Your SlideShare is downloading. ×
View lecture slides:
Upcoming SlideShare
Loading in...5

Thanks for flagging this SlideShare!

Oops! An error has occurred.


Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

View lecture slides:


Published on

1 Like
  • Be the first to comment

No Downloads
Total Views
On Slideshare
From Embeds
Number of Embeds
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

No notes for slide
  • It is one of the most common complaints by adults to their primary care doctor. Of the working population 80% will experience low back pain. 60% will have some form of functional limitation or disability. Second most common reason for work disability. Economically it is estimated that low back pain cost 100 to 200 billion dollars annually in health care cost and lost wages. And despite advances in medicine low back pain prevalence and cost are relatively unchanged. In fact according to medicare cost are rising.
  • What causes back pain? These are just some of the causes of back pain. I wanted to mention some of the causes because just like everything else in medicine it’s important to have the right diagnosis in order to effectively treat back pain. Back pain is difficult to treat and some times even impossible to figure out what is causing the pain. The more accurate the diagnosis the greater the chances of treating the problem. So how do we determine the cause? The same way we do with ever other medical problem we encounter. A good history and physical to help eliminate possible causes.
  • Note: 3 Slides Combined: Slide 1 - If the cells of the disc failed to get proper nutrients - such as oxygen, or glucose - or if the pH level of the disc drops (because waste is not being diffused out of the disc and it becomes anaerobic), disc cells would die and stop producing the vital proteoglycan aggregates. The disc loses its water content (dehydrates) and loses its hydrostatic pressure (osmotic pressure). NEXT SLIDE: Both Handa et al. (1) as well as Ishihara (2) have concluded experimentally that disc cells are very picky about the amount of hydrostatic pressure that they can function in.   They thrive at 3 atm of hydrostatic pressure, which just happens to be the normal pressure of a non-degenerated disc.   Any variation in that pressure, EITHER higher (>30 atm) or especially lower (< 1 atm) will stop that disc from functioning (making proteoglycan which hold water within the disc). Next Slide: Poorly vascularized intervertebral discs tend to undergo degeneration of their internal structure at a surprisingly early age. In fact, research has demonstrated such degeneration usually begins within the first decade of life! “
  • Note: 2 slides combined into 1: First Slide: “It has been widely held that symptoms of lumbar disc disease are the result of either herniation of the nucleus pulposus through a mechanically weak annulus fibrosis or from tearing of the annulus itself. This can lead to Radiculopathy from nerve root compression and/or Radiculitis - an inflammatory process affecting nerve roots or the spinal cord. Also the Sinuvertebral nerve which innervates both the annulus, the PLL. “ Herniation is thought to be the result of a defect in the annulus fibrosis, most likely the result of excessive stress applied to the disc” Three types of annular tears: Rim lesion - horizontal tearing of the very outer fibers of the disc near their attachments into the ring apophysis; Concentric tear - splitting apart of the lamellae of the annulus in a circumferential direction Radial tear - horizontal or obliquely horizontal tears
  • In his 1986 presidential address, Dr. H. V. Crock told members of the international spine society that internal disruptions within the architecture of the disc could result in back pain and even lower limb pain without the presence of spinal nerve root compression.   He termed this entity ‘ Internal Disc Disruption ’ .
  • Surgery is the last thing I recommend to my patients if possible. I recommend surgery if there is progressive neurological deterioration or intractable pain that interferes with patients life. Be careful not to offend the audience. Note: Each of these options have their time and place (that’s why they’re on the list) – However, the primary objective of these options is not aimed at directly addressing the underlying disc pathology; except maybe surgery.
  • As I said this is a non-invasive way to address disc pathology. The goals of this treatment are not new.
  • In fact, the same goals we tried to achieve with inversion tables and simple traction that was used in the hospitals 20-30 years ago are the same goals we are after today. Such as___. However, the problem with these previous treatments was…
  • The research done to date is very encouraging, typically showing between 70%-85% success rates. Personally, we see >90% in our clinic. And the research is continuing to confirm these statistics. SpineMED is leading the way with the ‘gold standard’ – the first and only randomized, double-blind study done through an IRB with the SUNY research foundation. Not only will we have strong subjective measurements in changes in pain and improvement in oswestry scores, but each of these patients will have the objective finding of pre and post MRIs…So now we have another option to treat disk disease.
  • Patient Trials completed in December 2008 – Gathering data for 6 month follow-up and then submitting for peer review and publication – estimated summer/fall of 2009.
  • Also large annular tear @ L5-S1. Tx’d 5 deg. VAS dropped from 5/10 – 1/10 after first tx. Pain-free after 5 th tx. One year F/U – still pain-free. Returned to normal activity including tennis. Only c/o mild left knee pain.
  • Transcript

    • 1. disc pathology and non-surgical decompression
    • 2. reuben henderson , d.o .
      • 1993 - michigan state university college of osteopathic medicine
      • internship: flint osteopathic and st. lawrence hospitals 1994 & 1995
      • pm&r residency: university of michigan 2001
      • private practice 2004: pm&r
    • 3. low back pain world wide
      • common complaint among adults
      • lifetime prevalence in working population up to 80%
      • 60% experience functional limitation or disability
      • second most common reason for work disability
      • despite advances in imaging and surgical techniques LBP prevalence and its cost are relatively unchanged
    • 4. back pain causes
      • de-conditioning
      • sprain/strain
      • spondylolithesis
      • spondylosis
      • facet syndrome
      • disc herniation
      • disc bulge
      • spinal stenosis
      • biomechanical
      • inflammatory
      • infection
      • cancer
    • 5. recent research on DDD
        • 1. heredity may be largely responsible for degeneration/herniation of intervertebral disc.
        • 2. genetic influences have been confirmed by the identification of several gene forms associated with disc degeneration.
        • 1. Kenneth M C Cheung, “How has genetics research altered understanding of degenerative disc disease: implications for intervertebral disc regeneration.” European Cells and Materials Vol. 16 Suppl. 4, 2008 (page 8)
        • 2. Yin’gang Zang, “Advances in susceptibility genetics of intervertebral degenerative disc disease.” Int J Biol Sci 2008 4:283-290
    • 6. intervertebral disc
    • 7. vascular supply to the disc space from the cartilaginous endplate
      • 1. segmental radicular artery
      • 2. interosseous artery
      • 3. capillary tuft
      • 4. disc anulus
    • 8. neurological innervation of posterior spinal column
      • 1. ascending branch of the sinuvertebral nerve
      • 2. dorsal root ganglion
      • 3. descending branch of the sinuvertebral nerve
      • 4. disc anulus
      • 5. posterior longitudinal ligament
    • 9.  
    • 10.
      • disc degeneration
      • changes in hydrostatic pressure
      • lack of oxygen
      • lack of glucose
      • changes in pH levels
      • death of proteoglycans
      Urban JPG, McMullin JF, "Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition and degeneration." Spine 1988, 13:179-187 Handa T, et al. "Effects of hydrostatic pressure on Matrix Synthesis and MMP production in the human lumbar intervertebral disc." Spine 1997 ;22:1085 -1091 Classification of Age-Related Changes in Lumbar Intervertebral Discs 2002 Volvo Award in Basic Science" Spine 2002; Volume 27, Number 23, pp 2631-2644
    • 11. proteoglycan structures
    • 13. annular tears
      • rim lesion
      • concentric tear
      • radial tear
      Osti OL, Vernon-Roberts B, et al. “Annular Tears & Disc Degeneration” J Bone Joint Surg. [Br] 1992; 74-B:678-82 Gordon SJ, Yang KH, Mayer PJ, et al: Mechanism of disc rupture. A preliminary report. Spine 16:450-456, 1991
    • 14.  
    • 15. disc pathology vs pain
      • degree of disc injury (size of tear / herniation), nor the degree of nerve root compression correlate with subjective pain or functional disability
      Karppinen J. et al. “Severity of Symptoms and Signs in Relation to MRI Findings Among Sciatica Patients.” Spine 2001; 26(7):E149-E154
    • 16. internal disruption
      • Crock HV, Internal disc disruption.   A challenge to disc prolapse fifty years on. Spine 1986 ;11:650-3
    • 17. current therapies for discogenic pain or disc pathology
      • medication and limited activity
      • spinal rehabilitation
      • interventional pain management
      • spinal surgery
    • 18. non-surgical decompression
      • non-invasive procedure designed to target underlying disc pathology
      • improve nutrient exchange
      • create environment for healing
    • 19. non-surgical decompression
    • 20. goals of treatment
      • actively distract and passively retract the spine in order to affect intervertebral disc space
      • reduce intradiscal pressures
      • increase fluid and nutrient exchange
      • promote disc regeneration
      • retract nucleic material of bulging or herniated disc
    • 21. guarding reflex
      • traction causes natural guarding reflex
      • muscles contract or spasm to prevent distraction in order to protect the spine
      • traction devices are rarely able to bypass or overpower reflex contractions and achieve distraction of the disc space
    • 22.  
    • 23. biofeedback response designed to monitor patient response and adjust tensions in order to bypass reflex muscle contractions
    • 24.  
    • 25. negative intradiscal pressure
    • 26. decompressive patient MRI September 16, 2006 January 08, 2007
    • 27. disc regeneration
      • controlled distraction in vivo study of rabbit-spine model showed:
      • significant increase in disc thickness
      • signs of tissue regeneration
      • decrease in apoptotic (dead) cells in the annulus and cartilage endplates
      • increase in protein-expressing cells
    • 28. decompression research
      • 71% of 778 cases were successful in reducing pain to a 0-1 on a 0-5 pain scale.
      • 86% of 219 patients demonstrated success according to Oswestry Pain Scale; 84% remained pain-free at 90 day follow up.
      • 91% of 14 patients with radiculopathy and abnormal sensory function demonstrated improved neurological function.
      • 50% -100% reduction of pain was reported in 19 out of 23 pts with ruptured intervertebral discs and 20 out of 27 with facet arthrosis
      • Earl Gose, et al., “Vertebral Axial Decompression Therapy for Pain Associated with Herniated or Degenerative Discs or Facet Sysdrome: An Outcome Study." Journal of Neurological Research, Vol 20, 13:179-187
      • Thomas Gionis, MD, et al., “Spinal Decompression" Orthopaedic Technology Review. 2004
      • Frank Tilaro, M.D., et al., “Vertebral Axial Decompression on Sensory Nerve Disfunction" Journal of Neuro-imaging, 1998; Volume 8, Number 2
      • Shealy, et al., “New Concepts in Back Pain Management. Decompression, Reduction and Stabilization”. Pain Management. 1998 239-257
    • 29. Objective: To determine the effectiveness of Spinal Decompression Lumbar Disc Pathology Design: Retrospective Chart Review Setting: Multi-Center: Outpatient Treatment Patients: A consecutive sample of 778 Lumbar Cases Intervention: 10 – 25 Sessions on Non-surgiacal Decompression System Outcome Measures: Changes in visual Analog Scale over time Improvements in Mobility Improvements in Functioning decompression research
    • 30.  
    • 31. decompression research Objective: To determine changes in pre and post MRIs after undergoing non-surgical decompression Design: Retrospective Chart Review Setting: Outpatient Treatment Center Patients: A Sample of 20 Lumbar Cases Intervention: 20 sessions of Non-surgical decompression for 18 patients; 40 sessions for 2 patients Outcome Measures: Changes in MRIs pre and post treatment
    • 32.  
    • 33. DECOMPRESSION RESEARCH Objective: To determine the effectiveness of Spinal Decompression on Cervical and Lumbar Disc Pathology Design: Retrospective Chart Review Setting: Outpatient Treatment Center; Westminster, MD Patients: A consecutive sample of 156 Lumbar patients and 37 cervical patients Intervention: 20 – 25 Sessions on FDA Cleared (K051013) Decompression Table Outcome Measures: Changes in visual Analog Scale over time Improvements in Activities of Daily Living Improvements in Functioning
    • 34. lumbar improvement in V.A.S.
      • Reduction in Mean from 5.8 to 0.8 V.A.S.
      • Same improvement noted for both post surgical and non-post surgical patients
    • 35. lumbar activities of daily living
      • Improvements in Average A.D.L. Component Scores
    • 36. decompressive research
      • SUNY research foundation
      • randomized, double-blind, controlled trial
      • subjective VAS pain and oswestry measurements
      • objective pre and post MRIs
    • 37. decompressive research
      • Greater Baltimore Medical Center
      • Randomized Controlled Trials: SpineMED vs conventional traction
      • Subjective VAS pain and Oswestry Measurements
    • 38. case study - annie
      • 30 y.o. female presents with low back pain
      • pain radiating down right leg
      • initial onset approximately 1 year
      • referred by orthopedic surgeon
      • on motrin, previously darvocet, flexeril and valium
      • previous treatments: chiropractic and physical therapy
    • 39. findings
      • ROM: decreased in the lumbar spine to flexion, rotation and side bending
      • Strength: right side 4/5 for L4-L5 innervated muscles
      • FABER test: positive on the right
      • Reflexes: ¼ and symmetrical
      • SLR: negative
    • 40. diagnostic studies
      • A-P / lateral Plain Film:
        • degenerative disc height loss at L4-5 level
      • MRI:
        • L4-L5: large central disc herniation (9mm in AP X 10mm Broad) effacing the ventral thecal sac and impressing upon the central canal.
          • This produces moderate canal stenosis.
        • L5-S1: broad disc bulge with radial tear.
          • mild effacement upon the ventral thecal sac.
    • 41. imaging
    • 42. case 1 outcome
      • VISIT #6
      • > pain reduced:4 to 1
      • VISIT #10
      • > pain reduced: 1 to 0
      • > core exercises initiated
      • VISIT # 20
        • > pain stabilized: 1
    • 43. case 1 outcome
      • VISIT #24
        • > Pain stable at 1
        • > Released to home exercise program
        • > Inversion table recommended
    • 44. post spineMED findings
      • ROM: full in the lumbar spine to flexion, rotation and side bending
      • strength: 5-5 for the bilateral lower extremity
      • FABER test: negative bilaterally
      • reflexes: ¼ and symmetrical
      • SLR: negative
    • 45.  
    • 46. post spineMED imaging
      • MRI
        • L4-5: now measures only 1 or 2 mm in AP dimension x 9 mm broad with only mild narrowing of thecal sac
        • L5-S1: diffuse disc bulge, no radial tear or thecal sac effacement
    • 47. conclusion
      • non-surgical decompression can significantly improved the clincal outcome of patients with discogenic pain
      • in treating over 300 patients
        • no incidence of injury, some incidence of residual pain
        • many successful outcomes
        • mostly lasting results & healing
    • 48. intervertebral disc