70 Arne Jouttijarvi, Jern

312 views
172 views

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
312
On SlideShare
0
From Embeds
0
Number of Embeds
9
Actions
Shares
0
Downloads
3
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

70 Arne Jouttijarvi, Jern

  1. 1. Korrosion, slagger og hammerskæl Arne Jouttijärvi
  2. 2. FO204798 B Korrosion i svejsninger og slagger Galsted, HAM 2908x150 Galsted, HAM 2908x321 Grønnebæk, HAM 8252 FO211499 A
  3. 3. Intergrannular korrosion 1,7 % P • • Medium fosforindhold Ekstremt store korn • Ses normalt kun i rustfri stål Kan provokeres i fosforholdigt jern ved behandling i kalciumnitrat ved 60 oC • FO204798 B Ca(NO3)2, Norgessalpeter FO201321 A 1,1 % P
  4. 4. Selektiv korrosion af stål FO203595 B FO208249 HEM 20/50 FO215230 B
  5. 5. Manglende stål MHM 1355 x738 Büssow 14 2007/134,116 HOM2247x1707 Büssow 14 2007/134,10 FO208250 FO208272
  6. 6. Fosfor og korrosion 7,9 % P 2,0 % P 3,0 % P 3,0 % P 7,7 % P 1,7 % P 1,2 % P 0,3 % P 3,5 % P 0,9 % P 1,1 % P 1,4 % P 1,8 % P 2,1 % P 0,8 % P 1,1 % P 1,3 % P 4,3 % P 1,8 % P 3,6 % P 0,6 % P 1,2 % P
  7. 7. Slag inclusions 97,5 95,0 FeO + SiO2 92,5 90,0 87,5 85,0 82,5 80,0 77,5 60 65 70 75,0 80 FeO 85 90 95,0 75,0 100,0 n=1862
  8. 8. Tietgenbyen, Odense. Viking Age
  9. 9. Welds in Viking Age 97,5 95,0 FeO + SiO2 92,5 x372 1 x378 90,0 x601 x372 2 x449 welds 87,5 85,0 82,5 x455 x492 80,0 x339 A 60 65 70 75,0 80 FeO 85 90 95,0 x278 77,5 75,0 100,0
  10. 10. Copenhagen. 14th to 17th century
  11. 11. Welds 14th to 17th century 97,5 95,0 FO203833 FO204834 FO203567 FO201913 FO209356 FO209356 FO202942 FO203595 FO212448 FO204838 FO204798 FO203016 FO215486 FO203821 FO203013 FO204834 FO212212 FO203493 FO203567 FO203567 FO204838 FeO + SiO2 • Most slag inclusions are remnants of smelting slag • Welding will leave some inclusions • Hammerscale might be trapped in the welding process • The flux used changes from Iron Age/Viking Age to the Late Middle Ages. Probably a switch from local sand to 60 65 70 well defined quartz sand75,0 or burned flint 80 FeO 85 90 95,0 92,5 C a 90,0 A A 87,5 B C Ba B D 85,0 82,5 B C C b c Bb 80,0 77,5 75,0 100,0
  12. 12. The origin of hammerscale Process Source • Primary smithing • Secondary smithing (formimg) • Welding • Smelting slag in the iron • Oxidation of the iron surface • Oxidation + flux (sand, silica)
  13. 13. 1200 1000 900 800 700 600 500 400 300 200 100 0 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 • Primary smithing 20 18 16 14 12 10 8 6 4 2 0 • Secondary smithing 6 5 4 3 2 1 0
  14. 14. Hamerscale 45,0-50,0 40,0-45,0 35,0-40,0 97,5 30,0-35,0 25,0-30,0 20,0-25,0 95,0 15,0-20,0 10,0-15,0 FeO + SiO2 92,5 5,0-10,0 0,0-5,0 50,0 90,0 45,0 99,5 87,5 96,0 40,0 92,5 35,0 85,0 89,0 30,0 82,5 85,5 25,0 20,0 • The dominant process is secondary 15,0 smithing 10,0 5,0 • The composition oh hammerscale 0,0 80,5 makes it possible to 75,5 78 75,0 83the 8088 90,5 determine 85,5 60 65 70 FeO processes used in a workshop 82,0 80,0 78,5 77,5 75,0 93 85 95,5 98 90 95,0 75,0 100,0 n=1791
  15. 15. Simple smithies 100,0 FeO + SiO2 95,0 90,0 85,0 80,0 Fors 28, Sweden, 18th century 75,0 60 65 100,0 FeO + SiO2 95,0 90,0 85,0 80,0 Rødbøl, Norway, iron Age 75,0 60 65 70 75 80 FeO 85 90 95 100 70 75 80 FeO 85 90 95 100
  16. 16. Workshops for primary smithing 100,0 • Different forges for different purposes FeO + SiO2 95,0 90,0 85,0 80,0 SIM48/2009, Thorning, medieval 60,0 65,0 100,0 FeO + SiO2 95,0 90,0 85,0 80,0 Klosterbakken, medieval 75,0 60 65 70 75 80 FeO 85 90 95 100 70,0 75,0 80,0 FeO 85,0 90,0 95,0 75,0 100,0
  17. 17. Secondary smithing and welding 100,0 FeO + SiO2 95,0 • Primary smithing diappears almost completly after 1500 AD 90,0 85,0 80,0 HAM1598, Stagebjerggård, medieval 60,0 65,0 100,0 FeO + SiO2 95,0 90,0 85,0 80,0 Guldager, medieval 60,0 65,0 70,0 75,0 80,0 FeO 85,0 90,0 95,0 75,0 100,0 70,0 75,0 80,0 FeO 85,0 90,0 95,0 75,0 100,0
  18. 18. Søndersø fall/winter 1022/23 • • • • Vitrified clay Hammer scale & slag spheres Movement in the workshop The shadow of the blacksmith
  19. 19. The mapping of smelting slags • The slag resulting from a smelting system will contain oxides from ore, furnace material and charcoal ashes. • Alle of these will be influenced by the local geology.
  20. 20. Analytical variation 2,0 1,8 1,6 1,4 K2O 1,2 FO203606 FO200760 FO200978 FO215477 1,0 0,8 0,6 0,4 0,2 0,0 0,0 1,0 2,0 3,0 4,0 5,0 Al2O3 6,0 4,0 7 7,0 3,5 6 3,0 5 2,5 4 K2O * • The main reason for variation is differences in FeO content • Does not apply in the same way to phosphorous Al2O3 K2O P2O5 2,0 FO203606 FO200760 FO200978 FO215477 3 1,5 2 1,0 • Can be minimized by only looking at the gangue (eliminating FeO from the analyses) 1 0,5 0 0,0 0 50,0 5 60,0 10 70,0 Al2O3 * 15 20 80,0 25 90,0 100,0
  21. 21. Work done so far • A total of 2310 analyses of well documented smelting slags from app. 370 sites have been analysed • Bivariate plots are used for visualisation of important differences
  22. 22. The mapping of smelting slags K2O K2O 10 10,0 1 1,0 1 10 100 10,0 100,0 Serie15 North European Plain Norway/Sweden/Central Europe 0,1 1,0 Al2O3 Al2O3 n=2310
  23. 23. The North European Plain 100,0 B1 C1 C3 CaO B4 B3 0,10 10,0 1,0 1,00 MgO 10,00
  24. 24. 100,0 B1 Denmark CaO C1 10,0 0,10 1,0 1,00 MgO • The younger moraine north and west of the ice front contains more lime • The older material to the south west is depleted of lime 10,00
  25. 25. Snorup K2O 10,0 1,0 1,0 10,0 North European Plain Norway/Sweden/'Central Europe Snorup 0,1 Al2O3 100,0 • The variation within one site can equal the variation within the entire geographical area • Differentiation between individual semlting sites can not be expected
  26. 26. Snorup 100,0 CaO B1 C1 Snorup 10,0 0,10 1,0 1,00 MgO 10,00
  27. 27. Groups outside the North European Plain 10 A1 A2 A6 A7 TiO2 A8 1 1 10 0,1 Al2O3 100
  28. 28. heimdal@archaeometry.dk • Please send more slag (or analyses)
  29. 29. A2,98 A2,128 A2,129 A2,130 A2,122 A2,121 A2,127 A2,348 A2,344 A2,123 A2,105 A2,230 A2,255 A2,256 A2,70 A2,258 A2,259 A2,67 A2,243 A2,254 A2,252 A2,261 A2,264 A2,242 A2,245 A2,291 A2,288 A2,293 A2,289 A2,292 A2,287 A2,294 A2,285 A2,286 A2,290 A2,244 A2,253 A2,284 A2,246 A2,260 A2,68 A2,248 A2,257 A2,134 A2,135 A2,220 A2,247 A2,153 A2,154 A2,224 A2,324 A2,327 A2,424 A2,69 A2,222 A2,228 A2,223 A2,229 A2,225 A2,227 A2,347 A2,219 A2,266 A2,430 A2,431 A2,456 A2,432 A2,453 A2,454 A2,84 A2,86 A2,87 A2,364 A2,433 A2,341 A2,343 A2,20 A2,17 A2,325 A2,133 A2,449 A2,339 A2,221 A2,346 A2,138 A2,209 A2,443 A2,447 A2,451 A2,426 A2,442 A2,231 A2,263 A2,365 A2,132 A2,276 A2,16 A2,131 A2,367 A2,328 A2,337 A2,417 A2,342 A2,345 A2,19 A2,175 A2,226 A2,380 A2,393 A2,332 A2,137 A2,208 A2,440 A2,323 A2,326 A2,174 A2,335 A2,333 A2,407 A2,408 A2,334 A2,406 A2,139 A2,210 A2,391 A2,382 A2,383 A2,350 A2,338 A2,330 A2,336 A2,329 A2,331 A2,340 A2,384 A2,422 A2,416 A2,375 A2,349 A2,351 A2,274 A2,419 A2,420 A2,399 A2,394 A2,404 A2,377 A2,396 A2,359 A2,379 A2,387 A2,358 A2,371 A2,381 A2,401 A2,251 A2,378 A2,386 A2,388 A2,400 A2,402 A2,403 A2,376 A2,374 A2,418 A2,392 A2,412 A2,390 A2,370 A2,368 A2,369 A2,405 A2,421 A2,410 A2,411 A2,413 A2,415 A2,366 A2,414 A2,395 A2,361 A2,362 A2,360 A2,385 A2,389 A2,363 A2,373 A2,249 A2,372 A2,427 A2,428 A2,250 A2,423 A2,425 A2,434 A2,445 A2,397 A2,398 A2,409 A2,448 A2,444 A2,446 A2,452 A2,450 A2,439 A2,435 A2,437 A2,436 A2,438 A2,441 A2,85 A2,457 A2,125 A2,109 A2,429 A2,112 A2,107 A2,113 A2,108 A2,104 A2,110 A2,115 A2,116 A2,114 A2,118 A2,119 A2,101 A2,126 A2,103 A2,106 A2,100 A2,102 A2,124 A2,111 A2,117 A2,99 A2,120 A2,136 0 10 • Further division of the Central European group will be possible
  30. 30. 0,7-0,8 % C 0-0,4 % C Dejbjerg wagon, 1st century bc
  31. 31. 200-400 AD • Western Denmark • Eastern Denmark 70 60 50 40 C1 30 C3 B2 20 A2 10 A1 B1 0 A1 IMPORT LOKALT UKENDT
  32. 32. 800 – 1200 AD • Western Denmark • Eastern Denmark 70 60 50 40 C1 30 C3 B2 20 A2 10 A1 B1 0 A1 IMPORT 70 60 C3 50 B2 40 30 A2 C1 20 10 A1 B1 A1 0 IMPORT LOKALT UKENDT LOKALT UKENDT
  33. 33. The end

×