Hdds 45 Presentation


Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Hdds 45 Presentation

  1. 1. The Future in Data Storage Presented By: Mark Farwell Holographic Optical Data Storage
  2. 2. Introduction <ul><li>Holographic Optical Storage (HODS) or Holographic Data Storage System (HDDS) </li></ul><ul><ul><li>Most viable new data storage technology </li></ul></ul><ul><ul><li>Uses images rather then bits to store data </li></ul></ul><ul><ul><li>Images imposed in material </li></ul></ul><ul><li>Disk the same size as a DVD will hold some 50 full feature movies </li></ul>
  3. 3. Why Do We Need This? <ul><li>“ For Internet applications alone, industry estimates are that storage needs are doubling every 100 days” </li></ul><ul><ul><li>Nelson Diaz, Lucent Technology </li></ul></ul><ul><li>“ Optoelectronics Industry and Technology Development Association projects that the year 2010, a storage system serving an average LAN will need … 100 TB and a WAN server will require 10TB to 1 petabyte …of storage” (Red Herring) </li></ul>
  4. 4. Is That All? <ul><li>Current magnetic and optical storage devices nearing limits </li></ul><ul><ul><li>Magnetic densities near limit </li></ul></ul><ul><ul><li>Light wavelength nearing spot size </li></ul></ul><ul><ul><ul><li>Diffraction becoming an issue </li></ul></ul></ul><ul><li>Needed step for smaller storage devices </li></ul><ul><ul><li>Might be able to compact down to a a mere in 2 </li></ul></ul>
  5. 5. Practical Solution or Cool Toy? <ul><li>May be the answer to new storage demands of today </li></ul><ul><li>Super high storage densities </li></ul><ul><li>Super fast access possible </li></ul><ul><ul><li>Estimate of at least 10’s of MB/sec and as high as 100’s of MB/sec </li></ul></ul><ul><li>Small size </li></ul>
  6. 6. Background: 2-D Holography <ul><li>Developed on older holographic techniques </li></ul><ul><ul><li>Same idea as authentication for credit cards </li></ul></ul><ul><li>Object is imposed into a film </li></ul><ul><ul><li>Beam is split </li></ul></ul><ul><ul><li>One beam shines on object </li></ul></ul><ul><ul><li>(object beam) </li></ul></ul><ul><ul><li>Reflection interacts with </li></ul></ul><ul><ul><li>reference beam to “burn” </li></ul></ul><ul><ul><li>image into film </li></ul></ul>
  7. 7. What Does That Mean? <ul><li>Think of the beams as electromagnetic waves (photons) </li></ul><ul><li>When Object beam and Reference beam overlap, the become constructive or destructive </li></ul><ul><ul><li>Like ripples in a pond </li></ul></ul><ul><ul><li>Constructive wave have higher energy </li></ul></ul><ul><ul><li>Destructive waves have lower energy </li></ul></ul>Teen Gren
  8. 8. Background: Holographic Optical Data Storage (HODS) <ul><li>Only recently been seriously looked at thanks to new advances in photography </li></ul><ul><ul><li>High density, High speed CCD’s </li></ul></ul><ul><ul><li>High density, High speed spatial light modulators (SLM) </li></ul></ul><ul><ul><ul><li>High quality LCD </li></ul></ul></ul><ul><ul><li>Both operate at 1024x1024 res. and up to 2000Hz </li></ul></ul><ul><li>Most of research simply uses off the shelf equipment </li></ul>
  9. 9. More Background <ul><li>Figure shows a basic HODS </li></ul><ul><li>SLM projects a page of information into medium </li></ul><ul><li>CCD picks up specified page of information </li></ul>
  10. 10. Recording <ul><li>Data stream is sent to the SLM as 0’s and 1’s </li></ul><ul><ul><li>Forms a “checkerboard” pattern </li></ul></ul><ul><ul><ul><li>1’s transmit light, 0’s block light </li></ul></ul></ul><ul><li>Beam is split </li></ul><ul><ul><li>Light passing through SLM is the signal (object) beam </li></ul></ul><ul><ul><li>Reflected beam is the reference beam </li></ul></ul><ul><li>Beams interfere in the medium to produce hologram much like before </li></ul>
  11. 11. Recording by Figure
  12. 12. Reading <ul><li>Beam no longer split </li></ul><ul><li>Reference beam is diffracted off the recorded grating (hologram) </li></ul><ul><ul><li>Reconstructs matrix </li></ul></ul><ul><li>Projected using optic onto CCD </li></ul><ul><ul><li>Converts into data stream </li></ul></ul>
  13. 13. Recording by Figure
  14. 14. What Does This Allow <ul><li>In the case of 2-D, much higher storage density then conventional disks </li></ul><ul><ul><li>50 movies per DVD size disk (5.25 in.) </li></ul></ul><ul><li>In the case of 3-D, HUGE capacities using the entire volume rather then the surface </li></ul><ul><li>Parallel data storage!!! </li></ul><ul><ul><li>10’s to 100’s of MB/Sec </li></ul></ul><ul><ul><li>Can read and write at the same time </li></ul></ul>
  15. 15. Current Constraints: Material <ul><li>Material is by far the biggest problem, if not the only one!!! </li></ul><ul><li>Must meet many criteria </li></ul><ul><li>Excellent Optical Quality </li></ul><ul><ul><li>Good homogeneity and optical quality surface </li></ul></ul><ul><li>High Recording Fidelity </li></ul><ul><ul><li>Must read data beam amplitude well </li></ul></ul>
  16. 16. Current Constraints: Material <ul><li>High Dynamic Range </li></ul><ul><ul><li>Great ability to respond to optical exposure with the refractive index modulation (more holograms) </li></ul></ul><ul><li>Low Scattered light </li></ul><ul><ul><li>Readout beam scattering </li></ul></ul><ul><li>High Sensitivity </li></ul><ul><ul><li>Fast hologram recording/reading </li></ul></ul><ul><li>Non Volatile Storage </li></ul><ul><ul><li>Material should retain data for a time consistent with the data storage application </li></ul></ul><ul><ul><li>Dark decay and loss per-read </li></ul></ul>
  17. 17. Constraints: Size and Format <ul><li>Right now the apparatus for reading and writing is rather large </li></ul><ul><ul><li>Easily compacted once development completed </li></ul></ul><ul><li>Format may be an issue </li></ul><ul><ul><li>Scientists working on both 3-D and disc 2-D </li></ul></ul><ul><ul><li>Debate over whether to make the system WORM (Write-Once Read-Many), Re-writable or both </li></ul></ul>
  18. 18. What Can Be Done <ul><li>Polymers </li></ul><ul><ul><li>Work great for WORM applications </li></ul></ul><ul><ul><li>Starting to discover polymers for read-write </li></ul></ul><ul><li>Crystalline structures </li></ul><ul><ul><li>Better solutions for read-write capabilities </li></ul></ul><ul><li>Two-Color Grated Recording </li></ul><ul><ul><li>Uses two wavelengths of light </li></ul></ul><ul><ul><ul><li>Both used to write, one used to read non-destructively </li></ul></ul></ul><ul><li>Once research is done, size and format are addressed </li></ul>
  19. 19. Anything Else Being/Can Be Done? <ul><li>I feel larger communication and computer companies need to realize the viability of such a technology </li></ul><ul><ul><li>IBM, Intel, Lucent </li></ul></ul><ul><li>Some already are </li></ul><ul><li>Big advances are being made </li></ul><ul><li>Research should be done in Universities and research facilities such as Bell Labs (techniques), and chemical research facilities (materials) </li></ul>
  20. 20. Who is Involved… <ul><li>InPhase Technologies, venture of Lucent Technologies </li></ul><ul><ul><li>Exclusive purpose is to develop high-performance holographic data storage media </li></ul></ul><ul><ul><li>Seem to be leaders in viable product, near useable solution </li></ul></ul><ul><li>Government and other participants donate $32 million for research </li></ul><ul><ul><li>Large majority of research focused at Standford and IBM’s Almaden Research Facility </li></ul></ul><ul><ul><ul><li>Main focus on testing optical system components and holographic storage materials (DEMON) </li></ul></ul></ul>
  21. 22. And… <ul><li>Carnegie-Mellon University </li></ul><ul><li>GTE Corp. </li></ul><ul><li>IBM’s Watson Research Center </li></ul><ul><li>University of Arizona </li></ul><ul><li>University of Dayton </li></ul><ul><ul><li>All focus on material research and technique research </li></ul></ul>
  22. 23. …Lastly <ul><li>Kodak </li></ul><ul><ul><li>Focus almost entirely on material development </li></ul></ul><ul><ul><li>Foremost leader in the development of crystal an polymer alternatives </li></ul></ul><ul><li>Aprilis, Inc </li></ul><ul><ul><li>Part of Polaroid, Inc. </li></ul></ul><ul><ul><li>Focus on developing a commercialized HODS or Holographic Data Storage System (HDSS) </li></ul></ul>
  23. 24. Impacts <ul><li>The everyday user might not notice the impact other then more space on his/her computer </li></ul><ul><li>Big benefactors are big business and internet </li></ul><ul><ul><li>Parallel data storage and retrieval allows for very fast data excess for number crunching and experiments (much faster computation times) </li></ul></ul><ul><ul><li>Much faster data access for internet servers as well as much larger storage densities (MB/in 2 ) </li></ul></ul><ul><ul><li>Cheaper cost per Megabyte once mainstream </li></ul></ul><ul><li>Data storage for libraries, documents and so forth will be cheaper and take up less space and access will be much faster </li></ul>
  24. 25. Implications <ul><li>As mentioned before, much faster access </li></ul><ul><li>Unfortunately, not too many technological advances will arise due to the introduction of HODS’s </li></ul><ul><ul><li>Everything is mostly off the shelf technology </li></ul></ul><ul><li>Polymer, Crystal, and Film technology or knowledge might benefit </li></ul>
  25. 26. Market <ul><li>Current storage memory market exceeds $100 billion dollars worldwide </li></ul><ul><ul><li>$47 billion is solely hard disk, $42 billion magnetic tape drives, $6 billion optical disk </li></ul></ul><ul><li>This is growing at 40% a year (1998) </li></ul><ul><li>HODS has the possibility of taking over this entire market </li></ul><ul><ul><li>Can assimilate all these data storage types </li></ul></ul><ul><ul><li>Little to no competitive alternatives on the horizon </li></ul></ul>
  26. 27. When Can I Get One <ul><li>Estimates of the emergence for such a technology is anywhere from 2003 to as late as 2010 and beyond </li></ul><ul><ul><li>“ To solve the materials problem requires invention and an invention can’t be scheduled” (Hans Croufal, IBM’s Almaden Research Center) </li></ul></ul><ul><ul><li>First uses will be in network administration servers and internet servers </li></ul></ul>
  27. 28. Long Term <ul><li>Eventually HODS’s may take over magnetic and optical devices all together </li></ul><ul><ul><li>DVD’s with 1.6 terabytes on them </li></ul></ul><ul><ul><li>1-centimeter square (sugar cube) holding a terabyte plus of data </li></ul></ul><ul><ul><li>Smaller (1-2 inch disc) type media </li></ul></ul><ul><ul><li>Less need for compression techniques (depending on internet communications) </li></ul></ul><ul><ul><ul><li>Less data loss </li></ul></ul></ul><ul><ul><li>Even smaller computers (hard drive one of the largest components) </li></ul></ul><ul><ul><li>Less power to drive = longer lasting laptops </li></ul></ul>
  28. 29. Other Impacts <ul><li>Not a product that will increase the quality of life per say </li></ul><ul><li>Faster data access (internet) </li></ul><ul><li>Smaller, Cheaper electronics </li></ul><ul><li>More storage per dollar (long term) </li></ul><ul><li>The main importance is that new storage mediums must be found </li></ul>
  29. 30. Conclusion <ul><li>Built on technology that’s around for 40+ years </li></ul><ul><li>HODS may be the future of data storage </li></ul><ul><ul><li>HUGE capacity, Very fast, Smaller </li></ul></ul><ul><ul><li>Parallel processing </li></ul></ul><ul><li>Current storage methods nearing there fundamental limits of storage density </li></ul><ul><li>Stationary parts for some techniques </li></ul><ul><li>Meets the demand for a capacity hungry society </li></ul><ul><li>Large market and little new competition </li></ul>
  30. 31. Demo <ul><li>InPhase Technology demo </li></ul><ul><li>http://www. inphase -technologies.com </li></ul>
  31. 32. Further Research/Bibliography <ul><li>www.redherring.com/index.asp?layout=story&channel=70000007&doc_id=1050016905 </li></ul><ul><li>www.aprilisinc.com/ </li></ul><ul><li>www.lucent.com/press/0101/010130.bla.html </li></ul><ul><li>www.enteleky.com/holography/mpaper.htm </li></ul><ul><li>www.manhattsci.com/ </li></ul><ul><li>http://www.research. ibm .com/research/press/holographic.html </li></ul><ul><li>http://www. imation .com/about/news/ newsitem /0%2C1233%2C298%2C00.html </li></ul><ul><li>http://www. pitt . edu /~drew1/2089/ holo . htm </li></ul><ul><li>http://www. sciam .com/2000/0500issue/0500toigbox5.html </li></ul>
  32. 33. Bibliography Continues <ul><li>Dogan A. Timucin and John D. Downie, IEEE Potentials, Vol. 19, No. 4, Holographic Optical Storage, Oct/Nov 2000 </li></ul><ul><li>H. Vormann and E. Kratzig, Solid State Communications: Holographic Storage , 843, (1990) </li></ul><ul><li>IBM Holographic Storage Team, Laser Focus World, Holographic Storage Promises High data Density , Nov. 1996, pp. 81-93 </li></ul><ul><li>G. T. Sincerbox, ed., Selected Papers on Holographic Storage (SPIE Milestone Series 95) (1994) </li></ul><ul><li>J. F. Heasnue, M. C. Bashaw, and L. Hesselink, Science, Volume Holograhic Storage and Retrieval of Digital Data , (1994) </li></ul><ul><li>H. Guenther, G. Whittmann, R. M. Macfarlane, and R.R. Neurgaonkar, Intensity dependence and white-light gating od two-color photorefractive gratings in LiNbO 3 , Sept. 1, 1997 / Vol. 22, No. 17 / OPTICS LETTER </li></ul>