Your SlideShare is downloading. ×
0
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

(Microsoft PowerPoint - Expos\351.ppt [Mode de compatibilit\351])

978

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
978
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. 1 How to model the bipedy capacity of the walking parameters from the anatomy?anatomy? Franck Multon 1, Guillaume Nicolas 1, Gilles Berillon 2 1 M2S Lab. « Mouvement Sport Santé », University Rennes 2 2 UPR 2147 CNRS : « Dynamique de l'Évolution Humaine : Individus, Populations, Espèces »
  • 2. 2 Introduction • Bipedalism = « capacity to walk with two supports » • Motion control of walking – Coupled and complex phenomena: physiology, biomechanics, anatomy, neurophysiology, etc.anatomy, neurophysiology, etc. – Problem = Isolating the role of one parameter
  • 3. 3 Differences between species • Joint angles (Whittle, 1991; D’Août et coll., 2004; Hirasaki et coll., 2004) (D’Août 2004) • Ground reaction force (Kimura et coll., 1977, 1990; Alexander, 1991; Li et coll., 1996; Schmitt, 2003) • Mechanical Energies (Cavagna et Kaneko, 1977 ; Wang et coll., 2003) Schmitt (2003) Wang et coll., 2003
  • 4. 4 • Energy expenditure minimization (Zarrugh et coll., 1974; Alexander, 1991, 1992, 1997, 2004; Bejan et Marden, 2006) Main principles of bipedal locomotion – Kinetic energy (gesticulation) (Williams, 1985 ; Mansour et coll., 1982 Beaupied, 2003) : – Internal work(Burdett et coll., 1983 ; Winter, 1990 ; Minetti et coll., 1994 ; Unnithan et coll., 1999) : ∑∑ = = = = +=+= ni i ii ni i RGiiRT IVmEcEcEc 1 2 1 2 */ 2 1 2 1 * ω ( )∑ ∑= =       −+∆= m k n i iiiiii ghmIVmW 1 1 223 int 2 1 ω Sockol et coll. (2007)
  • 5. 5Main principles of bipedal locomotion • Minimum Jerk (Flash et Hogan, 1985; Todorov, 2004) • Many other specific knowledge… dt dt Xd Jerk t t ∫             = 2 1 3 3 How to use it for determining a range of possible motions knowing anatomical data?
  • 6. 6 • Comparative approach: shape function Classical approaches Focused on a unique part of the skeleton ≠ global system SIMULATION! Tardieu (1983)
  • 7. • Direct kinematics – Requires a complete knowledge of the joint angles – Anatomy not directly taken into account unrealistic motions 7 Simulation based on kinematic models • Inverse kinematics (Boulic et coll. 1992) – Cartesian constraints adaptation – Anatomy in the kinematic chain function Crompton et coll. (1998)
  • 8. 8 • Interpolation in a set of motion clips Simulation based on kinematic models Pronost et coll. (2006) – Interpolation based on anatomical properties – Extrapolation!? – Physically-invalid motions (Safonova et Hodgins, 2006; Pronost et coll., 2007)
  • 9. 9 Dynamic models • Mechanical model – Bones vs. musculoskeletal modeling – Controller (Gorce, 1999; Hodgins, 1995) Gorce (2001) – Based on known trajectories – Unnatural motions – Muscles activations with optimal control (Sellers et coll., 2004) Hodgins (1995) Gorce (2001) Delp (1990)
  • 10. 10 Overview Numerical models Hypotheses: footprints, joint limits, rotation axes… Feet’s trajectories Inverse kinematics algorithm Simulated motion Computation of the feet’s traj. Direct kinematic model Original feet’s traj. Criteria
  • 11. 11 Numerical model • Digitalization of bones and 3D complete model (Berillon et coll., 2005) – “Lucy” A.L. 288-1 (National Museum of Ethiopia, Addis Abeba) Microscribe 3D-X
  • 12. 12 Inverse kinematics • 11 DOFs for 6 constraints 5 DOFs solution space • Secondary tasks Primary task Secondary tasks ( )δαθ JJIXJ ++ −+∆=∆ • Secondary tasks – Main principles of bipedal locomotion (min. energy) – Anatomical constraints (joints limits, natural rest posture hypothesis) • Validation on 10 human subjects – Motion capture with Vicon-MX – Average RMS error < 0.05rad for joint angles – Relative errors < 9%
  • 13. 13 Searching for the correct traj. of the feet • Parametric curve with 7 control points (splines) Decreasing the seach space • Motion warping• Motion warping
  • 14. 14 Minimization functions • Internal work minimization (Alexander, 2003; Burdett et coll., 1983) • Minimum Jerk (Flash, 1985) Optimization loop including IK Application to 10 human subjects, 1 Pan troglodites, 1 Homo sapiens (Museo Antropologia, Universidade de Coimbra, Coimbra, Portugal) , A.L. 288-1
  • 15. 15 Results in humans • Two cases – 8 subjects: almost identical – 2 subjects: incorrect results
  • 16. 16 Results in Pan troglodytes • Original trajectory of the feet = human • Pan troglodytes (Hamann Todd Collection, Cleveland Museum of Natural History, Cleveland, USA) • Inputs: – Step length L=0.4m (Aerts et coll., 2000)– Step length L=0.4m (Aerts et coll., 2000) – Anthropometric data (Schoonaert et coll., 2007) – Joint limits experimentally evaluated • Different shape than humans • Similar to D’Août et coll. (2002) • WFint moy > 28% / human! D’Août et coll. (2002) D’Août et coll. (2002)
  • 17. 17 Results in Australopithecus afarensis (« Lucy », A.L. 288-1) • Step length = 46cm Laetoli (Leakey et Hay, 1979 ; Leakey et Harris, 1987) • Anthopometric tables = humans & chimpanzee • Original traj. of the feet = human WFint, Laetoli ≅ 30 J/Kg/min ≅ human
  • 18. Changes in step length • Biomechanics: speed and step length naturally selected to decrease energy expenditure (Minetti et coll., 1995) WFint mini for Lpas≅ 35 to 40cm < 15% for Laetoli 18 Laetoli Optimal Step Length?
  • 19. 19 Visualisation
  • 20. 20 Conclusion • Promising results even for simplified models – Lower-part of the body – Simplified joints – No feet, just the ankle • Software platform for testing hypotheses – In anthropology modifying the anatomical data – In human movement sciences main principles of human motion control
  • 21. 21 Perspectives • Feet! • Validation on a wider set of species • Taking dynamics into account – Dynamic Stability (Hof, 2008) – Joint torques (Kang et Freeman, 1993) – Muscles (Delp, 1990)
  • 22. 22 Questions?

×