LA PRIMERA LEY DE LA TERMODINAMICA
SISTEMA TERMODINAMICO: Es cualquier conjunto  de objetos que conviene considerar como una unidad y que podría intercambiar...
Si se agrega calor al sistema Q es positivo Si sale calor al sistema Q es negativo
Si el sistema realiza trabajo, W es positivo Si el sistema realiza trabajo sobre el sistema, W es negativo
Se agrega calor al sistema y este efectúa trabajo Sale calor del sistema y se realiza trabajo sobre el sistema
TRABAJO REALIZADO AL CAMBIAR EL VOLUMEN El pistón se aleja de la molécula durante el choque: la molécula pierde energía ci...
El trabajo infinitesimal realizado por el sistema durante la pequeña expansión dx es dW =pAdx
Volumen aumenta (V2  V1): trabajo y área positivos Volumen disminuye (V2  V1): trabajo y área negativos
Volumen aumenta (V2  V1): trabajo y área positivos
TRAYECTORIAS ENTRE ESTADOS TERMODINAMICOS TRAYECTORIAS: El paso por una serie de estados intermedios en un sistema termodi...
 
El trabajo realizado por el sistema depende no solo de los estados inicial y final, sino también de los estados intermedio...
Expansión isotérmica lenta y controlada de un gas de un estado inicial 1 a un estado final 2 con la misma temperatura pero...
Expansión rápida, sin control, del mismo gas partiendo del mismo estado 1 y terminando en el mismo estado 2 El calor depen...
ENERGIA INTERNA: La  energía interna  de un sistema, es el resultado de la  energía cinética  de las  moléculas  o  átomos...
Convencionalmente , cuando se produce una variación de la energía interna sin que se modifique la composición química del ...
∆ U = Q – W  ( primera ley de la termodinámica) Si la transformación no es cíclica  ∆ U =0   Si no se realiza trabajo mecá...
Se agrega al sistema mas calor que el trabajo efectuado por este: la energía interna aumenta del  sistema  aumenta
Sale del sistema mas calor que el trabajo efectuado: la energía interna del sistema disminuye
El trabajo agregado al sistema es igual al trabajo realizado: la energía interna del sistema no cambia
Todos los días, nuestro cuerpo (un sistema termodinámico) realiza un proceso termodinámico cíclico como el que se muestra ...
Un estudiante de 60 kg se propone comer un mantecado de 900 calorías (con crema batida) y luego subir corriendo varios tra...
La grafica pV de la figura muestra una serie de procesos termodinámicos. En el proceso ab, se agregan 150 J de calor al si...
Un gramo de agua (1 cm 3 ) se convierte en 1671 cm 3 ) de vapor cuando se hierve a presión constante de 1 atm. El calor de...
TIPOS DE PROCESOS TERMODINAMCOS
 
 
Energía Interna del gas ideal La energía interna de una gas  ideal depende solo de su temperatura, no de su presión ni de ...
Capacidad calorífica del gas ideal Capacidad calorífica molar a volumen constante (Cv) para los gases Capacidad calorífica...
 
Para un gas monoatómico con comportamiento ideal Cv =3/2R Para un gas diatomico con comportamiento ideal Cv =5/2R Para  el...
Una recamara común contiene unos 2500 moles de aire. Calcule el cambio de energía interna de esta cantidad de aire cuando ...
 
La razón de compresión de un motor a diesel es de 15 a 1; esto implica que el aire de los cilindros se comprime a 1/15 de ...
En el ejemplo anterior, ¿Cuánto trabajo efectúa el gas durante la compresión si el volumen inicial del cilindro es de 1.00...
Upcoming SlideShare
Loading in...5
×

Primera Ley De Termodinamica

17,716

Published on

Published in: Technology, Business

Transcript of "Primera Ley De Termodinamica"

  1. 1. LA PRIMERA LEY DE LA TERMODINAMICA
  2. 2. SISTEMA TERMODINAMICO: Es cualquier conjunto de objetos que conviene considerar como una unidad y que podría intercambiar energía con el contorno PROCESO TERMODINAMICO: Es aquel en el cual hay cambios en el estado de un sistema termodinámico
  3. 3. Si se agrega calor al sistema Q es positivo Si sale calor al sistema Q es negativo
  4. 4. Si el sistema realiza trabajo, W es positivo Si el sistema realiza trabajo sobre el sistema, W es negativo
  5. 5. Se agrega calor al sistema y este efectúa trabajo Sale calor del sistema y se realiza trabajo sobre el sistema
  6. 6. TRABAJO REALIZADO AL CAMBIAR EL VOLUMEN El pistón se aleja de la molécula durante el choque: la molécula pierde energía cinética y efectúa trabajo positivo sobre el pistón El pistón se mueve hacia la molécula durante el choque: la molécula gana energía cinética y efectúa trabajo positivo negativo sobre el pistón
  7. 7. El trabajo infinitesimal realizado por el sistema durante la pequeña expansión dx es dW =pAdx
  8. 8. Volumen aumenta (V2  V1): trabajo y área positivos Volumen disminuye (V2  V1): trabajo y área negativos
  9. 9. Volumen aumenta (V2  V1): trabajo y área positivos
  10. 10. TRAYECTORIAS ENTRE ESTADOS TERMODINAMICOS TRAYECTORIAS: El paso por una serie de estados intermedios en un sistema termodinámico
  11. 12. El trabajo realizado por el sistema depende no solo de los estados inicial y final, sino también de los estados intermedios, es decir, de la trayectoria
  12. 13. Expansión isotérmica lenta y controlada de un gas de un estado inicial 1 a un estado final 2 con la misma temperatura pero menor presión
  13. 14. Expansión rápida, sin control, del mismo gas partiendo del mismo estado 1 y terminando en el mismo estado 2 El calor depende no solo de los estados inicial y final, sino también de la trayectoria
  14. 15. ENERGIA INTERNA: La energía interna de un sistema, es el resultado de la energía cinética de las moléculas o átomos que lo constituyen, de sus energía de rotación y vibración, además de la energía potencial intermolecular debida a las fuerzas de tipo gravitatorio, electromagnético y nuclear, que constituyen conjuntamente las interacciones fundamentales ∆ U = U2 – U1
  15. 16. Convencionalmente , cuando se produce una variación de la energía interna sin que se modifique la composición química del sistema, se habla de variación de la energía interna sensible . Si se produce alteración de la estructura atómica-molecular, como es el caso de las reacciones químicas , se habla de variación de la energía interna química . Finalmente, en las reacciones de fisión y fusión se habla de energía interna nuclear . En todo sistema aislado (que no puede intercambiar energía con el exterior), la energía interna se conserva (Primer Principio de la Termodinámica ). El cambio de energía interna de un sistema durante un proceso termodinámico depende solo de lo estados inicial y final, no de su trayectoria que lleva de uno al otro
  16. 17. ∆ U = Q – W ( primera ley de la termodinámica) Si la transformación no es cíclica ∆ U =0 Si no se realiza trabajo mecánico ∆ U=Q Si el sistema está aislado térmicamente ∆ U= -W Si el sistema realiza trabajo, U disminuye Si se realiza trabajo sobre el sistema, U aumenta Si el sistema absorbe calor al ponerlo en contacto térmico con un foco a temperatura superior, U aumenta. Si el sistema cede calor al ponerlo en contacto térmico con un foco a una temperatura inferior, U disminuye
  17. 18. Se agrega al sistema mas calor que el trabajo efectuado por este: la energía interna aumenta del sistema aumenta
  18. 19. Sale del sistema mas calor que el trabajo efectuado: la energía interna del sistema disminuye
  19. 20. El trabajo agregado al sistema es igual al trabajo realizado: la energía interna del sistema no cambia
  20. 21. Todos los días, nuestro cuerpo (un sistema termodinámico) realiza un proceso termodinámico cíclico como el que se muestra aquí. Se agrega calor Q metabolizando comida, y el cuerpo realiza un trabajo al respirar, caminar y efectuar otras actividades. Si volvemos al mismo estado al final del día, Q =W y el cambio neto de nuestra energía interna es cero
  21. 22. Un estudiante de 60 kg se propone comer un mantecado de 900 calorías (con crema batida) y luego subir corriendo varios tramos de escaleras para quemar energía que ingirió. ¿A que altura debe trepar? La figura es una grafica pV para un proceso cíclico, en el que los estados inicial y final son el mismo. Inicia en a y procede en sentido antihorario en la grafica p V hasta b y vuelve a a, siendo el trabajo total W 0 -500 J. a)¿Por que es negativo el trabajo? b) Calcule el cambio de energía interna y el calor agregado en el proceso
  22. 23. La grafica pV de la figura muestra una serie de procesos termodinámicos. En el proceso ab, se agregan 150 J de calor al sistema; en el bd, se agregan 600 J. Determine: El cambio de energía interna en le proceso ab El cambio de energía interna en el proceso abd El calor total agregado en el proceso acd
  23. 24. Un gramo de agua (1 cm 3 ) se convierte en 1671 cm 3 ) de vapor cuando se hierve a presión constante de 1 atm. El calor de vaporización a esta presión es Lv= 2.256x 106 J/kg. Determine: El trabajo efectuado por el agua al vaporizarse Su aumento de energía interna
  24. 25. TIPOS DE PROCESOS TERMODINAMCOS
  25. 28. Energía Interna del gas ideal La energía interna de una gas ideal depende solo de su temperatura, no de su presión ni de su volumen
  26. 29. Capacidad calorífica del gas ideal Capacidad calorífica molar a volumen constante (Cv) para los gases Capacidad calorífica molar a presión constante (Cp) para los sólidos y líquidos
  27. 31. Para un gas monoatómico con comportamiento ideal Cv =3/2R Para un gas diatomico con comportamiento ideal Cv =5/2R Para el gas ideal, el cambio de energía interna en cualquier proceso esta dado por  U=nCv  T, sea constante o no el volumen
  28. 32. Una recamara común contiene unos 2500 moles de aire. Calcule el cambio de energía interna de esta cantidad de aire cuando se enfría de 23.9º C a 11.6º C a presión constante de 1.00 atm. Trate el aire como un gas ideal con  = 1.4 Procesos adiabáticos para el gas ideal
  29. 34. La razón de compresión de un motor a diesel es de 15 a 1; esto implica que el aire de los cilindros se comprime a 1/15 de su volumen inicial. Si la presión inicial es de 1.01 x 10 5 Pa y la temperatura inicial es de 27º C, calcule la presión y temperatura finales después de la compresión. El aire es en su mayor parte una mezcla de oxigeno y nitrógeno diatomicos; trátelo como gas ideal con  = 1.40
  30. 35. En el ejemplo anterior, ¿Cuánto trabajo efectúa el gas durante la compresión si el volumen inicial del cilindro es de 1.00 L = 1.00 x 10 -3 m 3 ? Suponga que Cv para el aire es de 20.8 J/mol.K y  = 1.40

×