SlideShare a Scribd company logo
1 of 8
MAKALAH FISIKA
“TERMODINAMIKA”
Nama : Dwiki Yordan
Kelas / No : 2 KIC/12
Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan')
adalah fisika energi , panas, kerja, entropi dan kespontanan proses.
Pada sistem di mana terjadi proses perubahan wujud atau pertukaran energi,
termodinamika klasik tidak berhubungan dengan kinetika reaksi (kecepatan suatu
proses reaksi berlangsung). Karena alasan ini, penggunaan istilah "termodinamika"
biasanya merujuk pada termodinamika setimbang. Dengan hubungan ini, konsep
utama dalam termodinamika adalah proses kuasistatik, yang diidealkan, proses "super
pelan". Proses termodinamika bergantung-waktu dipelajari dalam termodinamika tak-
setimbang.
Karena termodinamika tidak berhubungan dengan konsep waktu, telah diusulkan
bahwa termodinamika setimbang seharusnya dinamakan termostatik.
Hukum termodinamika kebenarannya sangat umum, dan hukum-hukum ini tidak
bergantung kepada rincian dari interaksi atau sistem yang diteliti. Ini berarti mereka
dapat diterapkan ke sistem di mana seseorang tidak tahu apa pun kecual perimbangan
transfer energi dan wujud di antara mereka dan lingkungan. Contohnya termasuk
perkiraan Einstein tentang emisi spontan dalam abad ke-20 dan riset sekarang ini
tentang termodinamika benda hitam.
Konsep dasar dalam termodinamika
Pengabstrakkan dasar atas termodinamika adalah pembagian dunia menjadi sistem
dibatasi oleh kenyataan atau ideal dari batasan. Sistem yang tidak termasuk dalam
pertimbangan digolongkan sebagai lingkungan. Dan pembagian sistem menjadi
subsistem masih mungkin terjadi, atau membentuk beberapa sistem menjadi sistem
yang lebih besar. Biasanya sistem dapat diberikan keadaan yang dirinci dengan jelas
yang dapat diuraikan menjadi beberapa parameter.
Sistem termodinamika
Sistem termodinamika adalah bagian dari jagat raya yang diperhitungkan. Sebuah
batasan yang nyata atau imajinasi memisahkan sistem dengan jagat raya, yang disebut
lingkungan. Klasifikasi sistem termodinamika berdasarkan pada sifat batas sistem-
lingkungan dan perpindahan materi, kalor dan entropi antara sistem dan lingkungan.
Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan
lingkungan:
sistem terisolasi: tak terjadi pertukaran panas, benda atau kerja dengan lingkungan.
Contoh dari sistem terisolasi adalah wadah terisolasi, seperti tabung gas terisolasi.
sistem tertutup: terjadi pertukaran energi (panas dan kerja) tetapi tidak terjadi
pertukaran benda dengan lingkungan. Rumah hijau adalah contoh dari sistem
tertutup di mana terjadi pertukaran panas tetapi tidak terjadi pertukaran kerja
dengan lingkungan. Apakah suatu sistem terjadi pertukaran panas, kerja atau
keduanya biasanya dipertimbangkanh sebagai sifat pembatasnya:
pembatas adiabatik: tidak memperbolehkan pertukaran panas.
pembatas rigid: tidak memperbolehkan pertukaran kerja.
sistem terbuka: terjadi pertukaran energi (panas dan kerja) dan benda dengan
lingkungannya. Sebuah pembatas memperbolehkan pertukaran benda disebut
permeabel.Samudra merupakan contoh dari sistem terbuka.
Dalam kenyataan, sebuah sistem tidak dapat terisolasi sepenuhnya dari lingkungan,
karena pasti ada terjadi sedikit pencampuran, meskipun hanya penerimaan sedikit
penarikangravitasi. Dalam analisis sistem terisolasi, energi yang masuk ke sistem sama
dengan energi yang keluar dari sistem.
Keadaan termodinamika
Ketika sistem dalam keadaan seimbang dalam kondisi yang ditentukan, ini disebut
dalam keadaan pasti (atau keadaan sistem).
Untuk keadaan termodinamika tertentu, banyak sifat dari sistem dispesifikasikan.
Properti yang tidak tergantung dengan jalur di mana sistem itu membentuk keadaan
tersebut, disebut fungsi keadaan dari sistem. Bagian selanjutnya dalam seksi ini hanya
mempertimbangkan properti, yang merupakan fungsi keadaan.
Jumlah properti minimal yang harus dispesifikasikan untuk menjelaskan keadaan dari
sistem tertentu ditentukan oleh Hukum fase Gibbs. Biasanya seseorang berhadapan
dengan properti sistem yang lebih besar, dari jumlah minimal tersebut.
Pengembangan hubungan antara properti dari keadaan yang berlainan
dimungkinkan. Persamaan keadaan adalah contoh dari hubungan tersebut.
Hukum-hukum Dasar Termodinamika
Terdapat empat Hukum Dasar yang berlaku di dalam sistem termodinamika, yaitu:
Hukum Awal (Zeroth Law) Termodinamika
Hukum ini menyatakan bahwa dua sistem dalam keadaan setimbang dengan
sistem ketiga, maka ketiganya dalam saling setimbang satu dengan lainnya.
Hukum Pertama Termodinamika
Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan
perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan
total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang
dilakukan terhadap sistem.
Hukum kedua Termodinamika
Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan
bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk
meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya.
Hukum ketiga Termodinamika
Hukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini
menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut,
semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum.
Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna
pada temperatur nol absolut bernilai nol.
Usaha Luar
Usaha luar dilakukan oleh sistem, jika kalor ditambahkan (dipanaskan) atau kalor
dikurangi (didinginkan) terhadap sistem. Jika kalor diterapkan kepada gas yang
menyebabkan perubahan volume gas, usaha luar akan dilakukan oleh gas tersebut.
Usaha yang dilakukan oleh gas ketika volume berubah dari volume awal V1 menjadi
volume akhir V2 pada tekanan p konstan dinyatakan sebagai hasil kali tekanan dengan
perubahan volumenya.
Energi Dalam
Suatu gas yang berada dalam suhu tertentu dikatakan memiliki energi dalam. Energi
dalam gas berkaitan dengan suhu gas tersebut dan merupakan sifat mikroskopik gas
tersebut. Meskipun gas tidak melakukan atau menerima usaha, gas tersebut dapat
memiliki energi yang tidak tampak tetapi terkandung dalam gas tersebut yang hanya
dapat ditinjau secara mikroskopik.
Berdasarkan teori kinetik gas, gas terdiri atas partikel-partikel yang berada dalam
keadaan gerak yang acak. Gerakan partikel ini disebabkan energi kinetik rata-rata dari
seluruh partikel yang bergerak. Energi kinetik ini berkaitan dengan suhu mutlak gas.
Jadi, energi dalam dapat ditinjau sebagai jumlah keseluruhan energi kinetik dan
potensial yang terkandung dan dimiliki oleh partikel-partikel di dalam gas tersebut
dalam skala mikroskopik. Dan, energi dalam gas sebanding dengan suhu mutlak gas.
Oleh karena itu, perubahan suhu gas akan menyebabkan perubahan energi dalam gas.
Hukum I Termodinamika
Jika kalor diberikan kepada sistem, volume dan suhu sistem akan bertambah (sistem
akan terlihat mengembang dan bertambah panas). Sebaliknya, jika kalor diambil dari
sistem, volume dan suhu sistem akan berkurang (sistem tampak mengerut dan terasa
lebih dingin). Prinsip ini merupakan
Sistem yang mengalami perubahan volume akan melakukan usaha dan sistem yang
mengalami perubahan suhu akan mengalami perubahan energi dalam. Jadi, kalor yang
diberikan kepada sistem akan menyebabkan sistem melakukan usaha dan mengalami
perubahan energi dalam. Prinsip ini dikenal sebagai hukum kekekalan energi dalam
termodinamika atau disebut hukum I termodinamika. Secara matematis, hukum I
termodinamika dituliskan sebagai
Q = W + ∆U
Dimana Q adalah kalor, W adalah usaha, dan ∆U adalah perubahan energi dalam.
Secara sederhana, hukum I termodinamika dapat dinyatakan sebagai berikut.
Jika suatu benda (misalnya krupuk) dipanaskan (atau digoreng) yang berarti diberi
kalor Q, benda (krupuk) akan mengembang atau bertambah volumenya yang berarti
melakukan usaha W dan benda (krupuk) akan bertambah panas (coba aja dipegang,
pasti panas deh!) yang berarti mengalami perubahan energi dalam ∆U.
Proses Isotermik
Suatu sistem dapat mengalami proses termodinamika dimana terjadi perubahan-
perubahan di dalam sistem tersebut. Jika proses yang terjadi berlangsung dalam suhu
konstan, proses ini dinamakan proses isotermik. Karena berlangsung dalam suhu
konstan, tidak terjadi perubahan energi dalam (∆U = 0) dan berdasarkan hukum I
termodinamika kalor yang diberikan sama dengan usaha yang dilakukan sistem
(Q = W).
Proses Isokhorik
Jika gas melakukan proses termodinamika dalam volume yang konstan, gas
dikatakan melakukan proses isokhorik. Karena gas berada dalam volume konstan (∆V
= 0), gas tidak melakukan usaha (W = 0) dan kalor yang diberikan sama dengan
perubahan energi dalamnya. Kalor di sini dapat dinyatakan sebagai kalor gas pada
volume konstan QV.
QV = ∆U
Proses Isobarik
Jika gas melakukan proses termodinamika dengan menjaga tekanan tetap konstan,
gas dikatakan melakukan proses isobarik. Karena gas berada dalam tekanan konstan,
gas melakukan usaha (W = p∆V). Kalor di sini dapat dinyatakan sebagai kalor gas pada
tekanan konstanQp. Berdasarkan hukum I termodinamika, pada proses isobarik berlaku
Sebelumnya telah dituliskan bahwa perubahan energi dalam sama dengan kalor yang
diserap gas pada volume konstan
QV =∆U
Dari sini usaha gas dapat dinyatakan sebagai
W = Qp − QV
Jadi, usaha yang dilakukan oleh gas (W) dapat dinyatakan sebagai selisih energi
(kalor) yang diserap gas pada tekanan konstan (Qp) dengan energi (kalor) yang diserap
gas pada volume konstan (QV).
Proses Adiabatik
Dalam proses adiabatik tidak ada kalor yang masuk (diserap) ataupun keluar
(dilepaskan) oleh sistem (Q = 0). Dengan demikian, usaha yang dilakukan gas sama
dengan perubahan energi dalamnya (W = ∆U).
Jika suatu sistem berisi gas yang mula-mula mempunyai tekanan dan volume
masing-masing p1 dan V1 mengalami proses adiabatik sehingga tekanan dan volume
gas berubah menjadi p2 dan V2, usaha yang dilakukan gas dapat dinyatakan sebagai
Dimana γ adalah konstanta yang diperoleh perbandingan kapasitas kalor molar gas
pada tekanan dan volume konstan dan mempunyai nilai yang lebih besar dari 1 (γ > 1).
Proses adiabatik dapat digambarkan dalam grafik p – V dengan bentuk kurva yang
mirip dengan grafik p – V pada proses isotermik namun dengan kelengkungan yang
lebih curam.

More Related Content

What's hot

Termodinamika (1- 2) j besaran_-_ besaran_sistem
Termodinamika (1- 2) j besaran_-_ besaran_sistemTermodinamika (1- 2) j besaran_-_ besaran_sistem
Termodinamika (1- 2) j besaran_-_ besaran_sistemjayamartha
 
KIMIA FISIKA TERMODINAMIKA
KIMIA FISIKA TERMODINAMIKAKIMIA FISIKA TERMODINAMIKA
KIMIA FISIKA TERMODINAMIKASiti Avirda
 
Termodinamika1
Termodinamika1Termodinamika1
Termodinamika1APRIL
 
Termodinamika dasar 2..
Termodinamika dasar 2..Termodinamika dasar 2..
Termodinamika dasar 2..basyrul arafah
 
Materi gas & termodinamika
Materi gas & termodinamikaMateri gas & termodinamika
Materi gas & termodinamikaDzurrahmah Sa'idah
 
Termokimia, sistem dan lingkungan
Termokimia, sistem dan lingkungan Termokimia, sistem dan lingkungan
Termokimia, sistem dan lingkungan Tita Nur Amalah
 
Pengantar termodinamika-kimia-hk-1
Pengantar termodinamika-kimia-hk-1Pengantar termodinamika-kimia-hk-1
Pengantar termodinamika-kimia-hk-1Eka Puspa Rini
 
Hukum 1 thermodinamika pada beberapa proses thermodinamika
Hukum 1 thermodinamika pada beberapa proses thermodinamikaHukum 1 thermodinamika pada beberapa proses thermodinamika
Hukum 1 thermodinamika pada beberapa proses thermodinamikaayu larissa
 
Tugas Kimdas (Hukum 3 termodinamika)
Tugas Kimdas (Hukum 3 termodinamika)Tugas Kimdas (Hukum 3 termodinamika)
Tugas Kimdas (Hukum 3 termodinamika)Chaed Al Habibah
 
Isobarik dan Isotermal Fisika(Ms Office Comp.2010)
Isobarik dan Isotermal Fisika(Ms Office Comp.2010)Isobarik dan Isotermal Fisika(Ms Office Comp.2010)
Isobarik dan Isotermal Fisika(Ms Office Comp.2010)M Fahmi Ansori
 

What's hot (20)

Termodinamika
TermodinamikaTermodinamika
Termodinamika
 
Termodinamika (1- 2) j besaran_-_ besaran_sistem
Termodinamika (1- 2) j besaran_-_ besaran_sistemTermodinamika (1- 2) j besaran_-_ besaran_sistem
Termodinamika (1- 2) j besaran_-_ besaran_sistem
 
KIMIA FISIKA TERMODINAMIKA
KIMIA FISIKA TERMODINAMIKAKIMIA FISIKA TERMODINAMIKA
KIMIA FISIKA TERMODINAMIKA
 
Aplikasi termodinamika
Aplikasi termodinamikaAplikasi termodinamika
Aplikasi termodinamika
 
Termodinamika
TermodinamikaTermodinamika
Termodinamika
 
Termodinamika1
Termodinamika1Termodinamika1
Termodinamika1
 
Termodinamika
TermodinamikaTermodinamika
Termodinamika
 
Termodinamika modul
Termodinamika modulTermodinamika modul
Termodinamika modul
 
Termodinamika dasar 2..
Termodinamika dasar 2..Termodinamika dasar 2..
Termodinamika dasar 2..
 
Materi gas dan termodinamika
Materi gas dan termodinamikaMateri gas dan termodinamika
Materi gas dan termodinamika
 
Materi gas & termodinamika
Materi gas & termodinamikaMateri gas & termodinamika
Materi gas & termodinamika
 
Termokimia, sistem dan lingkungan
Termokimia, sistem dan lingkungan Termokimia, sistem dan lingkungan
Termokimia, sistem dan lingkungan
 
Pengantar termodinamika-kimia-hk-1
Pengantar termodinamika-kimia-hk-1Pengantar termodinamika-kimia-hk-1
Pengantar termodinamika-kimia-hk-1
 
Hukum 1 thermodinamika pada beberapa proses thermodinamika
Hukum 1 thermodinamika pada beberapa proses thermodinamikaHukum 1 thermodinamika pada beberapa proses thermodinamika
Hukum 1 thermodinamika pada beberapa proses thermodinamika
 
HUKUM TERMODINAMIKA 1,2,3
HUKUM TERMODINAMIKA 1,2,3HUKUM TERMODINAMIKA 1,2,3
HUKUM TERMODINAMIKA 1,2,3
 
Tugas Kimdas (Hukum 3 termodinamika)
Tugas Kimdas (Hukum 3 termodinamika)Tugas Kimdas (Hukum 3 termodinamika)
Tugas Kimdas (Hukum 3 termodinamika)
 
Hukum I termodinamika
Hukum I termodinamikaHukum I termodinamika
Hukum I termodinamika
 
Termodinamika
TermodinamikaTermodinamika
Termodinamika
 
Fisika TERMODINAMIKA
Fisika TERMODINAMIKAFisika TERMODINAMIKA
Fisika TERMODINAMIKA
 
Isobarik dan Isotermal Fisika(Ms Office Comp.2010)
Isobarik dan Isotermal Fisika(Ms Office Comp.2010)Isobarik dan Isotermal Fisika(Ms Office Comp.2010)
Isobarik dan Isotermal Fisika(Ms Office Comp.2010)
 

Viewers also liked

Termodinamika kimia (pertemuan 1)
Termodinamika kimia (pertemuan 1)Termodinamika kimia (pertemuan 1)
Termodinamika kimia (pertemuan 1)Utami Irawati
 
Termodinamika
TermodinamikaTermodinamika
Termodinamikarossanty
 
Soal termodinamika dan
Soal termodinamika danSoal termodinamika dan
Soal termodinamika danVictor Maruli
 
Contoh Soal dan Pembahasan Teori Kinetik Gas
Contoh Soal dan Pembahasan Teori Kinetik GasContoh Soal dan Pembahasan Teori Kinetik Gas
Contoh Soal dan Pembahasan Teori Kinetik GasRenny Aniwarna
 
Hukum Termodinamika 2 & 3 Dan Mesin Panas
Hukum Termodinamika 2 & 3 Dan Mesin PanasHukum Termodinamika 2 & 3 Dan Mesin Panas
Hukum Termodinamika 2 & 3 Dan Mesin PanasJefris Okdean
 

Viewers also liked (9)

Termodinamika kimia (pertemuan 1)
Termodinamika kimia (pertemuan 1)Termodinamika kimia (pertemuan 1)
Termodinamika kimia (pertemuan 1)
 
Termodinamika
TermodinamikaTermodinamika
Termodinamika
 
soal-soal termodinamika
soal-soal termodinamikasoal-soal termodinamika
soal-soal termodinamika
 
Soal termodinamika dan
Soal termodinamika danSoal termodinamika dan
Soal termodinamika dan
 
Contoh Soal dan Pembahasan Teori Kinetik Gas
Contoh Soal dan Pembahasan Teori Kinetik GasContoh Soal dan Pembahasan Teori Kinetik Gas
Contoh Soal dan Pembahasan Teori Kinetik Gas
 
Hukum Termodinamika 2 & 3 Dan Mesin Panas
Hukum Termodinamika 2 & 3 Dan Mesin PanasHukum Termodinamika 2 & 3 Dan Mesin Panas
Hukum Termodinamika 2 & 3 Dan Mesin Panas
 
Termodinamika
TermodinamikaTermodinamika
Termodinamika
 
termodinamika rpp
termodinamika rpptermodinamika rpp
termodinamika rpp
 
Termodinamika dan mesin kalor
Termodinamika dan mesin kalorTermodinamika dan mesin kalor
Termodinamika dan mesin kalor
 

Similar to MAKALAH FISIKA TERMODINAMIKA

Similar to MAKALAH FISIKA TERMODINAMIKA (20)

Termodinamika
TermodinamikaTermodinamika
Termodinamika
 
Hukum termodinamika
Hukum termodinamikaHukum termodinamika
Hukum termodinamika
 
Laporan Kimia - thermokimia
Laporan Kimia - thermokimiaLaporan Kimia - thermokimia
Laporan Kimia - thermokimia
 
Termodinamika.pptx
Termodinamika.pptxTermodinamika.pptx
Termodinamika.pptx
 
termodinamika
termodinamikatermodinamika
termodinamika
 
Kelompok 1
Kelompok 1Kelompok 1
Kelompok 1
 
Termodinamika
TermodinamikaTermodinamika
Termodinamika
 
2 Termodinamika dan Statistika (Tinjauan Singkat).pptx
2 Termodinamika dan Statistika (Tinjauan Singkat).pptx2 Termodinamika dan Statistika (Tinjauan Singkat).pptx
2 Termodinamika dan Statistika (Tinjauan Singkat).pptx
 
thermokimia
thermokimiathermokimia
thermokimia
 
dv.pptx
dv.pptxdv.pptx
dv.pptx
 
Termodinamika suhu dan kalor non reg
Termodinamika suhu dan kalor non regTermodinamika suhu dan kalor non reg
Termodinamika suhu dan kalor non reg
 
TERMODINAMIKA.pptx
TERMODINAMIKA.pptxTERMODINAMIKA.pptx
TERMODINAMIKA.pptx
 
Konsep Dasar Termodinamika part 1.pptx
Konsep Dasar Termodinamika part 1.pptxKonsep Dasar Termodinamika part 1.pptx
Konsep Dasar Termodinamika part 1.pptx
 
Makalah hukum hess, delta H dan energi ikatan
Makalah hukum hess, delta H dan energi ikatanMakalah hukum hess, delta H dan energi ikatan
Makalah hukum hess, delta H dan energi ikatan
 
MAKALAH TERMODINAMIKA.docx
MAKALAH TERMODINAMIKA.docxMAKALAH TERMODINAMIKA.docx
MAKALAH TERMODINAMIKA.docx
 
Thermodinamika Kimia
Thermodinamika KimiaThermodinamika Kimia
Thermodinamika Kimia
 
Materi pertemuan 2
Materi pertemuan 2Materi pertemuan 2
Materi pertemuan 2
 
Makalah thermokimia
Makalah thermokimiaMakalah thermokimia
Makalah thermokimia
 
Termodinamika
TermodinamikaTermodinamika
Termodinamika
 
Termodinamika
TermodinamikaTermodinamika
Termodinamika
 

More from Wikiwikpunana Uyuun (7)

Bab iii-keterbukaan-dan-keadilan1
Bab iii-keterbukaan-dan-keadilan1Bab iii-keterbukaan-dan-keadilan1
Bab iii-keterbukaan-dan-keadilan1
 
Budaya politik-utk-print
Budaya politik-utk-printBudaya politik-utk-print
Budaya politik-utk-print
 
(1280476297)pkn xi bab 2
(1280476297)pkn xi bab 2(1280476297)pkn xi bab 2
(1280476297)pkn xi bab 2
 
Re
ReRe
Re
 
Makalh bunyi
Makalh bunyiMakalh bunyi
Makalh bunyi
 
Transmitter
TransmitterTransmitter
Transmitter
 
Transmitter
TransmitterTransmitter
Transmitter
 

MAKALAH FISIKA TERMODINAMIKA

  • 1. MAKALAH FISIKA “TERMODINAMIKA” Nama : Dwiki Yordan Kelas / No : 2 KIC/12
  • 2. Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan') adalah fisika energi , panas, kerja, entropi dan kespontanan proses. Pada sistem di mana terjadi proses perubahan wujud atau pertukaran energi, termodinamika klasik tidak berhubungan dengan kinetika reaksi (kecepatan suatu proses reaksi berlangsung). Karena alasan ini, penggunaan istilah "termodinamika" biasanya merujuk pada termodinamika setimbang. Dengan hubungan ini, konsep utama dalam termodinamika adalah proses kuasistatik, yang diidealkan, proses "super pelan". Proses termodinamika bergantung-waktu dipelajari dalam termodinamika tak- setimbang. Karena termodinamika tidak berhubungan dengan konsep waktu, telah diusulkan bahwa termodinamika setimbang seharusnya dinamakan termostatik. Hukum termodinamika kebenarannya sangat umum, dan hukum-hukum ini tidak bergantung kepada rincian dari interaksi atau sistem yang diteliti. Ini berarti mereka dapat diterapkan ke sistem di mana seseorang tidak tahu apa pun kecual perimbangan transfer energi dan wujud di antara mereka dan lingkungan. Contohnya termasuk perkiraan Einstein tentang emisi spontan dalam abad ke-20 dan riset sekarang ini tentang termodinamika benda hitam. Konsep dasar dalam termodinamika Pengabstrakkan dasar atas termodinamika adalah pembagian dunia menjadi sistem dibatasi oleh kenyataan atau ideal dari batasan. Sistem yang tidak termasuk dalam pertimbangan digolongkan sebagai lingkungan. Dan pembagian sistem menjadi subsistem masih mungkin terjadi, atau membentuk beberapa sistem menjadi sistem yang lebih besar. Biasanya sistem dapat diberikan keadaan yang dirinci dengan jelas yang dapat diuraikan menjadi beberapa parameter. Sistem termodinamika Sistem termodinamika adalah bagian dari jagat raya yang diperhitungkan. Sebuah batasan yang nyata atau imajinasi memisahkan sistem dengan jagat raya, yang disebut
  • 3. lingkungan. Klasifikasi sistem termodinamika berdasarkan pada sifat batas sistem- lingkungan dan perpindahan materi, kalor dan entropi antara sistem dan lingkungan. Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan lingkungan: sistem terisolasi: tak terjadi pertukaran panas, benda atau kerja dengan lingkungan. Contoh dari sistem terisolasi adalah wadah terisolasi, seperti tabung gas terisolasi. sistem tertutup: terjadi pertukaran energi (panas dan kerja) tetapi tidak terjadi pertukaran benda dengan lingkungan. Rumah hijau adalah contoh dari sistem tertutup di mana terjadi pertukaran panas tetapi tidak terjadi pertukaran kerja dengan lingkungan. Apakah suatu sistem terjadi pertukaran panas, kerja atau keduanya biasanya dipertimbangkanh sebagai sifat pembatasnya: pembatas adiabatik: tidak memperbolehkan pertukaran panas. pembatas rigid: tidak memperbolehkan pertukaran kerja. sistem terbuka: terjadi pertukaran energi (panas dan kerja) dan benda dengan lingkungannya. Sebuah pembatas memperbolehkan pertukaran benda disebut permeabel.Samudra merupakan contoh dari sistem terbuka. Dalam kenyataan, sebuah sistem tidak dapat terisolasi sepenuhnya dari lingkungan, karena pasti ada terjadi sedikit pencampuran, meskipun hanya penerimaan sedikit penarikangravitasi. Dalam analisis sistem terisolasi, energi yang masuk ke sistem sama dengan energi yang keluar dari sistem. Keadaan termodinamika Ketika sistem dalam keadaan seimbang dalam kondisi yang ditentukan, ini disebut dalam keadaan pasti (atau keadaan sistem). Untuk keadaan termodinamika tertentu, banyak sifat dari sistem dispesifikasikan. Properti yang tidak tergantung dengan jalur di mana sistem itu membentuk keadaan tersebut, disebut fungsi keadaan dari sistem. Bagian selanjutnya dalam seksi ini hanya mempertimbangkan properti, yang merupakan fungsi keadaan.
  • 4. Jumlah properti minimal yang harus dispesifikasikan untuk menjelaskan keadaan dari sistem tertentu ditentukan oleh Hukum fase Gibbs. Biasanya seseorang berhadapan dengan properti sistem yang lebih besar, dari jumlah minimal tersebut. Pengembangan hubungan antara properti dari keadaan yang berlainan dimungkinkan. Persamaan keadaan adalah contoh dari hubungan tersebut. Hukum-hukum Dasar Termodinamika Terdapat empat Hukum Dasar yang berlaku di dalam sistem termodinamika, yaitu: Hukum Awal (Zeroth Law) Termodinamika Hukum ini menyatakan bahwa dua sistem dalam keadaan setimbang dengan sistem ketiga, maka ketiganya dalam saling setimbang satu dengan lainnya. Hukum Pertama Termodinamika Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem. Hukum kedua Termodinamika Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya. Hukum ketiga Termodinamika Hukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut, semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum. Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol.
  • 5. Usaha Luar Usaha luar dilakukan oleh sistem, jika kalor ditambahkan (dipanaskan) atau kalor dikurangi (didinginkan) terhadap sistem. Jika kalor diterapkan kepada gas yang menyebabkan perubahan volume gas, usaha luar akan dilakukan oleh gas tersebut. Usaha yang dilakukan oleh gas ketika volume berubah dari volume awal V1 menjadi volume akhir V2 pada tekanan p konstan dinyatakan sebagai hasil kali tekanan dengan perubahan volumenya. Energi Dalam Suatu gas yang berada dalam suhu tertentu dikatakan memiliki energi dalam. Energi dalam gas berkaitan dengan suhu gas tersebut dan merupakan sifat mikroskopik gas tersebut. Meskipun gas tidak melakukan atau menerima usaha, gas tersebut dapat memiliki energi yang tidak tampak tetapi terkandung dalam gas tersebut yang hanya dapat ditinjau secara mikroskopik. Berdasarkan teori kinetik gas, gas terdiri atas partikel-partikel yang berada dalam keadaan gerak yang acak. Gerakan partikel ini disebabkan energi kinetik rata-rata dari seluruh partikel yang bergerak. Energi kinetik ini berkaitan dengan suhu mutlak gas. Jadi, energi dalam dapat ditinjau sebagai jumlah keseluruhan energi kinetik dan potensial yang terkandung dan dimiliki oleh partikel-partikel di dalam gas tersebut dalam skala mikroskopik. Dan, energi dalam gas sebanding dengan suhu mutlak gas. Oleh karena itu, perubahan suhu gas akan menyebabkan perubahan energi dalam gas. Hukum I Termodinamika Jika kalor diberikan kepada sistem, volume dan suhu sistem akan bertambah (sistem akan terlihat mengembang dan bertambah panas). Sebaliknya, jika kalor diambil dari sistem, volume dan suhu sistem akan berkurang (sistem tampak mengerut dan terasa lebih dingin). Prinsip ini merupakan
  • 6. Sistem yang mengalami perubahan volume akan melakukan usaha dan sistem yang mengalami perubahan suhu akan mengalami perubahan energi dalam. Jadi, kalor yang diberikan kepada sistem akan menyebabkan sistem melakukan usaha dan mengalami perubahan energi dalam. Prinsip ini dikenal sebagai hukum kekekalan energi dalam termodinamika atau disebut hukum I termodinamika. Secara matematis, hukum I termodinamika dituliskan sebagai Q = W + ∆U Dimana Q adalah kalor, W adalah usaha, dan ∆U adalah perubahan energi dalam. Secara sederhana, hukum I termodinamika dapat dinyatakan sebagai berikut. Jika suatu benda (misalnya krupuk) dipanaskan (atau digoreng) yang berarti diberi kalor Q, benda (krupuk) akan mengembang atau bertambah volumenya yang berarti melakukan usaha W dan benda (krupuk) akan bertambah panas (coba aja dipegang, pasti panas deh!) yang berarti mengalami perubahan energi dalam ∆U. Proses Isotermik Suatu sistem dapat mengalami proses termodinamika dimana terjadi perubahan- perubahan di dalam sistem tersebut. Jika proses yang terjadi berlangsung dalam suhu konstan, proses ini dinamakan proses isotermik. Karena berlangsung dalam suhu konstan, tidak terjadi perubahan energi dalam (∆U = 0) dan berdasarkan hukum I termodinamika kalor yang diberikan sama dengan usaha yang dilakukan sistem (Q = W). Proses Isokhorik Jika gas melakukan proses termodinamika dalam volume yang konstan, gas dikatakan melakukan proses isokhorik. Karena gas berada dalam volume konstan (∆V = 0), gas tidak melakukan usaha (W = 0) dan kalor yang diberikan sama dengan
  • 7. perubahan energi dalamnya. Kalor di sini dapat dinyatakan sebagai kalor gas pada volume konstan QV. QV = ∆U Proses Isobarik Jika gas melakukan proses termodinamika dengan menjaga tekanan tetap konstan, gas dikatakan melakukan proses isobarik. Karena gas berada dalam tekanan konstan, gas melakukan usaha (W = p∆V). Kalor di sini dapat dinyatakan sebagai kalor gas pada tekanan konstanQp. Berdasarkan hukum I termodinamika, pada proses isobarik berlaku Sebelumnya telah dituliskan bahwa perubahan energi dalam sama dengan kalor yang diserap gas pada volume konstan QV =∆U Dari sini usaha gas dapat dinyatakan sebagai W = Qp − QV Jadi, usaha yang dilakukan oleh gas (W) dapat dinyatakan sebagai selisih energi (kalor) yang diserap gas pada tekanan konstan (Qp) dengan energi (kalor) yang diserap gas pada volume konstan (QV). Proses Adiabatik Dalam proses adiabatik tidak ada kalor yang masuk (diserap) ataupun keluar (dilepaskan) oleh sistem (Q = 0). Dengan demikian, usaha yang dilakukan gas sama dengan perubahan energi dalamnya (W = ∆U).
  • 8. Jika suatu sistem berisi gas yang mula-mula mempunyai tekanan dan volume masing-masing p1 dan V1 mengalami proses adiabatik sehingga tekanan dan volume gas berubah menjadi p2 dan V2, usaha yang dilakukan gas dapat dinyatakan sebagai Dimana γ adalah konstanta yang diperoleh perbandingan kapasitas kalor molar gas pada tekanan dan volume konstan dan mempunyai nilai yang lebih besar dari 1 (γ > 1). Proses adiabatik dapat digambarkan dalam grafik p – V dengan bentuk kurva yang mirip dengan grafik p – V pada proses isotermik namun dengan kelengkungan yang lebih curam.