0
Soil Mapping and Vineyard Management Effectiveness and Efficiency! Robert L. Wample, PhD Soil and Topography Information, ...
“ Because wine is so chemically complex, it is very “place specific”: grapes of the same variety grown in different areas ...
Factors that Contribute to Fruit Maturity and Quality <ul><li>Climate </li></ul><ul><ul><li>Temperature (max, min, diurnal...
Factors that Contribute to Fruit  Maturity and Quality <ul><ul><li>Precipitation and atmospheric moisture (VPD; RH) </li><...
Factors that Contribute to Fruit Maturity and Quality <ul><li>Management </li></ul><ul><ul><li>Pruning </li></ul></ul><ul>...
Factors that Contribute to Fruit Maturity and Quality <ul><li>Management </li></ul><ul><ul><li>Canopy management </li></ul...
How do you achieve grape and wine quality? <ul><li>Luck </li></ul><ul><li>Management </li></ul><ul><ul><li>In the vineyard...
<ul><li>Determine the long-term and short-term factors we can use to manage grape quality. </li></ul><ul><li>Depending upo...
What are our options? <ul><li>Identify the dominant factors influencing fruit quality in each vineyard. </li></ul><ul><li>...
Reality! <ul><li>Seasonal / annual variability in weather can overwhelm our management efforts. </li></ul><ul><li>Economic...
Goals <ul><li>Proactive </li></ul><ul><ul><li>Understand the source of variability in your vineyard (yield and quality) </...
What we know and what we don’t <ul><li>Can you describe the soils in your vineyard </li></ul><ul><ul><li>Depth, nutrient h...
How does this information relate to being more Proactive? <ul><li>Vineyard planning for quality </li></ul><ul><li>Better n...
Reactive Decisions ?? Surface Layer Thickness  and Anthocyanin Concentration Subsurface  Layer Clay Percentage  and Anthoc...
PC Analysis <ul><li>All variables significant at the 0.05 confidence level </li></ul><ul><li>High anthocyanin  is predicte...
2006 Cabernet Sauvignon Twin Creek Wines   High  Low Tons:    39.65   39.89 Brix:    24.3   24.5 TA:    0.59   0.60 Anthoc...
The Soil Information System Soil and Topography Information, LLC (STI) Daniel James Rooney, Ph.D.
<ul><li>Uses sensors such as EC or GPR, and a survey grade GPS unit to evaluate spatial variability of the soil and topogr...
<ul><li>Uses a hydraulic push system to push probe-based sensors into the soil  at predetermined locations  for detailed a...
<ul><li>Proprietary software analyzes data from steps 1 and 2 and identifies locations for collection of soil samples. </l...
<ul><li>Proprietary correlation and geo-processing algorithms transform data into over 60 physical and chemical soil prope...
<ul><li>Targeted Soil Physical </li></ul><ul><ul><li>Texture Moisture   Root Limiting Moisture </li></ul></ul><ul><ul><ul>...
SIS™ Information Products Data is delivered as  SIS™ soil maps  <ul><li>Targeted Chemistry/Fertility  (via laboratory) </l...
Surface = 22 inches
Surface = 22 inches
Costs – fertility assessment and remediation 34.5 acres  80th percentile management Per acre  Total SIS fertility manageme...
Meeting Our Sustainability Goals
Ecosystem Management Education, Training and Team Building Soil Management  Water Management  Vineyard Establishment  Pest...
Thank you! We produce the worlds best soil information, accompanied by products to support your  sustainable  farming prac...
Upcoming SlideShare
Loading in...5
×

Family Winemakers 2010a Sti R Wample

361

Published on

Published in: Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
361
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Family Winemakers 2010a Sti R Wample"

  1. 1. Soil Mapping and Vineyard Management Effectiveness and Efficiency! Robert L. Wample, PhD Soil and Topography Information, LLC
  2. 2. “ Because wine is so chemically complex, it is very “place specific”: grapes of the same variety grown in different areas produce wines with varying sensory qualities ….” Dr. Ross, Washington State University, 2010 Terroir: The Role of Geology, Climate and Culture in the production of wine grapes
  3. 3. Factors that Contribute to Fruit Maturity and Quality <ul><li>Climate </li></ul><ul><ul><li>Temperature (max, min, diurnal, seasonal) </li></ul></ul><ul><ul><ul><li>Photosynthesis / Respiration </li></ul></ul></ul><ul><ul><ul><li>Evapotranspiration </li></ul></ul></ul><ul><ul><ul><li>Phenology </li></ul></ul></ul><ul><ul><ul><ul><li>Bud break, shoot growth, flowering, fruit set, veraison… </li></ul></ul></ul></ul><ul><ul><ul><li>Secondary metabolites </li></ul></ul></ul><ul><ul><ul><ul><li>Anthocyanins, flavor components </li></ul></ul></ul></ul>
  4. 4. Factors that Contribute to Fruit Maturity and Quality <ul><ul><li>Precipitation and atmospheric moisture (VPD; RH) </li></ul></ul><ul><ul><ul><li>Total per season </li></ul></ul></ul><ul><ul><ul><li>Seasonality </li></ul></ul></ul><ul><ul><li>Soil </li></ul></ul><ul><ul><ul><li>Type (water holding capacity, pests and diseases) </li></ul></ul></ul><ul><ul><ul><li>Depth </li></ul></ul></ul><ul><ul><ul><li>Variability </li></ul></ul></ul>
  5. 5. Factors that Contribute to Fruit Maturity and Quality <ul><li>Management </li></ul><ul><ul><li>Pruning </li></ul></ul><ul><ul><ul><li>Timing, severity, (hand, mechanical, minimal) </li></ul></ul></ul><ul><ul><ul><ul><li>Crop load </li></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Yield: pruning weight ratio; yield: leaf area </li></ul></ul></ul></ul></ul><ul><ul><li>Irrigation </li></ul></ul><ul><ul><ul><li>Amount, timing, method (efficiency) </li></ul></ul></ul><ul><ul><li>Nutrition </li></ul></ul>
  6. 6. Factors that Contribute to Fruit Maturity and Quality <ul><li>Management </li></ul><ul><ul><li>Canopy management </li></ul></ul><ul><ul><ul><li>Trellis and training system </li></ul></ul></ul><ul><ul><ul><li>Timing and level of leaf / shoot removal </li></ul></ul></ul><ul><ul><li>Crop load management </li></ul></ul><ul><ul><ul><li>Timing and degree of fruit removal </li></ul></ul></ul><ul><ul><li>Disease and Pest Control </li></ul></ul>
  7. 7. How do you achieve grape and wine quality? <ul><li>Luck </li></ul><ul><li>Management </li></ul><ul><ul><li>In the vineyard </li></ul></ul><ul><ul><ul><li>Plant right (location, cultivar, rootstock) </li></ul></ul></ul><ul><ul><ul><li>Trellis/training system (fit for cv. and climate) </li></ul></ul></ul><ul><ul><ul><li>Pruning (why do we prune?) </li></ul></ul></ul><ul><ul><ul><li>Crop adjustment (table grapes, wine grapes) </li></ul></ul></ul><ul><ul><ul><li>Irrigation and nutrition management </li></ul></ul></ul><ul><ul><ul><li>Pest and Disease control </li></ul></ul></ul><ul><ul><li>In the winery </li></ul></ul><ul><ul><ul><li>Harvest decisions (inputs?) </li></ul></ul></ul><ul><ul><ul><li>Brix, pH, TA, “flavor”, color, uniformity, hang time? </li></ul></ul></ul><ul><ul><ul><li>Yeast </li></ul></ul></ul><ul><ul><ul><li>Temperature, nutrition ,pump overs, </li></ul></ul></ul><ul><ul><ul><li>Oak </li></ul></ul></ul>
  8. 8. <ul><li>Determine the long-term and short-term factors we can use to manage grape quality. </li></ul><ul><li>Depending upon the size and location of the vineyard, the uniformity of fruit maturity and quality within the vineyard is heavily affected by the variability that has been identified, only some of which can be managed. </li></ul>How do you achieve grape and wine quality?
  9. 9. What are our options? <ul><li>Identify the dominant factors influencing fruit quality in each vineyard. </li></ul><ul><li>Determine which of these can be effectively manipulated to improve fruit quality. </li></ul><ul><li>Establish short and long-term management practices to produce higher quality fruit. </li></ul><ul><li>Establish harvest criteria with the winery to maximize fruit and wine quality. </li></ul>
  10. 10. Reality! <ul><li>Seasonal / annual variability in weather can overwhelm our management efforts. </li></ul><ul><li>Economics of management costs versus prices paid for fruit make some practices prohibitive. </li></ul><ul><li>Variability within a vineyard, predominantly due to non-uniform soils (horizontially and vertically) significantly inhibits our ability to achieve uniformly high quality fruit. </li></ul>
  11. 11. Goals <ul><li>Proactive </li></ul><ul><ul><li>Understand the source of variability in your vineyard (yield and quality) </li></ul></ul><ul><ul><li>Determine the potential for managing the variables to achieve more uniform yield and quality </li></ul></ul><ul><li>Reactive </li></ul><ul><ul><li>Develop a methodology to determine quality and yield prior to harvest </li></ul></ul><ul><ul><li>Develop a system to differentially manage the field to improve yield and quality and capture as much of the value as possible </li></ul></ul>
  12. 12. What we know and what we don’t <ul><li>Can you describe the soils in your vineyard </li></ul><ul><ul><li>Depth, nutrient holding capacity, pH, rootzone plant available water, infiltration rate? </li></ul></ul><ul><li>How many of you have perfectly uniform growth/productivity on all your fields? </li></ul><ul><li>How many of you have tried to “fix” the non-uniform problems? </li></ul><ul><li>Do you know what the problem(s) is/are? </li></ul><ul><li>If you don’t know what the problem is, how can you fix it? </li></ul>
  13. 13. How does this information relate to being more Proactive? <ul><li>Vineyard planning for quality </li></ul><ul><li>Better nutrient and irrigation planning and management </li></ul><ul><li>Potential prediction of quality zones </li></ul><ul><li>More efficient sampling for differential harvest, soil analysis and soil moisture measurements </li></ul><ul><li>Smarter sampling for plant stress </li></ul><ul><li>Easier “streaming” of fruit delivery at the winery (yield prediction for each quality) </li></ul>
  14. 14. Reactive Decisions ?? Surface Layer Thickness and Anthocyanin Concentration Subsurface Layer Clay Percentage and Anthocyanin Concentration Merjan: *Madera * 80 acres * MP * Drip
  15. 15. PC Analysis <ul><li>All variables significant at the 0.05 confidence level </li></ul><ul><li>High anthocyanin is predicted by deeper soil profiles with a thicker subsurface layer, decreased soil moisture in the profile and compaction occurrence at a deeper depth in the profile. </li></ul><ul><li>High Brix is predicted by shallower soil profiles with a thicker subsurface layer, thinner surface layer, increased soil moisture throughout the profile and greater compaction in the profile. </li></ul>
  16. 16. 2006 Cabernet Sauvignon Twin Creek Wines High Low Tons: 39.65 39.89 Brix: 24.3 24.5 TA: 0.59 0.60 Anthocyanin: 0.79 0.57 mg/g Color intensity 1.336 1.021 Total Phenols (Folin C) 1951 1460 flavanoid/non flav 1629/322 1100/360 Ethanol: 13.92 13.65 Note: Information provided here should not be considered as a reference for other cultivars or for this cultivar from other regions.
  17. 17. The Soil Information System Soil and Topography Information, LLC (STI) Daniel James Rooney, Ph.D.
  18. 18. <ul><li>Uses sensors such as EC or GPR, and a survey grade GPS unit to evaluate spatial variability of the soil and topography across the site. </li></ul><ul><li>With proprietary software, smart sampling locations are identified for further analysis. </li></ul>SIS™ Step 1: Surfer Bulk variability and topography across field
  19. 19. <ul><li>Uses a hydraulic push system to push probe-based sensors into the soil at predetermined locations for detailed analysis through the profile. </li></ul>SIS™ Step 2: Diver Vertical variability Sleeve tip ratio resistivity moisture
  20. 20. <ul><li>Proprietary software analyzes data from steps 1 and 2 and identifies locations for collection of soil samples. </li></ul><ul><li>SIS™ methodology enables a “smart sampling protocol”, insuring the most accurate analysis of soil chemical characteristics. </li></ul><ul><li>Also provides for future sampling and evaluation . </li></ul>SIS™ Step 3: Soil Core Smart Chemistry Sampling
  21. 21. <ul><li>Proprietary correlation and geo-processing algorithms transform data into over 60 physical and chemical soil properties. </li></ul>SIS™ Step 4: Analysis Data processing and characterization
  22. 22. <ul><li>Targeted Soil Physical </li></ul><ul><ul><li>Texture Moisture Root Limiting Moisture </li></ul></ul><ul><ul><ul><li>Soil Texture Moisture (observed) Root limiting moisture </li></ul></ul></ul><ul><ul><ul><li>Clay Percentage Field Capacity Root limiting field capacity </li></ul></ul></ul><ul><ul><ul><li>Sand Percentage Potential plant available water Root limiting plant available water </li></ul></ul></ul><ul><ul><li>Compaction Root Zone Moisture Physical Index </li></ul></ul><ul><ul><ul><li>Compaction Root zone moisture Drainage potential </li></ul></ul></ul><ul><ul><ul><li>Degree of root restriction Root zone field capacity </li></ul></ul></ul><ul><ul><ul><li>Depth of root restriction Root zone plant available water </li></ul></ul></ul><ul><ul><li>Horizon Boundaries Root zone permanent wilting point </li></ul></ul><ul><ul><ul><li>Horizon bottom depth Root zone saturation </li></ul></ul></ul><ul><ul><ul><li>Horizon thickness Root zone observed moisture status </li></ul></ul></ul><ul><ul><ul><ul><ul><li> Root zone saturated hydraulic conductivity </li></ul></ul></ul></ul></ul><ul><li>Topographic and Site </li></ul><ul><ul><li>Topographic Topographic (continued) Site </li></ul></ul><ul><ul><ul><li>Elevation Surface water convergence index Orthophoto with site boundary </li></ul></ul></ul><ul><ul><ul><li>Slope Planiform curvature Overview of all site boundaries </li></ul></ul></ul><ul><ul><ul><li>Aspect Profile curvature </li></ul></ul></ul><ul><ul><ul><li>Flow direction with elevation Solar radiation </li></ul></ul></ul><ul><ul><ul><li>SIS™ map products are available as GIS output in numerous formats: ESRI Grid, ESRI Shapefile, MapInfo Grid, MapInfo Tab, ASCII Frid, CAD DXF, GeoBMP, GeoTIFF, GeoJPEG, as well as others available upon request. </li></ul></ul></ul>SIS™ Information Products Data is delivered as SIS™ soil maps
  23. 23. SIS™ Information Products Data is delivered as SIS™ soil maps <ul><li>Targeted Chemistry/Fertility (via laboratory) </li></ul><ul><ul><li>Fertility Fertility (cont) Salinity </li></ul></ul><ul><ul><ul><li>Boron (deficiency) Organic Matter Boron (toxicity) </li></ul></ul></ul><ul><ul><ul><li>Calcium pH Chloride </li></ul></ul></ul><ul><ul><ul><li>Calcium-magnesium ration (calculated) Phosphorus Exchangeable Sodium </li></ul></ul></ul><ul><ul><ul><li>Cation exchange capacity (CEC) Potassium Sodic soil (calculated) </li></ul></ul></ul><ul><ul><ul><li>Copper Potassium magnesium ratio Sodium </li></ul></ul></ul><ul><ul><ul><li>Iron Sodium Sodium adsorption ratio </li></ul></ul></ul><ul><ul><ul><li>Magnesium Soluble salts Soluble salts </li></ul></ul></ul><ul><ul><ul><li>Manganese Sulfate </li></ul></ul></ul><ul><ul><ul><li>Nitrate – N Zinc Fertility Index </li></ul></ul></ul><ul><ul><ul><li> Nutrient holding capacity </li></ul></ul></ul><ul><li>Specialty </li></ul><ul><ul><li>Fertility Management Physical Features Texture – other </li></ul></ul><ul><ul><ul><li>Gypsum application rate Depth to moisture ratio Coarse fragments percentage </li></ul></ul></ul><ul><ul><ul><li>Lime application rate (raise pH) Depth to sand lens Compaction Remediation </li></ul></ul></ul><ul><ul><ul><li>Sulfur application ratio (lower pH) Depth to clay layer Ripping Depth – root restriction </li></ul></ul></ul><ul><ul><ul><li>Calcium application rate Depth to bottom of plow pan </li></ul></ul></ul><ul><ul><ul><li>Magnesium application rate Depth to restrictive layer Site Features </li></ul></ul></ul><ul><ul><ul><li>Phosphorus application rate Resistivity Feature Maps </li></ul></ul></ul><ul><ul><ul><li>Phosphorus availability Other </li></ul></ul></ul><ul><ul><ul><li>Management classification Mobile Geospatial View & </li></ul></ul></ul><ul><ul><ul><li>Nitrogen application rate Mapping Tool </li></ul></ul></ul><ul><ul><ul><li>Potassium application rate </li></ul></ul></ul>
  24. 24. Surface = 22 inches
  25. 25. Surface = 22 inches
  26. 26. Costs – fertility assessment and remediation 34.5 acres 80th percentile management Per acre Total SIS fertility management Per Acre Total Field mapping and recommendation $30 $1,036 $120 $4,140 Soil amendment products Lime, urea, phosphate, boron, zinc $410 $14,145 $259 $8,934 VRT application N/A N/A $20 $698 Total cost $440 $15,181 $399 $13,772 SIS savings $71 $1,409 Hypothetical 200 ac 80th percentile management Per acre Total SIS fertility management Per Acre Total Field mapping and recommendation $30 $6,000 $86 $17,200 Soil amendment products Lime, urea, phosphate, boron, zinc $410 $82,000 $259 $51,800 VRT application N/A N/A $20 $4000 Total cost $440 $88,000 $365 $73,000 SIS savings $75 $15,000
  27. 27. Meeting Our Sustainability Goals
  28. 28. Ecosystem Management Education, Training and Team Building Soil Management Water Management Vineyard Establishment Pest Management Lodi Rules Requirements
  29. 29. Thank you! We produce the worlds best soil information, accompanied by products to support your sustainable farming practices. makes the impractical practical!
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×