Elluminate Students using Elluminate None 18% Informal 27% General student support 35% Specified activities not assessed 49% Specified activities referenced in assessment 95% Usage of Elluminate broken down by course use of Elluminate for one Faculty between 2011- 2012.
  • 18. conclusions
  • 19. Photo CC (BY-NC-SA) quas on Flickr http://www.flickr.com/photos/quas/1703493/ Evaluation: • Data quality • Data quantity • Unevenness • High cost • Slow • Bottom up
  • 20. Photo CC (BY-NC) Alexey Kljatov on Flickr http://www.flickr.com/photos/chaoticmind75/9516811453/ It is only through the detailed process of engagement and dialogue between analysts, stakeholders and the data that insight and organisational change are developed.
  • 21. • Gill Kirkup, Mary Thorpe, Alison Ashby & her team – esp. Vicky Marsh and Jim Peard • Oliver Millard • Evaghn DeSouza • My fellow Data Wranglers Thanks to …
  • 22. Doug Clow @dougclow dougclow.org doug.clow@open.ac.uk This work is licensed under a Creative Commons Attribution 3.0 Unported License
  • 23. cc licensed ( BY ) flickr photo by David Goehring: http://flickr.com/photos/carbonnyc/33413040/
  • 24. Doing extras • 60 points vs 30 points Photo (CC)-BY Steve Snodgrass on Flickr: http://www.flickr.com/photos/stevensnodgrass/4034636727/
  • 25. cc licensed ( BY ) flickr photo by zzpza: http://www.flickr.com/photos/zzpza/3269784239/ Workshops • Integrated/joint Learning Design/Data Wrangling • Module production workshops –Intensive all-week workshop –Many presentations (LTS, other relevant modules) –IET: Data Wrangling and Learning Design
  • 26. (CC) Eoin Gardner on Flickr http://www.flickr.com/photos/18091975@N00/5310045271/ The impersonal is political • Data used as weaponry in ongoing battles
  • 27. Data • Delivery data • Completion, pass rates, demographics Photo CC (BY-NC) ChaoticMind75 on Flickr: http://www.flickr.com/photos/chaoticmind75/8629790711/ • Student feedback • Activity data (Moodle)

×