Your SlideShare is downloading. ×
0
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Osteoarthritis
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Osteoarthritis

3,589

Published on

0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
3,589
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
377
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Osteoarthritis
  • 2. Osteoarthritis <ul><li>Osteoarthritis is an idiopathic disease </li></ul><ul><li>Characterized by degeneration of articular cartilage </li></ul><ul><li>Leads to fibrillation, fissures, gross ulceration and finally disappearance of the full thickness of articular cartilage </li></ul>
  • 3. Factors responsible <ul><li>Ageing </li></ul><ul><li>Genetics </li></ul><ul><li>Hormones </li></ul><ul><li>Mechanics </li></ul>
  • 4. Pathologic lesions <ul><li>Primary lesion appears to occur in cartilage </li></ul><ul><li>Leads to inflammation in synovium </li></ul><ul><li>Changes in subchondral bone, ligaments, capsule, synovial membrane and periarticular muscles </li></ul>
  • 5. Normal Cartilage <ul><li>Avascular, alymphatic and aneural tissue </li></ul><ul><li>Smooth and resilient </li></ul><ul><li>Allows shearing and compressive forces to be dissipated uniformly across the joint </li></ul>
  • 6. Structure of Normal Cartilage <ul><li>Chondrocytes are responsible for metabolism of ECM </li></ul><ul><li>They are embedded in ECM and do not touch one another, unlike in other tissues in the body </li></ul><ul><li>Chondrocytes depend on diffusion for nutrients and therefore the thickness of cartilage is limited </li></ul><ul><li>Extracellular matrix is a highly hydrated combination of proteoglycans and non-collagenous proteins immobilized within a type II collagen network that is anchored to bone </li></ul>
  • 7. Structure of Normal Cartilage <ul><li>Divided into four morphologically distinct zones: </li></ul><ul><li>Superficial : flattened chondrocytes </li></ul><ul><li>high collagen-to-proteoglycan ratio and high water content. </li></ul><ul><li>Collagen fibrils form thin sheet parallel to articular surface giving the superficial zone an extremely high tensile stiffness </li></ul><ul><li>Restricts loss of interstitial fluid, encouraging pressurization of fluid . </li></ul>
  • 8. Structure of Normal Cartilage <ul><li>Transitional zone: </li></ul><ul><li>Small spherical chondrocytes </li></ul><ul><li>Higher proteoglycan and lower water content than superficial zone </li></ul><ul><li>Collagen fibrils bend to form arcades </li></ul>
  • 9. Structure of Normal Cartilage <ul><li>Radial Zone: </li></ul><ul><li>Occupies 90% of the column of articular cartilage </li></ul><ul><li>Proteoglycan content highest in upper radial zone </li></ul><ul><li>Collagen oriented perpendicular to subchondral bone providing anchorage to underlying calcified matrix </li></ul><ul><li>Chondrocytes are largest and most synthetically active in this zone </li></ul>
  • 10. Structure of Normal Cartilage <ul><li>Calcified zone: </li></ul><ul><li>Articular cartilage is attached to the subchondral bone via a thin layer of calcified cartilage </li></ul><ul><li>During injury and OA, the mineralization front advances causing cartilage to thin </li></ul>
  • 11. Structure of Normal Cartilage
  • 12. Function of Normal Cartilage <ul><li>Critically dependent on composition of ECM </li></ul><ul><li>Type II (IX&amp;XI) provide 3D fibrous network which immobilizes PG and limits the extent of their hydration </li></ul><ul><li>When cartilage compresses H2O and solutes are expressed until repulsive forces from PGs balance load applied </li></ul>
  • 13. Function of Normal Cartilage <ul><li>On removing load, PGs rehydrate restoring shape of cartilage </li></ul><ul><li>Loading and unloading important for the exchange of proteins in ECM and thus to chondrocytes </li></ul><ul><li>Chondrocytes continually replace matrix macromolecules lost during normal turnover </li></ul>
  • 14. OA cartilage <ul><li>The equilibrium between anabolism and catabolism is weighted in favor of degradation </li></ul><ul><li>Disruption of the integrity of the collagen network as occurs early in OA allows hyperhydration and reduces stiffness of cartilage </li></ul>
  • 15. Degenerative cartilage
  • 16. Mechanisms responsible for degradation <ul><li>Catabolism of cartilage results in release of breakdown products into synovial fluid which then initiates an inflammatory response by synoviocytes </li></ul><ul><li>These antigenic breakdown products include: chondrointon sulfate, keratan sulfate, PG fragments, type II collagen peptides and chondrocyte membranes </li></ul>
  • 17. Mechanisms responsible for degradation <ul><li>Activated synovial macrophages then recruit PMNs establishing a synovitis </li></ul><ul><li>They also release cytokines, proteinases and oxygen free radicals (superoxide and nitric oxide) into adjacent and synovial fluid </li></ul><ul><li>These mediators act on chondrocytes and synoviocytes modifying synthesis of PGs, collagen, and hyaluronan as well as promoting release of catabolic mediators </li></ul>
  • 18. Synovial changes
  • 19. Cytokines in OA <ul><li>It is believed that cytokines and growth factors play an important role in the pathophysiology of OA </li></ul><ul><li>Proinflammatory cytokines are believed to play a pivotal role in the initiation and development of the disease process </li></ul><ul><li>Antiinflammatory cytokines are found in increased levels in OA synovial fluid </li></ul>
  • 20. Proinflammatory cytokines <ul><li>TNF- α and IL-1 appear to be the major cytokines involved in OA </li></ul><ul><li>Other cytokines involved in OA are: IL-6, IL-8, leukemic inhibitory factor (LIF), IL-11, IL-17 </li></ul>
  • 21. TNF- α <ul><li>Formed as propeptide, converted to active form by TACE </li></ul><ul><li>Binds to TNF- α receptor (TNF-R) on cell membranes </li></ul><ul><li>TACE also cleaves receptor to form soluble receptor (TNF-sR) </li></ul><ul><li>At low concentrations TNF-sR seems to stabilize TNF- α but at high concentrations it inhibits activity by competitive binding </li></ul>
  • 22. IL-1 <ul><li>Formed as inactive precursor, IL-1 β is active form </li></ul><ul><li>Binds to IL-1 receptor (IL-1R), this receptor is increased in OA chondrocytes </li></ul><ul><li>This receptor may be shed from membrane to form IL-1sR enabling it to compete with membrane associated receptors </li></ul>
  • 23. TNF- α and IL-1 <ul><li>Induce joint articular cells to produce other cytokines such as IL-8, IL-6 </li></ul><ul><li>They stimulate proteases </li></ul><ul><li>They stimulate PGE2 production </li></ul><ul><li>Blocking IL-1 production decreases IL-6 and IL-8 but not TNF- α </li></ul><ul><li>Blocking TNF- α using antibodies decreased production of IL-1, GM-CSF and IL-6 </li></ul>
  • 24. IL-6 <ul><li>Increases number of inflammatory cells in synovial tissue </li></ul><ul><li>Stimulates proliferation of chondrocytes </li></ul><ul><li>Induces amplification of IL-1 and thereby increases MMP production and inhibits proteoglycan production </li></ul>
  • 25. IL-8 <ul><li>Chemotactic for PMNs </li></ul><ul><li>Enhances release of TNF- α, IL-1 and IL-6 </li></ul>
  • 26. Leukemic inhibitory factor (LIF) <ul><li>Enhances IL-1 and IL-8 expression in chondrocytes and TNF- α and IL-1 in synoviocytes </li></ul><ul><li>Regulates the metabolism of connective tissue, induces expression of collagenase and stromolysin </li></ul><ul><li>Stimulates cartilage proteoglycan and NO production </li></ul>
  • 27. Antiinflammatory cytokines <ul><li>3 are spontaneously made in synovium and cartilage and increased in OA </li></ul><ul><li>IL-4, IL-10, IL-13 </li></ul><ul><li>Likely the body’s attempt to reduce the damage being produced by proinflammatory cytokines, these two processes are not balanced in OA </li></ul>
  • 28. IL-4 <ul><li>Decreases IL-1 </li></ul><ul><li>Decreases TNF- α </li></ul><ul><li>Decreases MMPs </li></ul><ul><li>Increases IL-Ra (competitive inhibitor of IL-1R) </li></ul><ul><li>Increases TIMP (tissue inhibitor of metalloproteinases) </li></ul><ul><li>Inhibits PGE2 release </li></ul>
  • 29. IL-1Ra <ul><li>Competitive inhibitor of IL-1R, not a binding protein of IL-1 and it does not stimulate target cells </li></ul><ul><li>Blocks PGE2 synthesis </li></ul><ul><li>Decreases collagenase production </li></ul><ul><li>Decreases cartilage matrix production </li></ul>
  • 30. IL-10, IL-13 <ul><li>IL-10 decreases TNF- α by increasing TNFsR </li></ul><ul><li>IL-13 inhibits many cytokines, increases production of IL-1Ra and blocks IL-1 production </li></ul>
  • 31. Osteoarthritis and Joint Replacement <ul><li>Once bone – bone articulation develops, joint replacement ( Arthroplasty) is only viable option. </li></ul><ul><li>Most common in Knees and Hips. </li></ul><ul><li>Very serious surgeries. Often takes months / years to get back to full strength (if ever) </li></ul>
  • 32. Knee Arthroplasty aka Total Knee Replacement (TKR)
  • 33. Possible Side Effects of Knee Arthroplasty <ul><li>blood clots in the leg </li></ul><ul><li>blood clots in the lung </li></ul><ul><li>urinary infections or difficulty urinating </li></ul><ul><li>difference in leg length </li></ul><ul><li>stiffness </li></ul><ul><li>loosening of prosthesis </li></ul><ul><li>infection in knee </li></ul>
  • 34. <ul><li>90% + report increased ROM following surgery </li></ul><ul><li>25% report loosening of prosthesis @ 10 years </li></ul><ul><ul><li>Caused by osteolysis; inflammatory response: reabsorption of bone </li></ul></ul><ul><li>Lots of isometric exercises and walking </li></ul>Knee Arthroplasty
  • 35. Possible Side Effects of Hip Arthroplasty <ul><li>blood clots in the leg </li></ul><ul><li>blood clots in the lung (1-2% Occurrence) </li></ul><ul><li>urinary infections or difficulty urinating </li></ul><ul><li>difference in leg length </li></ul><ul><li>stiffness </li></ul><ul><li>dislocation of hip </li></ul><ul><li>infection in hip </li></ul>
  • 36. <ul><li>Dislocation Prevention (2-3% Occurrence) </li></ul><ul><ul><li>using 2-3 pillows between your legs while sleeping and not crossing your legs </li></ul></ul><ul><ul><li>not bending forward 90 degrees </li></ul></ul><ul><li>Exercise </li></ul><ul><ul><li>Lots of isometric exercises will be prescribed to strengthen muscles surrounding joint </li></ul></ul><ul><ul><li>Lots of walking, cycling, swimming, etc. </li></ul></ul><ul><ul><ul><li>Avoid high impact exercises and follow guidelines listed above regarding prevention of dislocation. </li></ul></ul></ul>Hip Arthroplasty
  • 37. <ul><li>90 – 95% success rate @ 10 years post op. </li></ul><ul><li>Average lifespan 12 – 15 years </li></ul><ul><ul><li>Less if active (IE Younger person) </li></ul></ul><ul><li>Very effective at providing complete pain relief </li></ul><ul><ul><li>Often have to keep person from “over doing it” </li></ul></ul>Hip Arthroplasty
  • 38. Hip Fractures Usually Occurs @ the “Surgical Neck” of Femur Often results in disruption of blood flow….Avascular Necrosis * *
  • 39. <ul><li>Usually requires surgery </li></ul><ul><ul><li>THR </li></ul></ul><ul><ul><li>ORIF (Open Reduction, Internal Fixation) </li></ul></ul><ul><ul><ul><li>Uses plates, rods, &amp; screws to fixate femoral fracture </li></ul></ul></ul><ul><li>Post operative Exercise </li></ul><ul><ul><li>Isometrics, ROM exercises </li></ul></ul><ul><ul><li>SLOWLY progress to weight bearing exercises as directed by Physician </li></ul></ul>Treatment of Hip Fracture
  • 40. <ul><li>One year post mortality is as high as 40% (leading cause of “traumatic death” in elderly) </li></ul><ul><li>Very small percentage regain previous mobility </li></ul><ul><li>20% require nursing home care following fracture </li></ul><ul><li>Often results in accumulation / increase in incidence of other health problem </li></ul><ul><ul><li>CAD, diabetes, stroke, pneumonia,etc… </li></ul></ul>Hip Fractures
  • 41. Facts about Hip Fractures and Osteoporosis <ul><li>44 million Americans suffer from osteoporosis and/or low BMD </li></ul><ul><li>80% are Women / 20% Men </li></ul><ul><li>Women can lose up to 20 percent of their bone mass in the five to seven years following menopause, making them more susceptible to osteoporosis. </li></ul>
  • 42. Risk of Hip Fracture and BMD
  • 43. Facts about hip fractures and Osteoporosis <ul><li>Annual cost associated with osteoporotic fractures is $17 billion in 2001 ($47 million each day). </li></ul><ul><li>One in two women and one in four men over age 50 will have an osteoporosis-related fracture in their lifetime. </li></ul><ul><ul><li>300,000 hip fractures; and approximately  </li></ul></ul><ul><ul><li>700,000 vertebral fractures, </li></ul></ul><ul><ul><li>250,000 wrist fractures; and </li></ul></ul><ul><ul><li>300,000 fractures at other sites. </li></ul></ul><ul><li>MOST ARE PREVENTABLE!!! </li></ul>

×