
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
This paper presents a Devnagari Numerical recognition method based on statistical
discriminant functions. 17 geometric features based on pixel connectivity, lines, line directions, holes,
image area, perimeter, eccentricity, solidity, orientation etc. are used for representing the numerals. Five
discriminant functions viz. Linear, Quadratic, Diaglinear, Diagquadratic and Mahalanobis distance are
used for classification. 1500 handwritten numerals are used for training. Another 1500 handwritten
numerals are used for testing. Experimental results show that Linear, Quadratic and Mahalanobis
discriminant functions provide better results. Results of these three Discriminants are fed to a majority
voting type Combination classifier. It is found that Combination classifier offers better results over
individual classifiers.
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment