Your SlideShare is downloading. ×
Trường THPT Krông NôMục LụcĐề mục                                                                                         ...
Đề tài nghiên cứu khoa học sư phạm ứng dụngI. Tóm tắt đề tài       Hình học không gian nghiên cứu về điểm, đường thẳng, mặ...
Trường THPT Krông Nôcông nghệ thông tin vào giảng dạy. Để học sinh dễ quan sát hình trong khônggian.3. Vấn đề nghiên cứu: ...
Đề tài nghiên cứu khoa học sư phạm ứng dụngSau đó, tôi thiết kế kiểm tra trước và sau tác động với các nhóm tương đươngBản...
Trường THPT Krông NôNhư vậy, giả thiết của đề tài sử dụng “phương pháp giải nhanh một số dạng toántrắc nghiệm thường gặp c...
Đề tài nghiên cứu khoa học sư phạm ứng dụngcác thầy cô giáo đồng nghiệp và Hội đồng chuyên môn để đề tài của tôi hoànthiện...
Trường THPT Krông Nô                                PHỤ LỤC CỦA ĐỀ TÀIDẠNG 1: TÌM GIAO TUYẾN CỦA HAI MẶT PHẲNGPhương pháp:...
Đề tài nghiên cứu khoa học sư phạm ứng dụng             a / /                      Nếu  a                       ...
Trường THPT Krông Nô       Học sinh mới nhập môn hình học không gian nên vẽ hinh chưa xác địnhđược nét liền, nét đứt . Giá...
Đề tài nghiên cứu khoa học sư phạm ứng dụng                      S                                        S               ...
Trường THPT Krông Nô                                   BÀI TẬP RÈN LUYỆN Bài 1.      Cho tứ diện ABCD có E là trung điểm c...
Đề tài nghiên cứu khoa học sư phạm ứng dụng                     DẠNG 2:TÌM GIAO ĐIỂM GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG* Phương...
Trường THPT Krông NôKhi đó giao điểm là P  BM   SAC                        S                                          ...
Đề tài nghiên cứu khoa học sư phạm ứng dụng    Vậy SO   SAC    SBD  khi đó gọi P  SO  BM thì P  BM   SAC     c...
Trường THPT Krông Nô                       DẠNG 3: THIẾT DIỆN TẠO BỞI MẶT PHẲNG   VỚI KHỐI ĐA DIỆN        Phương pháp: ...
Đề tài nghiên cứu khoa học sư phạm ứng dụng        Gọi F  PH  AA   NF   MNP    AA  D  D         Vậy thiết diện l...
Trường THPT Krông Nô  Bài 10. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I, J   là trọng tâm SAB, SAD    ...
Đề tài nghiên cứu khoa học sư phạm ứng dụng                        DẠNG 4:         ĐƯỜNG THẲNG SONG SONG VỚI MẶT PHẲNG    ...
Trường THPT Krông NôTa có E   AMN    CDFE Gọi I  AN  CD I   AMN    CDFE Vậy IE   AMN    CDFE Chứng m...
Đề tài nghiên cứu khoa học sư phạm ứng dụng      b) Xác định vị trí của N trên BC sao cho thiết diện là hình bình hành.  B...
Trường THPT Krông Nô     DẠNG 5: CHỨNG MINH HAI MẶT PHẲNG SONG SONG* Phương pháp: (Định lý 1 SGK trang 64)                ...
Đề tài nghiên cứu khoa học sư phạm ứng dụngBài giải:a) Dễ dàng chứng minh.b) Ta có: NN’ // AB mà AB // EFMà EF   DEF  ...
Trường THPT Krông Nô  Bài 3.        Cho tứ diện ABCD. Gọi I và J là hai điểm di động lần lượt trên AD                     ...
Đề tài nghiên cứu khoa học sư phạm ứng dụng   15    PHAN THỊ ÁNH KIỀU                     6          7   16    ĐẶNG THỊ LA...
Trường THPT Krông Nô   10    PHẠM VĂN HIẾU              4            8   11    TRẦN THÀNH HIẾU            6            6  ...
Upcoming SlideShare
Loading in...5
×

Phương pháp giải Hình Học Không Gian hiệu quả

99,721

Published on

Phương pháp tiếp cận và học hình học không gian hiệu quả.

Published in: Education
6 Comments
38 Likes
Statistics
Notes
  • sao save về đc nhưng open thì k giống như trên...toàn là j âu k hak!
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Mình thật sự bó tay trong việc down tài liệu này. Mong bạn nào có tài liệu này cho mình xin với nha! Cảm ơn các bạn nhiều!
    Gửi qua địa chỉ: trantuit@gmail.com
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • nhấn save ùi làm j nữa các bạn...mình vào mà down ko đc...:(
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • hihi thanks anh Trần Đình Khánh nhak!!!!
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • @hauk4t0an Nhấp cái nút Save bên trên đó bạn
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total Views
99,721
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
2,114
Comments
6
Likes
38
Embeds 0
No embeds

No notes for slide

Transcript of "Phương pháp giải Hình Học Không Gian hiệu quả"

  1. 1. Trường THPT Krông NôMục LụcĐề mục TrangI. Tóm tắt đề tài...........................................................................................02II. Giới thiệu................................................................................................02 1. Hiện trạng ..........................................................................................02 2. Giải pháp thay thế .............................................................................02 3. Xác định vấn đề nghiên cứu ..............................................................03 4. Giả thuyết nghiên cứu........................................................................03III. Phương pháp ........................................................................................03 1. Khách thể nghiên cứu .......................................................................03 2. Lựa chọn thiết kế................................................................................03 3. Quy trình nghiên cứu.........................................................................04IV. Phân tích dữ liệu và bàn luận kết quả .................................................05V. Kết luận và khuyến nghị........................................................................05 1. Kết luận ...............................................................................................05 2. Khuyến nghị ........................................................................................05Tài liệu tham khảo ......................................................................................06 Phụ lục........................................................................................................07Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  2. 2. Đề tài nghiên cứu khoa học sư phạm ứng dụngI. Tóm tắt đề tài Hình học không gian nghiên cứu về điểm, đường thẳng, mặt phẳng trongkhông gian, nhằm cung cấp các kiến thức cơ bản về hình học không gian, giớithiệu về quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳngtrong không gian. Dựa vào các hệ tiên đề Ơclit đã hình thành nên bộ môn này.Trong quá trình giảng dạy tôi thấy học sinh e ngại bộ môn hình học nói chung vàhình học không gian càng mơ hồ. Vì các em cho rằng nó quá trừu tượng, thiếuthực tế nên gặp nhiều lúng túng khi làm bài tập. Giáo viên cũng gặp không ít khókhăn khi truyền đạt phần này, mặt khác các bài tập sách giáo khoa cũng hạn chếkhông có nhiều bài tập cơ bản, bài tập tương tự để giáo viên giới thiệu học sinh. Từ những khó khăn trên, dựa trên cơ sở lí luận và một số biện pháp đổi mớiphương pháp dạy học. Giải pháp của tôi là sử dụng “Phân loại và phương phápgiải một số bài toán về quan hệ song song trong không gian”. Ý tưởng của đềtài này là phân loại và giải một số bài tập về quan hệ song song trong không gianqua đó cho hệ thống bài tập tương tự để học sinh tự rèn luyện. Nghiên cứu được tiến hành trên hai nhóm tương đương: hai lớp 11 trườngTHPT Krông Nô năm học 2011 - 2012. Lớp 11B3 là lớp thực nghiệm và 11B5 làlớp đối chứng. Lớp thực nghiệm được thực hiện giải pháp thay thế khi dạy “Phânloại và phương pháp giải một số bài toán về quan hệ song song trong khônggian”. Kết quả cho thấy tác động đã có ảnh hưởng rõ rệt đến kết quả học tập củahọc sinh: lớp thực nghiệm đã có kết quả cao hơn so với lớp đối chứng. Điểm bàikiểm tra của lớp thực nghiệm có giá trị trung bình là 8,5; điểm bài kiểm tra củalớp đối chứng là 7,6. Khi kiểm chứng T-Test cho thấy p<0,05 tức là đã có sự khácbiệt lớn giữa điểm trung bình giữa hai lớp. Điều đó chứng minh rằng sử dụng“Phân loại và phương pháp giải một số bài toán về quan hệ song song trongkhông gian” đã nâng cao kết quả học tập của học sinh.II. Giới thiệu đề tài1. Hiện trạng: Trong SGK hình học 11 phần lớn kiến thức là lý thuyết, bài tập lại rất ít,thời gian tiết dạy 45 phút, phân phối chương trình nhiều phần chưa hợp lý. Quathăm lớp, dự giờ khảo sát trước tác động, tôi thấy giáo viên đa phần là dạy lýthuyết, học sinh tích cực suy nghỉ, trả lời các câu hỏi của giáo viên. Kết quả họcsinh thuộc bài nhưng khi vận dụng vào giải các bài tập thì kết quả chưa cao.Để ngày càng nâng cao chất lượng học tập của học sinh, tôi xin đưa ra đề tàinghiên cứu sử dụng “Phân loại và phương pháp giải một số bài toán về quan hệsong song trong không gian”2. Giải pháp thay thế: Đưa “Phân loại và phương pháp giải một số bài toán về quan hệ song songtrong không gian”nhằm mục đích tạo ra sự tác động tối đa của chủ thể (học sinh)đối với đối tượng nhận thức bằng cách nêu phương pháp giải từng dạng toán sauđó cho học sinh làm bài tập tương tự từ cơ bản đến nâng cao qua đó tạo sự hứngthú cho học sinh và cho học sinh có cơ sở để mở rộng tư duy. Ngoài ra ứng dụngGiaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  3. 3. Trường THPT Krông Nôcông nghệ thông tin vào giảng dạy. Để học sinh dễ quan sát hình trong khônggian.3. Vấn đề nghiên cứu: Sử dụng “Phân loại và phương pháp giải một số bài toán về quan hệ songsong trong không gian”có nâng cao chất lượng học tập của học sinh trường THPTKrông Nô hay không?4. Giả thuyết nghiên cứu: Sử dụng “Phân loại và phương pháp giải một số bài toán về quan hệ songsong trong không gian” sẽ nâng cao chất lượng học sinh khi giải các bài tập hìnhhọc không gian.III. PHƯƠNG PHÁP NGHIÊN CỨU1. Khách thể nghiên cứu: Tôi lựa chọn học sinh lớp 11B3,11B5 tại Trường THPT Krông Nô vì tôiđã giảng dạy các lớp nói trên. Về ý thức học tập, hầu như các em học sinh trình độ cơ bản đồng đều, cóý thức học tập chủ động, tích cực.2. Lựa chọn thiết kế: Chọn các cặp thực nghiệm: Qua kết quả điều tra tình hình học tập mônhình học của học sinh từ đó chọn ra các cặp để tiến hành thí nghiệm, trong đó mộtlớp tiến hành dạy thực nghiệm và một lớp đối chứng. Lớp thực nghiệm và lớp đốichứng có trình độ học lực tương đương nhau.Bảng 1 : Giới tính và thành phần dân tộc của học sinh lớp 11 trường THPT KrôngNô. Số HS các nhóm Dân tộc Tổng Nam Nữ Kinh Ê Đê M’Nông Thái Tày Khác sốLớp 11B3 40 15 25 38 0 0 2 0 0Lớp 11B5 41 22 19 39 0 0 1 1 0 Về ý thức học tập các em đều chịu khó, tích cực, chủ động. Về thành tích học tập của năm học trước, hai lớp tương đương nhau vềđiểm số của tất cả các môn học. Qua trực tiếp giảng dạy và dựa vào kết quả học tập môn hình học của hailớp 11B3 và 11B5 năm học 2011 – 2012. Kết quả kiểm tra cho thấy điểm trungbình môn của hai nhóm khác nhau, do đó tôi dùng phép kiểm chứng T- Test đểkiểm chứng sự chênh lệch giữa điểm số trung bình của hai nhóm trước khi tácđộng.Bảng 2 : Kiểm chứng để xác định các nhóm tương đương (trước tác động) Đối chứng Thực nghiệm TBC 6,6 6,5 p= 0,24p = 0,24> 0,05, từ đó kết luận sự chênh lệch điểm số trung bình của hai nhómthực nghiệm và đối chứng là không có ý nghĩa, hai nhóm được coi là tươngđương.Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  4. 4. Đề tài nghiên cứu khoa học sư phạm ứng dụngSau đó, tôi thiết kế kiểm tra trước và sau tác động với các nhóm tương đươngBảng 3 : Thiết kế nghiên cứu Kiểm Kiểm tra tra sau Lớp trước tác Tác động tác động động Có sử dụng : Phân loại và phương pháp giải Thực O1 một số bài toán về quan hệ song song trong O3 nghiệm không gian. Không sử dụng: Phân loại và phương pháp giải Đối O2 một số bài toán về quan hệ song song trong O4 chứng không gian.Ở thiết kế này, tôi sử dụng phép kiểm chứng T- Test độc lập.3. Quy trình nghiên cứua. Chuẩn bị bài của giáo viên: Tìm đọc các tài liệu có liên quan như: SGK, SGV hình học 11; bài tậptuyển chọn hình học 11 nhà xuất bản giáo dục và một số tài liệu tích lũy trongnhiều năm giảng dạy.b. Tiến hành dạy thực nghiệm: Thời gian tiến hành thực nghiệm vẫn tuân theo kế hoạch dạy học của nhàtrường và theo thời khóa biểu đảm bảo tính khách quan.c. Đo lường: Sau khi thực hiện dạy xong, tôi tiến hành bài kiểm tra 15 phút ( nội dungkiểm tra trình bày ở phần phụ lục). Sau đó tôi chấm bài theo đáp án đã xây dựng.IV. PHÂN TÍCH DỮ LIỆU VÀ KẾT QUẢBảng 5: So sánh điểm trung bình bài kiểm tra sau tác động Đối chứng Thực nghiệm Điểm trung bình 7,6 8,5 Độ lệch chuẩn 0,73 0,79 Gía trị p của T-Test 0,0008 Chênh lệch giá trị TB 1,23 chuẩn(SMD) Kết quả hai nhóm trước tác động là tương đương nhau. Nhưng sau tác độngkiểm chứng chênh lệch điểm trung bình bằng T- Test cho kết quả p = 0,0008< 0,05. Điều này cho thấy kết quả điểm trung bình của lớp thựcnghiệm cao hơn so với lớp đối chứng là không ngẫu nhiên mà do kết quả của tácđộng. 8,5  7,6 Ta có độ lệch giá trị trung bình chuẩn SMD = = 1,23 0,73 Theo bảng tiêu chí Cohen, chênh lệch giá trị trung bình chuẩn SMD = 1,23cho thấy mức độ ảnh hưởng của dạy học phương pháp giải nhanh một số dạngtoán trắc nghiệm thường gặp của quy luật phân li độc lập đến kết quả học tập củalớp thực nghiệm là rất lớn.Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  5. 5. Trường THPT Krông NôNhư vậy, giả thiết của đề tài sử dụng “phương pháp giải nhanh một số dạng toántrắc nghiệm thường gặp của quy luật phân li độc lập” đã được kiểm chứng. 9 8.5 7.6 8 6.5 6.6 7 6 5 Trước tác động Sau tác động 4 3 2 1 0 11B3 11B5Biểu đồ 1: So sánh điểm trung bình trước tác động và sau tác động của nhómthực nghiệm và nhóm đối chứng.V. KẾT LUẬN VÀ KIẾN NGHỊ1. Kết luận: Việc sử dụng đề tài này trong giảng dạy tôi thấy số lượng giỏi, khá, trungbình đã có tăng lên mặc dù chưa nhiều, số lượng yếu, kém giảm tuy vẫn còn.Nhưng đối với tôi, điều quan trọng hơn cả là đã giúp các em thấy bớt khó khăntrong việc học tập bộ môn hình học, tạo niềm vui và hưng phấn mỗi khi bước vàotiết học môn hình học, đã tích luỹ một số kĩ năng để giải bài tập: xác định đượcgiao điểm, giao tuyến... Các em không còn thấy ngại khi làm bài tập hình họckhông gian.2. Kiến nghị: Nhằm giúp cho học sinh học tốt hơn môn học, cá nhân tôi có kiến nghị vớiBan giám hiệu, phòng thiết bị nên có kế hoạch mua bổ sung một số mô hìnhkhông gian mới phù hợp hơn với bài dạy, các phòng học tiện nghi hơn nữa đểthuận lợi cho việc ứng dụng công nghệ thông tin vào giảng dạy. Trong quá trình làm đề tài, tôi đã cố gắng tổng hợp nhiều tài liệu, tuy nhiênkhông tránh khỏi những thiếu sót. Rất mong nhận được sự góp ý chân thành củaGiaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  6. 6. Đề tài nghiên cứu khoa học sư phạm ứng dụngcác thầy cô giáo đồng nghiệp và Hội đồng chuyên môn để đề tài của tôi hoànthiện hơn. Tôi xin chân thành cảm ơn! TÀI LIỆU THAM KHẢO [1]. Trần Văn Hạo: Hình học 11- Nhà xuất bản Giáo dục, năm 2007 [2]. Trần Văn Hạo: Học tốt hình học 11 – Nhà xuất bản Đại học quốc gia TP.HCM, năm 2007. [3]. Nguyễn Mộng Hy: Bài tập hình học 11 – Nhà xuất bản giáo dục, năm 2007. [4]. Nguyễn Cam – Nguyễn Văn Phước – Nguyễn Hoàng Nguyên – Tuyển chọn 400 bài tập tự luận và trắc nghiệm – Nhà xuất bản Đại học Quốc gia Hà Nội, năm 2007. [5]. Nguyễn Bá Kim: Phương pháp dạy học toán – Nhà xuất bản giáo dục, năm 2000. [6]. Mạng Internet: www.google.com.vn.Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  7. 7. Trường THPT Krông Nô PHỤ LỤC CỦA ĐỀ TÀIDẠNG 1: TÌM GIAO TUYẾN CỦA HAI MẶT PHẲNGPhương pháp:Cách 1: Xác định hai điểm chung của hai mặt phẳng A  A   P   Q  Nếu   thì AB   P    Q  B   P   Q   B Q PCách 2: Xác định một điểm chung và một đường thẳng song song với một đườngthẳng.Dựa vào các định lý sau: * Định lý 2 (về giao tuyến của ba mặt phẳng)        a   cNếu        b I             c a a c b bthì a // b // choặc a, b, c đồng quy. Hệ quả. a / /b  Nếu  a    , b     thì d // a // b hoặc d trùng a hoặc d trùng b         d d d a a b b    * Định lý 2: (SGK trang 61)Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  8. 8. Đề tài nghiên cứu khoa học sư phạm ứng dụng  a / /    Nếu  a     thì a // b a         b b Hệ quả.  a / /     Nếu    / / d thì a // d         a   a  d a b  Nhận xét: Để tìm giao tuyến của hai mặt phẳng ta dựa vào hình vẽ, tùy vào hình màvận dụng linh hoạt hai cách trênVí dụ 1. Cho hình chóp hình chóp S. ABCD, đáy là tứ giác ABCD có AB cắt CD tạiE, AC cắt BD tại F. Tìm giao tuyến của các mặt phẳng sau:a) (SAB) và (SCD)b) (SAC) và (SBD)c) (SEF) và (SAD)Nhận xét: S S B B A E A E F C C Hình 1 Hình 2 D DGiaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  9. 9. Trường THPT Krông Nô Học sinh mới nhập môn hình học không gian nên vẽ hinh chưa xác địnhđược nét liền, nét đứt . Giáo viên cần hướng dẫn và kiểm tra học sinh vẽ hình cẩnthận, chính xác. Với câu a học sinh dễ dàng tìm được hai điểm chung của hai mặt phẳng(SAB) và (SCD) là S và E (Hình 1). Tương tự với câu b giao tuyến của (SAC) và(SBD) là SF (Hình 2) Với câu c giáo viên cần gợi ý để học sinh phát hiện ra điểm chung thứ 2bằng cách kéo dài EF hỏi có cắt AD không? Tại sao? (Hình 3)Bài giải Sa) Ta có S   SAB    SCD  1 ; E  AB  CDNên E   SAB    SCD  (2)Từ (1) và (2) ta có  SAB    SCD   SE .b) Ta có: S   SAC    SBD  (3) F  AC  BD  F   SAB    SCD  (4) BTừ (3) và (4)  SF   SAB    SCD  A E jPc) Ta có: S   SAD    SEF  (5) F Q CGọi Q  BC  EFNên Q   SAD    SEF  (6) D Hình 3Từ (5) và (6) ta có SQ   SAD    SEF Ví dụ 2. Cho hình chóp S.ABCD có đáy là hình thang, AD là đáy lớn. Gọi M, N làtrung điểm của BC, CD. Tìm giao tuyến của các mặt phẳng sau: a) (SAC) và (SBD) b) (SMN) và (SAD) c) (SAB) và (SCD) d) (SAD) và (SBC) e) (SMN) và (SBD)Nhận xét: Với câu a) học sinh dễ dàng tìm giao tuyến là SO (Hình 4)Câu b) học sinh thường sai lầm vẽ MN không song song với BD. Trongmp(ABCD) kéo dài MN cắt AD tại E vậy giao tuyến là SE. (Hình 5)Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  10. 10. Đề tài nghiên cứu khoa học sư phạm ứng dụng S S D A A E D O O N N C B M B M C Hình 4 Hình 5Câu c) học sinh dễ dàng tìm giao tuyến là SF. (Hình 6)Câu d) theo thói quen học sinh tìm 2 điểm chung của 2 mặt phẳng mà không để ýAD // BC. Giáo viên gợi ý học sinh sẽ tìm ra được giao tuyền là đường thẳng điqua S và song song với AD hoặc BC (Hình 7) Câu e) tương tự câu d. S S D D A E A E O O N N B C C M B M F Hình 6 F Hình 7Bài giải Tương tự gọi học sinh giải dưới sự hướng dẫn của giáo viên.Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  11. 11. Trường THPT Krông Nô BÀI TẬP RÈN LUYỆN Bài 1. Cho tứ diện ABCD có E là trung điểm của AB. Hãy xác định giao tuyến của mặt phẳng (ECD) với các mặt phẳng (ABC), (ABD), (BCD), (ACD). Bài 2. Cho tứ diện SABC và một điểm I trên đoạn SA, d là đường thẳng trong (ABC) cắt AB; BC tại J; K. Tìm giao tuyến của mặt phẳng (I,d) với các mặt phẳng sau: (SAB); (SAC); (SBC). Bài 3. Cho tứ giác lồi ABCD và điểm S không nằm trong mặt phẳng chứa tứ giác. Tìm giao tuyến của: a) (SAC) và (SBD) b) (SAB) và (SCD) c) (SAD) và (SBC) Bài 4. Cho hình chóp S.ABCDE. Hãy xác định giao tuyến của mặt phẳng (SAC) với các mặt phẳng (SAD); (SCE). Bài 5. Cho hình chóp S.ABCD có đáy ABCD là một tứ giác lồi; M là điểm trên cạnh CD. Tìm giao tuyến của các mặt phẳng: a) (SAM) và (SBD) b) (SBM) và (SAC). Bài 6. Cho tứ diện ABCD; M là điểm nằm trong mp(ABC); N là điểm nằm trong mp(ACD). Tìm giao tuyến của: a) (AMN) và (BCD) b) (CMN) và (ABD) 1 Bài 7. Cho tứ diện ABCD. M nằm trên AB sao cho AM = MB; N nằm 4 trên AC sao cho AN = 3NC; điểm I nằm trong mp(BCD). Tìm giao tuyến của: a) (MNI) và (BCD) b) (MNI) và (ABD) c) (MNI) và (ACD) Bài 8. Cho tứ diện ABCD gọi I, J lần lượt là trung điểm của AD, BC. a) Tìm giao tuyến của: (IBC) và (JAD). b) M là điểm trên AB, N là điểm trên AC. Tìm giao tuyến của (IBC) và (DMN) Bài 9. Cho hai đường thẳng a, b  (P) và điểm S không thuộc (P). Hãy xác định giao tuyến của mặt phẳng chứa a và S với mặt phẳng chứa b và S. Bài 10. Cho tứ diện ABCD trên AB, AC lần lượt lấy hai điểm M và N sao AM AN cho:  . Tìm giao tuyến của (DMN) và (BCD). MB NC Bài 11. Cho bốn điểm ABCD không đồng phẳng, gọi I, K là trung điểm AD, BC. Xác định giao tuyến của hai mặt phẳng (IBC) và (KAD). Bài 12. Trong mặt phẳng  cho hình thang ABCD có đáy là AB, CD, S là điểm nằm ngoài mặt phẳng hình thang. Tìm giao tuyến của a) (SAD) và (SBC) b) (SAC) và (SBD) Bài 13. Hình chóp S.ABCD có đáy ABCD là hình thang hai đáy là AD; BC. Gọi M, N là trung điểm AB, CD và G là trọng tâm SAD. Tìm giao tuyến của: a) (GMN) và (SAC) b) (GMN) và (SBC)Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  12. 12. Đề tài nghiên cứu khoa học sư phạm ứng dụng DẠNG 2:TÌM GIAO ĐIỂM GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG* Phương pháp Muốn tìm giao điểm của đường thẳng d với mp(P) ta tìm giao điểm củađường thẳng d với một đường thẳng a nằm trên (P). d a A AdTóm tắt: Nếu   thì A  d   P  P  A  a  mp  P  Chú ý: Nếu đường thẳng a chưa có trên hình vẽ ta xác định a bằng cách: - Tìm mp (Q) chứa d sao cho dễ tìm giao tuyến với mp(P). - Tìm giao tuyến a   P    Q  . Khi đó A  d  a d a A P QVí dụ 1. Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn AB. Gọi I, Jlần lượt là trung điểm của SA và SB, M là một điểm tùy ý thuộc đoạn SD, N là 1một điểm trên SC sao cho CN  SC . 4a) Tìm giao điểm của đường thẳng JN với mp(ABC)b) Tìm giao điểm của đường thẳng BM với mp(SAC)c) Tìm giao điểm của đường thẳng IM với mp(SBC)d) Tìm giao điểm của đường thẳng SC với mp(IJM)Nhận xét: - Học sinh thường vẽ sai hình là IJ không song song với AB.- Với câu a) (Hình 7) nên hỏi học sinh kéo dài JN có cắt DC không? Và mp(ABC) và (ABCD) có khác nhau không? Cần lưu ý cho học sinh điều kiện haiđường thẳng cắt nhau là cùng nằm trong mặt phẳng và không song song với nhau. - Câu b) (Hình 8) dựa vào hình ta chưa xác định được đường thẳng a. Nếukhông khéo léo hướng dẫn học sinh sẽ nhầm lẫn BM cắt SC. Nên giáo viên gợi ýhọc sinh biết cách chọn mp(SDB) chứa BM.Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  13. 13. Trường THPT Krông NôKhi đó giao điểm là P  BM   SAC  S S I J I J M M P A A B B N N O D C D C P Hình 8 P Hình 8 - Câu c) theo hình vẽ (Hình 9) giả thiết cho ta không thấy mối liên hệ giữa IM với (SBC). Nhưng lại dễ tìm giao tuyến giữa (SAD) và (SBC) mà IM nằm trong mp(SAD). Nên dễ dàng tìm được giao điểm F  IM   SBC  - Câu d) (Hình 10) mp(IJP) với mp(IJM) là một nên dễ dạng tìm được giao điểm là H S S Bài giải I J I J M M H A A F B F B N N O O D C D C P P E E Hình 9 Hình 10 a) JN , BC   SBC  nên gọi P  JN  BC vậy P  JN   ABC  b) Ta có BM   SAC  Ta tìm mp(SAC) và (SBD) Có S   SAC    SBD  Gọi O  AC  BD nên O   SAC    SBD Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  14. 14. Đề tài nghiên cứu khoa học sư phạm ứng dụng Vậy SO   SAC    SBD  khi đó gọi P  SO  BM thì P  BM   SAC  c) Ta có IM   SAD  Xét mp(SAD) và (SBC) có S   SAD    SBC  Gọi E  AD  BC nên E   SAD    SBC  vậy SE   SAD    SBC  Gọi F  IM  SE  F  IM   SBC  d) Dễ dàng tìm được H  SC   IJM  BÀI TẬP RÈN LUYỆN Bài 1. Cho tứ diện SABC. Các điểm M, N lần lượt là các điểm nằm trong tam giác SAB, SBC. Đường thẳng MN cắt (ABC) tại P. Xác định giao điểm P. Bài 2. Cho tứ diện ABCD. Điểm M là trung điểm AB, N và P lần lượt là các điểm nằm trên AC, AD sao cho AN : AC = 3 : 4 ; AP : AD = 2 : 3. Tìm giao điểm a) MN với (BCD). b) BD với (MNP). c) Gọi Q là trung điểm NP. Tìm giao điểm của MQ với (BCD). Bài 3. Cho A, B, C, D là bốn điểm không đồng phẳng. M, N lần lượt là trung điểm của AC, BC. Trên đoạn BD lấy P sao cho BP = 2PD. Tìm giao điểm của : a) CD với (MNP) b) AD với (MNP) Bài 4. Cho hình chóp SABC, O là điểm trong tam giác ABC, D và E là các điểm nằm trên SB, SC. Tìm giao điểm của a) DE với (SAO) b) SO với (ADE) Bài 5. Cho tứ diện SABC. Với I, H lần lượt là trung điểm SA, AB. Trên đoạn SC lấy điểm K sao cho CK = 3KS. a) Tìm giao điểm của đường thẳng BC với (IHK). b) Gọi M là trung điểm HI. Tìm giao điểm của đường thẳng KM với (ABC). Bài 6. Cho hình chóp SABCD đáy là hình thang ABCD đáy lớn AB. Biết I, J, K là ba điểm trên SA, SB, SC. Tìm giao điểm IK và (SBD); giao điểm (ỊJK) và SD, SC. Bài 7. Gọi I, J lần lượt là hai điểm nằm trong tam giác ABC và ABD của tứ diện ABCD. M là điểm tuỳ ý trên CD. Tìm giao điểm IJ và mặt phẳng (AMB) Bài 8. Hình chóp SABCD đáy là hình bình hành ABCD. M là trung điểm SD a) Tìm giao điểm I của BM và (SAC). Chứng minh: BI = 2IM. b) Tìm giao điểm J của của SA và (BCM). Chứng minh J là trung điểm SA. c) N là điểm tuỳ ý trên BC. Tìm giao điểm của MN với (SAC).Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  15. 15. Trường THPT Krông Nô DẠNG 3: THIẾT DIỆN TẠO BỞI MẶT PHẲNG   VỚI KHỐI ĐA DIỆN Phương pháp: B Xác định thiết diện bằng cách kéo các giao tuyến. A Nhận xét: C Dạng toán tìm thiết diện là tìm giao tuyến của mp   F với các mặt của khối đa diện. E D Ví dụ 1. Cho hình hộp ABCDA’B’C’D’. Gọi M, N, P lần lượt là trung điểm DC,AD, BB’. Tìm thiết diện tạo bởi mặt phẳng (MNP) với hình hộp. B C P A D E B C K F M D A N H Phân tích Để tìm thiết diện ta tìm giao tuyến của mp(MNP) với các mặt của hình hộp,ta có ngay MN   MNP    ABCD  . Giáo viên gợi ý cho học sinh chọn mp tiếp theocủa hình hộp để tìm giao với (MNP) có thể là mp (BB’C’C) đến đây bài toánđược giải quết. Bài giải Ta có  MNP    ABCD   MN Xét mp (MNP) và (BB’C’C) ta có: P   MNP    BB C C  Gọi K  MN  BC  K   MNP    BB C C  Nên PK   MNP    BB C C  Tương tự ta có: PH   MNP    AA B B  Gọi E  PK  CC  ME   MNP    CC D D Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  16. 16. Đề tài nghiên cứu khoa học sư phạm ứng dụng Gọi F  PH  AA  NF   MNP    AA D D  Vậy thiết diện là hình ngũ giác MNFPE. BÀI TẬP RÈN LUYỆN Bài 1. Cho hình chóp S.ABCD đáy ABCD là hình bình hành. Gọi E, F, K lần lượt là trung điểm của SA, AB, BC. Xác định thiết diện của hình chóp và mặt phẳng đi qua ba điểm E, F, K. Bài 2. Cho hình chóp S.ABCD. Gọi A’ ; B’ ; C’ lần lượt là các điểm nằm trên SA ; SB; SC. Xác định thiết diện tạo bởi mặt phẳng (A’B’C’) với hình chóp Bài 3. Cho tứ diện ABCD điểm I nằm trên BD và ở ngoài BD sao cho ID = 3IB. 1 1 M, N là hai điểm thuộc cạnh AD, DC sao cho MA = MD, ND = NC. 2 2 a) Tìm giao tuyến PQ của (IMN) với (ABC). b) Xác dịnh thiết diện tạo bởi (IMN) với tứ diện. c) Chứng minh MN, PQ, AC đồng qui. Bài 4. Cho tứ diện ABCD, điểm I, J lần lượt là trọng tâm tam giác ABC và DBC, M là trung điểm AD. Tìm tiết diện tạo bởi (MJI) và tứ diện. Bài 5. Cho hình chóp S.ABCDE. Lấy ba điểm M, N, K trên SA, BC, SD. Xác định thiết diện tạo bởi mặt phẳng (MNK) với hình chóp.. Bài 6. Hình chóp SABCD có đáy ABCD là hình thang với AB là đáy. Gọi M, N là trung điểm SB, SC. a) Tìm giao tuyến của (SAD) và (SBC). b) Tìm giao điểm của SD với mặt phẳng (AMN). c) Tìm tiết diện tạo bởi mặt phẳng (AMN) với hình chóp. Bài 7. Hình chóp SABCD có đáy ABCD là hình bình hành. M là trung điểm SC a) Tìm giao điểm I của AM với (SBD). Chứng minh IA = 2IM. b) Tìm giao điểm F của SD với (AMB). Chứng minh F là trung điểm SD. c) Xác định hình dạng thiết diện tạo bởi (AMB) với hình chóp. d) Gọi N là một điểm trên cạnh AB. Tìm giao điểm của MN với (SBD). Bài 8. Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm SB, SD, OC. a) Tìm giao tuyến của (MNP) với (SAC). b) Dựng thiết diện của (MNP) với hình chóp. c) Tính tỉ số mà (MNP) chia cạnh SA, BC, CD. ĐS: c) 3:1 ; 1:1 ; 1:1 Bài 9. Cho hình chóp S.ABCD có đáy là hình bình hành, gọi M là trung điểm SB, G là trọng tâm SAD. a) Tìm giao điểm I của GM với (ABCD). b) Chứng minh (CGM) chứa đường thẳng CD. c) Chứng minh (CGM) đi qua trung điểm SA. d) Dựng thiết diện của (CGM) với hình chóp.Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  17. 17. Trường THPT Krông Nô Bài 10. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I, J là trọng tâm SAB, SAD a) Tìm giao điểm của JI với (SAC). b) Dựng thiết diện tạo bởi (JIO) với hình chóp. Bài 11. Cho hình chóp SABCD. Gọi I, M, N là ba điểm trên SA, AB, CD a) Tìm giao tuyến của (SAN) và (SDM). b) Hãy xác định thiết diện tạo bởi (IMN) với hình chóp. BÀI TẬP TỔNG HỢP Bài 1. Cho tứ diện ABCD, I là điểm nằm ngoài đoạn BD. Mặt phẳng () qua I cắt AB, BC, CD, DA tại M, N, P, Q. a) Chứng minh I, M, Q thẳng hàng và ba điểm I, N, P cũng thẳng hàng. b) Chứng minh MN, AC, PQ đồng qui Bài 2. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. M là trung điểm SD, E là điểm trên cạnh BC. a) Tìm giao điểm N của SC với (AME). b) Tìm giao tuyến của (AME) với (SAC). c) Tìm giao điểm của K của SA với (MBC). Chứng minh K là trung điểm SA. Bài 3. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. F là trung điểm CD, E là điểm trên cạnh SC sao cho SE = 2EC.Tìm thiết diện tạo bởi (AEF). Bài 4. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. I là trung điểm SD, E là điểm trên cạnh SB sao cho SE = 3EB. a) Tìm giao điểm F của CD với mặt phẳng (AIE). b) Tìm giao tuyến d của (AIE) với (SBC). c) Chứng minh BC, AF, d đồng qui. Bài 5. Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. F là trung điểm SC, E là điểm trên cạnh BC sao cho BE = 2EC. a) Tìm thiết diện tạo bởi (AEF) với hình chóp. b) Tìm giao điểm của SB với (AEF). Bài 6. Hình chóp SABCD có đáy ABCD là hình bình hành tâm O, M là trung điểm SB, G là trọng tâm SAD. a) Tìm giao điểm I của GM với (ABCD) và chứng minh I nằm trên đườngthẳng CD và IC = 2ID. JA b) Tìm giao điểm J của (OMG) với AD. Tính tỉ số . JD KA c) Tìm giao điểm K của (OMG) với SA. Tính . HD: b) 2 c) 2 KSGiaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  18. 18. Đề tài nghiên cứu khoa học sư phạm ứng dụng DẠNG 4: ĐƯỜNG THẲNG SONG SONG VỚI MẶT PHẲNG d* Phương pháp: (Định lý 1 SGK trang 16)  d    a Tóm tắt: Nếu  d / / a thì d / /   a      Nhận xét: Các bài tập thường bắt ta đi tìm đường thẳng a (thỏa yêu cầu như hình vẽ),vấn đề ở đây dựa vào giải thiết của từng bài tập đường thẳng a đã có trên hình vẽchưa, nó được xác định thế nào, làm sao để xác định nó. Giáo viên cần địnhhướng giải quyết của bài toán dựa vào giả thiết của từng bài toán mà xác địnhđường thẳng a cho phù hợp.Ví dụ 1. Cho hình bình hành ABCD và ABEF không cùng nằm trong một mặtphẳng a) Gọi O, O’ lần lượt là tâm của ABCD và ABEF. Chứng minh OO’ song songvới hai mặt phẳng (ADF) và (BCE). b) Gọi M, N là hai điểm lần lượt trên hai cạnh AE và BD sao 1 1cho AM  AE , BN  BD . Chứng minh MN song song với mp(CDEF). 3 3Nhận xét:- Với câu a) học sinh dễ phát hiện đường thẳng a cần tìm là CE đối với mp(BCE),DF đối với mp(ADF).- Còn câu b) học sinh khó phát hiện đường thẳng a, vì phải kẻ thêm đường phụ vàta phải đi chứng minh nên học sinh sẽ gặp khó khăn. Giáo viên gợi ý cho học sinhtìm giao tuyến của hai mp(AMN) và (CDFE) qua đó học sinh dễ nhìn thấy vấn đềhơn. ABài giải:a) * Chứng minh OO / /  ADF  B Ta có: OO’ là đường trung bình Mcủa tam giác BDF nên OO / / DF N O O mà DF   ADF  nên OO / /  ADF  J* Chứng minh OO / /  BCE  tương tựb) * Chứng minh MN / /  CDFE  D FTìm giao tuyến của mp(AMN) và (CDFE) C EGiaùo vieân: Nguyeãn Höõu Phöôùc I Trang 
  19. 19. Trường THPT Krông NôTa có E   AMN    CDFE Gọi I  AN  CD I   AMN    CDFE Vậy IE   AMN    CDFE Chứng minh MN / /  CDFE  1Ta có: AM  AE 1 3 1 2Trong tam giác ABC có: BN  BD  BO và BO là đường trung tuyến. 3 3Nên N là trọng tâm của tam giác ABCGọi J  AI  BC nên J cũng là trung điểm của AI 2 1 AN  AJ  AI  2  3 3Từ (1) và (2)  MN / / IE mà CE   CDFE  suy ra đpcm BÀI TẬP RÈN LUYỆN Bài 1. Cho hình chóp SABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của AB và CD. a) Chứng minh MN // mp  SBC  và MN // mp  SAD  . b) Gọi P là trung điểm của SA. Chứng minh SB và SC song song vớimp(MNP). c) Gọi G1 và G 2 lần lượt là trọng tâm các tam giác ABC và SBC. Chứng minh G 1G 2//mp(SAC) Bài 2. Cho tứ diện ABCD. G là trọng tâm tam giác ABD, M trên BC sao cho MB = 2MC. Chứng minh MG//mp(ACD). Bài 3. Cho tứ diện ABCD. Gọi O và O’ lần lượt là tâm đường tròn nội tiếp các tam giác ABC và ABD. Chứng minh: BC AB  AC a) Điều kiện cần và đủ để OO’//mp(BCD) là  . BD AB  AD b) Điều kiện cần và đủ để OO’//mp(BCD) và mp(ACD) là BC = BD và AC= AD Bài 4. Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. a) Gọi O và O’ lần lượt là tâm của ABCD và ABEF. Chứng minh OO’//(ADF); OO’//(BCE). 1 1 b) Trên AE và BD lấy M và N sao cho AM  AE; BN  BD . Chứng minh 3 3 MN//mp(CDEF). Bài 5. Cho tứ diện ABCD. Trên cạnh AD lấy trung điểm M, trên BC lấy điểm N bất kì. Gọi () là mặt phẳng chứa đường thẳng MN và song song với CD. a) Tìm thiết diện của tứ diện ABCD với ().Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  20. 20. Đề tài nghiên cứu khoa học sư phạm ứng dụng b) Xác định vị trí của N trên BC sao cho thiết diện là hình bình hành. Bài 6. Cho hình chóp SABCD với đáy ABCD là hình thang có đáy lớn là AD. Gọi M là điểm bất kì trên cạnh AB. () là mặt phẳng qua M và song song AD và SD. a) Mặt phẳng () cắt SABCD theo thiết diện là hình gì. b) Chứng minh SA // (). Bài 7. Cho hình chóp SABCD có đáy ABCD là hình bình hành. Mặt phẳng () di động luôn luôn song song BC và đồng thời đi qua trung điểm C’ của SC. a) Mặt phẳng () cắt các cạnh SA, SB, SD lần lượt tại A’, B’, D’ thiết diệnA’B’C’D’ là hình gì. b) Chứng minh rằng () khi chuyển động luôn luôn chứa một đường thẳngcố định.Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  21. 21. Trường THPT Krông Nô DẠNG 5: CHỨNG MINH HAI MẶT PHẲNG SONG SONG* Phương pháp: (Định lý 1 SGK trang 64) a b  a, b     Tóm tắt: Nếu  a  b  I thì mp   / /    a / /  , b / /       Nhận xét: Tương tự bài toán chứng minh đường thẳng song song với mặt phằng, vấnđề là chọn hai đường thẳng a, b như thế nào? Nằm trong mp   hay    . Giáoviên cần hướng dẫn, gợi mở cho học sinh phát hiện ra được vấn đề bài toán.Ví dụ 1. Cho tứ diện ABCD. Gọi M, N, P lần lượt là trọng tâm của tam giác ABC,ACD, ABD. Chứng minh hai mặt phẳng (MNP) và mp(BCD) song song.Nhận xét: Nếu học sinh biết cách vẽ hình dựa vào các tinh chất đã học trong hình họcphẳng thì dễ dàng xác định được đường thẳng a, b. Cách xác định trọng tâmkhông nên vẽ quá nhiều đường trung tuyến nhìn hình rối mắt. ABài giảiGọi I, J, K lần lượt trung điểm BC, CD, BD AM AN 2Ta có:    MN / /IJ AI AJ 3Mà IJ   BCD  nên MN // (BCD) PTương tự ta có NP // (BCD) M NTa có:NP, MN   MNP  B D K  MNP  / /  BCD  I JVí dụ 2. C Cho hai hình vuông ABCD và ABEF không cùng nằm trong một mặtphẳng. Trên AC và BF lấy M và N sao cho AM = BN. Các đường thẳng songsong với AB vẽ từ M, N lần lượt cắt AD; AF tại M’, N’.a) Chứng minh: (CBE) // (ADF)b) Chứng minh: mp (DEF) // mp(MNN’M’)Nhận xét:- Với câu a) học sinh dễ dàng chứng minh- Với câu b) Giáo viên gợi ý cho học sinh (DCEF) chứa (DEF), học sinh thườngsai lầm khi chứng minh là MM’ // (DEF) và NN’ // (DEF) suy ra đpcm. Nên giáoviên gợi ý sử dụng giả thiết AM = BN.Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  22. 22. Đề tài nghiên cứu khoa học sư phạm ứng dụngBài giải:a) Dễ dàng chứng minh.b) Ta có: NN’ // AB mà AB // EFMà EF   DEF   NN ’ / /  DEF Mặt khác F E AM AM MM / / CD   1 AD AC N N AN BN NN / / AB    2 A AF BF BMà AM = BN, AC = BF M M AN BN D   3 C AF BF AM AN Từ (1), (2) và (3)    M N / / DE   DFE  AD AFSuy ra đpcmMột số chú ý khi vẽ hình Để giải được một bài toán về hình học không gian ngoài việc nắm vững cácphương pháp, kỹ năng giải toán thì vẽ hình đóng vai trò quan trọng, hình vẽ dễnhìn giúp ta hướng giải quyết, phát hiện ra vấn đề của bài toán. Một số chú ý khivẽ hình: - Đảm bảo các quy tắc vẽ hình biểu diễn của một hình không gian - Hình vẽ phải rõ ràng, chính xác, thể hiện được tính thẩm mỹ. - Biết cách xác định các đối tượng vẽ sao cho phù hợp với yêu cầu bài toán.Nếu vẽ hình mà không nhìn thấy được yêu cầu bài toán thì nên vẽ lại ở góc nhìnkhác. BÀI TẬP RÈN LUYỆN Bài 1. Cho hình chóp SABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và CD. a) Chứng minh: mp(OMN) // mp(SBC). b) I là trung điểm của SC và J là điểm nằm trên mp(ABCD) cách đều ABvà CD. Chứng minh IJ // mp(SAB) c) Giả sử các tam giác SAB và ABC cân tại A. Gọi AE và AF là các đườngphân giác trong của các tam giác ACD và SAB. Chứng minh EF // mp(SAD)Cho tứ diện ABCD có AB = AC = AD. Chứng minh rằng các đường phân giác · · ·ngoài của các góc BAC, CAD, DAB đồng phẳng. Bài 2. Cho hình chóp SABCD có đáy là hình bình hành tâm O. Gọi M, N là trung điểm của SA, SD. a) Chứng minh mp(OMN) // mp(SBC). b) Gọi P và Q lần lượt là trung điểm của AB và ON. Chứng minh PQ //mp(SBC)Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  23. 23. Trường THPT Krông Nô Bài 3. Cho tứ diện ABCD. Gọi I và J là hai điểm di động lần lượt trên AD IA JB và BC sao cho  . Chứng minh IJ luôn song song với một mặt phẳng cố ID JC định. Bài 4. Cho hình chóp SABCD có đáy là hình bình hành với AB = a, AD = 2a, mặt bên SAB là tam giác vuông cân tại A. Trên AD lấy M, đặt AM = x (0 < x < 2a). Mặt phẳng    qua M và song song với mp(SAB) cắt BC; SC; SD tại N, P, Q. a) Chứng minh MNPQ là hình thang vuông. b) Gọi I là giao điểm của MQ và NP. Tìm tập hợp I khi M chạy trên AD. c) Tính diện tích MNPQ theo a và x. Bài 5. Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi H, I, K lần lượt là trung điểm của SA, SB, SC. a) Chứng minh (HIK) // (ABCD). b) Gọi M là giao điểm của AI và KD, N là giao điểm của DH và CI .Chứng minh (SMN) //(HIK). Bài 6. Cho hình hộp ABCD.A’B’C’D’. a) Chứng minh (BA’D) // (B’D’C). b) Chứng minh AC’ qua trọng tâm G và G’ của tam giác A’BD và CB’D’ Bài 7. Cho hình chóp S.ABCD, đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA, CD. a) Chứng minh: (OMN) // (SBC). b) Giả sử tam giác SAD, ABC đều cân tại A. Gọi AE, AF là các đườngphân giác trong của tam giác ACD và SAB . Chứng minh: EF //(SAD).III. BẢNG ĐIỂM CỦA LỚP THỰC NGHIỆM( LỚP 11B3) TT Họ và tên Điểm kiểm tra Điểm kiểm tra trước tác động sau tác động 1 NGUYỄN THỊ KIM ANH 6 8 2 PHAN THỊ KIM ANH 6 9 3 NGUYỄN NGỌC CHÂU 6 9 4 NGUYỄN THỊ ANH ĐÀO 6 8 5 VŨ THỊ BÍCH ĐOAN 6 7 6 NGUYỄN THỊ HÀ 6 9 7 VI THỊ HẰNG 6 8 8 NGUYỄN THỊ HIỀN 7 9 9 NGUYỄN THỊ THU HIỀN 6 8 10 TRẦN THỊ HIỆP 6 8 11 ĐOÀN VĂN HÓA 6 8 12 PHẠM THU HUYỀN 7 8 13 NGUYỄN THỊ HƯƠNG 6 8 14 LANG THỊ HƯƠNG 5 7Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  24. 24. Đề tài nghiên cứu khoa học sư phạm ứng dụng 15 PHAN THỊ ÁNH KIỀU 6 7 16 ĐẶNG THỊ LAN 6 8 17 VŨ THỊ KIM LAN 6 8 18 NGUYỄN THỊ NHẬT LỆ 6 8 19 HUỲNH THỊ MAI 5 9 20 HÀ THỊ NGA 5 8 21 PHẠM THỊ NGÂN 6 9 22 TRƯƠNG THỊ THẢO NHI 6 7 23 TRƯƠNG ĐÌNH NHỰT 5 9 24 TRẦN THỊ KIM PHÚ 6 8 25 PHẠM THỊ NHƯ QUỲNH 6 9 26 ĐỖ THỊ SÁU 6 7 27 LÝ SƠN 6 7 28 NGUYỄN THỊ BÍCH THẢO 7 7 29 HOÀNG THỊ THOA 7 7 30 ĐINH CÔNG THÔNG 7 7 31 NGÔ THỊ THU 7 9 32 PHẠM THỊ THU 7 7 33 NGUYỄN THỊ THU 7 9 34 NGUYỄN THỊ MINH THÚY 8 9 35 LƯƠNG THỊ NĂM THƯƠNG 7 9 36 NGUYỄN THỊ TUYẾN 7 9 37 TRẦN THỊ THÚY VY 7 9 38 VŨ HOÀI NAM 7 8 39 NGUYỄN QUÝ DƯƠNG 8 8 40 LANG THỊ THỦY 7 9 GTTB 6.3 8.1 Mode 6 8 Độ lệch chuẩn 0.73 0.79 Trung vị 6 8IV.BẢNG ĐIỂM CỦA LỚP ĐỐI CHỨNG ( LỚP 11B5) TT Họ và tên Điểm kiểm tra Điểm kiểm tra trước tác động sau tác động 1 NGUYỄN THỊ KIM ANH 8 7 2 LÊ HOÀNG ANH 8 8 3 LÝ VĂN BÉ 9 6 4 NGUYỄN VIẾT CA 8 7 5 PHAN VĂN CHÍNH 8 8 6 TRẦN VĂN DUY 5 8 7 MỄ THỊ ĐIỂM 5 7 8 NGUYỄN THỊ THU HÀ 6 8 9 TRẦN THỊ MINH HẰNG 6 7Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 
  25. 25. Trường THPT Krông Nô 10 PHẠM VĂN HIẾU 4 8 11 TRẦN THÀNH HIẾU 6 6 12 PHÙNG THỊ HOA 8 8 13 TRƯƠNG THỊ LỆ HOA 5 9 14 ĐẶNG THỊ THANH LAM 6 8 15 LÊ THỊ LÂM 5 8 16 CHUNG VĂN LỄ 7 8 17 NGUYỄN NGỌC LONG 6 7 18 NGÔ VĂN NAM 8 9 19 NGUYỄN THỊ KIM NGA 4 7 20 VÕ THỊ THÙY NGA 4 9 21 THÁI THỊ NGÂN 7 8 22 VŨ MINH NGỌC 8 8 23 VŨ THỊ NHƯ 7 8 24 LÊ THỊ TÂM 7 7 25 TRẦN VĂN THÔNG 6 8 26 NGUYỄN THỊ LỆ THỦY 7 7 27 LÝ VĂN THƯƠNG 5 8 28 THÁI THỊ KIỀU TIÊN 8 8 29 MAI VĂN TIẾN 5 8 30 LUÂN THỊ TRANG 6 9 31 NGUYỄN THỊ KIỀU TRANG 9 7 32 DƯƠNG THỊ LỆ TRINH 6 8 33 VÕ THỊ TRINH 7 7 34 NGUYỄN KIỀU TÚ 7 7 35 HUỲNH ANH TUẤN 8 7 36 NGUYỄN ĐỨC TUẤN 7 8 37 NGUYỄN MINH TUẤN 6 8 38 ĐẶNG ANH VŨ 8 7 39 CHÂU NGỌC NHƯ Ý 7 7 40 LÊ THANH TÙNG 8 8 41 TRẦN VĂN LƯU 6 6 GTTB 6,6 7.6 Mode 8 8 Độ lệch chuẩn 1.4 0.77 Trung vị 7 8Giaùo vieân: Nguyeãn Höõu Phöôùc Trang 

×