Book offers on power plant in indonesia, 2013 2014

  • 532 views
Uploaded on

This book can help to investment in Indonesia, to look strong, weakness, opportunities, and threats. Much data can help banking, creditor, business peoples to decided investment in Power Plant in …

This book can help to investment in Indonesia, to look strong, weakness, opportunities, and threats. Much data can help banking, creditor, business peoples to decided investment in Power Plant in Indonesia. We hope, this book can help you. Thanks.

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
532
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
14
Comments
0
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Commercial Head office: Sukamanah RT. 04/06 Phone: +62 (0266) 9296038 Branch office: Komplek Deppen Blok X/3 Harjamukti Cimanggis STUDI TENTANG KONDISI PASAR DAN PROSPEK INDUSTRI STUDY ON THE Pelanggan yang kami cintai! Salam sejahtera. Semoga kita semua ada dalam lindungan Tuhan! Latar Belakang Commercial Global Data Research (CDR) Kami adalah sebuah lembaga Konsultan, Survey, Riset dan Pelaporan di bidang data riset secara global, menyajikan berbagai informasi bisnis aktual yang meliputi sektor Industri manufaktur, pertambangan, perbankan, asuransi, studi kelayakan, dan jasa riset lainnya. Kami hadir sebagai mitra konsultan Anda, untuk memberikan informasi aktual yang Anda perlukan guna menentukan arah kebijakan dalam mengembangkan perusahaan Anda. Salah satu produk buku studi yang kami tawarkan kepada Anda adalah “Buku Studi tentang Kondisi Pasar dan Prospek Industri Turbin Uap (Pembangkit Listrik) di Indonesia Kami tawarkan Buku tersebut kepada Anda seharga (Tujuh juta rupiah) untuk Versi Bahasa Indonesia, dan US$ 8 Bahasa Inggris, guna membantu para pelaku bisnis pada Industri Listrik baik domestik maupun mancanegara, membantu para membantu pihak Perbankan atau Kreditor, dan pihak lainnya yang terkait, dengan cara melihat peta kekuatan diantara para pesaing/partner Anda, baik dengan pihak pemerintah, pesaing dari luar negeri maupun dalam negeri, mempelajari perkembangan ekspor dan impor, mengetahui hambatan dan peluang bagi perusahaan yang sedang menggeluti ataupun yang akan terjun ke dunia usaha Pembangkit Listrik, mengetahui kapasitas produksi pangsa pasar, mengetahui susunan Direktur dan Komisaris, serta info lainnya yang perlu Anda ketahui. (terlampir contoh Profil Perusahaan) Seberapa besar kontribusi perusahaan Anda dalam meningkatkan kapasitas produksi guna memenuhi pesanan dari para buyer baik lokal maupun internasional, mencermati setiap peluang yang ada, dan diharapkan dengan memiliki buku ini, perusahaan Anda menjadi lebih produktif, efisien, lebih maju dan bersaing secara sehat. KATA PENGANTAR Turbin uap merupakan suatu penggerak awal yang mengubah energi potensial uap menjadi energi kinetik, dan selanjutnya diubah menjadi energi mekanis dalam bentuk putaran poros turbin. Poros turbin lan bantuan roda gigi reduksi, dihubungkan dengan mekanisme yang akan digerakkan. Tergantung pada jenis mekanisme yang digunakan, turbin uap dapat digunakan pada berbagai bidang, seperti pada bidang pembangkit tenaga listrik dan untuk transportasi. Pada proses perubahan energi potensial menjadi energi mekanisnya, yaitu dalam bentuk putaran poros dilakukan dengan berbagai cara. Pada dasarnya turbin uap terdiri dari dua bagian utama, yaitu rotor yang merupakan komponen utama pada turbin, kemudian ditambah komponen lainnya yang meliputi pendukungnya seperti bantalan, sistem bantu lainnya agar kerja turbin dapat lebih baik. Sebuah turbin uap memanfaatkan energi kinetik dari fluida kerjanya yang bertambah akibat penambahan energi termal. Kebijakan Energi dalam Penyediaan Tenaga Listrik Dalam memenuhi kebutuhan tenaga listrik nasional, pembangunan pembangkit tenaga listrik di Indonesia tidak hanya semata-mata dilakukan oleh PT PLN (Perusahaan Listrik Negara) - Persero saja, tetapi dilakukan pula oleh pihak lain yaitu swasta, koperasi, dan Badan Usaha Milik Daerah (BU ini sesuai dengan Pasal 4 ayat (2) Undang-Undang Nomor 30 Tahun 2009 Commercial Global Data Consultant – Survey – Sukamanah RT. 04/06 No. 199 Cisaat, Sukabumi Website: http://commercialglobaldataresearch.blogspot.com/ Phone: +62 (0266) 9296038, 085793929829, Fax: +62 (0266) 241346 Email: Komplek Deppen Blok X/3 Harjamukti Cimanggis, Kota Depok Garis Besar Isi Buku STUDI TENTANG KONDISI PASAR DAN PROSPEK INDUSTRI (PEMBANGKIT LISTRIK) DI INDONESIA, 201 Outline of Book Contents ON THE MARKET CONDITIONS AND PROSPECTS OF (POWER PLANT) INDUSTRY IN Kami adalah sebuah lembaga Konsultan, Survey, Riset dan Pelaporan menyajikan berbagai informasi bisnis aktual yang meliputi sektor Industri manufaktur, pertambangan, perbankan, asuransi, Kami hadir sebagai mitra konsultan Anda, untuk memberikan informasi guna menentukan arah kebijakan dalam mengembangkan perusahaan Anda. Salah satu produk buku studi yang kami “Buku Studi tentang Kondisi Pasar dan di Indonesia,2013-2014. rkan Buku tersebut kepada Anda seharga Rp. 7.000.000 US$ 800 untuk Versi , guna membantu para pelaku bisnis pada Industri Pembangkit , membantu para Investor, membantu pihak Perbankan atau Kreditor, dan pihak lainnya yang terkait, dengan cara melihat peta kekuatan diantara para pesaing/partner Anda, baik pesaing dari luar negeri maupun dalam negeri, mpor, mengetahui hambatan dan sedang menggeluti ataupun yang akan terjun ke kapasitas produksi, mengetahui pangsa pasar, mengetahui susunan Direktur dan Komisaris, serta informasi (terlampir contoh Profil Perusahaan). Seberapa besar kontribusi perusahaan Anda dalam meningkatkan kapasitas produksi guna memenuhi pesanan dari para buyer baik lokal maupun ng ada, dan diharapkan dengan memiliki buku ini, perusahaan Anda menjadi lebih produktif, efisien, lebih maju yang mengubah energi dan selanjutnya diubah menjadi energi uk putaran poros turbin. Poros turbin langsung atau dengan bantuan roda gigi reduksi, dihubungkan dengan mekanisme yang akan digerakkan. Tergantung pada jenis mekanisme yang digunakan, turbin uap seperti pada bidang industri, untuk . Pada proses perubahan energi yaitu dalam bentuk putaran poros Pada dasarnya turbin uap terdiri dari dua bagian utama, yaitu stator dan kemudian ditambah nya seperti bantalan, kopling dan sistem bantu lainnya agar kerja turbin dapat lebih baik. Sebuah turbin uap memanfaatkan energi kinetik dari fluida kerjanya yang bertambah akibat ga listrik nasional, pembangunan mata dilakukan oleh Persero saja, tetapi dilakukan pula oleh pihak lain yaitu swasta, koperasi, dan Badan Usaha Milik Daerah (BUMD). Hal Undang Nomor 30 Tahun 2009 Our customers love! Peace. May we all have God's protection! Background fo Commercial Global Data Research (CDR) We are an agency consultant, Survey, Research and Reporting in the field of research data globally, serves a variety of actual business information industry sector that includes manufacturing, mining, banking, insurance, feasibility studies and other research services. We present you as a partner consultant, to provide the actual information you need to determine the direction of policy in developing your company. One study book products that we offer to you is the Market Conditions and Prospects of Indonesia”, 2013-2014. We offer these books to you rupiahs) for the Indonesian version, and in order to help the business person on the and foreign, to help the investors, help the parties related, by looking at the map of power partner, both with the government, competition country, studying the development of export and opportunities for companies who are plant electricity, the production capacity of knowing the Board of Directors and Commissioners information you need to know. (Company Profile How big is your company's contribution in increasing production capacity to meet orders from buyers both locally and at every opportunity, and expect to have this book, your company become more productive, efficient, more advanced and competitive in a healthy manner. FOREWORD Steam turbine is an early mover that converts potential energy into kinetic energy of the steam, and then converted into mechanical energy in the form of turbine shaft rotation. Turbine shaft directly or with the aid reduction gear, which will be connected to the driven mechanism. Depending on the type of mechanism used, the steam turbine can be used in various fields, such as in industry, for power generation and for transportation. In the process of change of potential energy into mechanical energy, which is in the form of shaft rotation is done in various ways. Basically steam turbine consists of two main parts, the stator and rotor which is a major component in the turbine, then added other components which include supporters such as bearings, couplings and other auxiliary systems so that the turbine can work better. A steam turbines harness the kinetic energy of the working fluid increases due to the addition of thermal energy. Energy Policy in the Electricity Supply In meeting the needs of national power, the construction of power plants in Indonesia is not merely done by PT PLN (State Electricity Company) but has also been conducted by other parties, namely private, cooperative, and provincial enterprises (enterprises) . This is in accordance with Article 4, Data Research – Research – Report Sukabumi 43152, Jawa Barat Website: http://commercialglobaldataresearch.blogspot.com/ cg.dataresearch@gmail.com Kota Depok, HP: 087743196076 Garis Besar Isi Buku STUDI TENTANG KONDISI PASAR DAN PROSPEK INDUSTRI TURBIN UAP DI INDONESIA, 2013-2014 Outline of Book Contents PROSPECTS OF STEAM TURBINE IN INDONESIA, 2013-2014 Commercial Global Data Research (CDR) We are an agency consultant, Survey, Research and Reporting in the field of research data globally, serves a variety of actual business information industry sector that includes manufacturing, mining, banking, ce, feasibility studies and other research services. We present you as a partner consultant, to provide the actual information you need to determine the direction of policy in developing your company. One study book products that we offer to you is "Book Study on Market Conditions and Prospects of Steam Turbine (Power Plant) in for Rp. 7,000,000 (seven million and U.S. $ 800 for the English version, on the Power Industry both domestic help the banks or creditors, and other the map of power among its competitors / your competition from abroad and within the export and import, know the obstacles are or who will wrestle in enterprise capacity of knowing, knowing the market, Commissioners, as well as the other Company Profile attached example). How big is your company's contribution in increasing production capacity to meet orders from buyers both locally and internationally, looking at every opportunity, and expect to have this book, your company become more productive, efficient, more advanced and competitive in a healthy Steam turbine is an early mover that converts potential energy into kinetic energy of the steam, and then converted into mechanical energy in the form of turbine shaft rotation. Turbine shaft directly or with the aid reduction gear, which will be connected to the driven mechanism. Depending on the type of he steam turbine can be used in various fields, such as in industry, for power generation and for transportation. In the process of change of potential energy into mechanical energy, which is in the form of shaft rotation is steam turbine consists of two main parts, the stator and rotor which is a major component in the turbine, then added other components which include supporters such as bearings, couplings and other auxiliary systems so team turbines harness the kinetic energy of the working fluid increases due to the addition of thermal energy. In meeting the needs of national power, the construction of power plants by PT PLN (State Electricity Company) - Limited, but has also been conducted by other parties, namely private, cooperative, and provincial enterprises (enterprises) . This is in accordance with Article 4,
  • 2. Pengembangan pembangkit BBM, dikecualikan untuk penanggulangan daerah krisis penyediaan tenaga listrik jangka pendek (satu hingga dua tahun ke depan) sambil menunggu selesainya pembangunan pembangkit non-BBM yang telah direncanakan, dengan melakukan sewa pembangkit yang menggunakan bahan bakar MFO. Apabila pembangkit non-BBM yang telah direncanakan tersebut telah beroperasi, maka pembangkit BBM tersebut di non-operasikan. Mempertimbangkan tingginya pertumbuhan tenaga listrik, memberikan akses listrik kepada seluruh masyarakat dan mendorong pemanfaatan energi baru terbarukan, maka program percepatan pembangunan pembangkit 10.000 MW tahap II yang komposisi energi primernya beragam (tidak hanya batu bara) ditawarkan untuk dikembangkan oleh PT PLN (Persero) maupun swasta dengan memberikan fasilitas sebagaimana yang telah dilaksanakan dalam program percepatan pembangunan pembangkit 10.000 MW tahap I. Pengembangan PLTU batu bara skala kecil dapat dipertimbangkan sebagai salah satu alternatif untuk menggantikan pembangkit listrik yang menggunakan bahan bakar minyak pada sistem skala kecil untuk menekan biaya operasi sistem kelistrikan. Disamping itu, pengembangan Pembangkit Listrik Tenaga Uap (PLTU) batu bara skala kecil ini dapat juga dimanfaatkan untuk mengganti peranan sebagian Pembangkit Listrik Tenaga Disel (PLTD) yang ada di sistem kelistrikan di Luar Jawa-Madura-Bali yang dominasinya masih cukup tinggi. Dengan mempertimbangkan sulitnya memperoleh lahan untuk membangun pembangkit tenaga listrik skala besar di pulau Jawa dan mempertimbangkan semakin meningkatnya beban puncak dari tahun ke tahun, maka pengembangan PLTU batu bara dengan kapasitas 1.000 MW dengan teknologi supercritical boiler untuk memperoleh efisiensi dan tingkat emisi yang lebih baik, dapat dikembangkan oleh PT PLN (Persero) dan swasta. Secara umum kebijakan energi nasional lebih bertumpu pada energi yang berasal dari fosil, terutama bahan bakar minyak (BBM). Khusus tentang penyediaan energi listrik dari kapasitas PLN yang terpasang, sebesar 72,85% energi dihasilkan dari bahan bakar fosil yang terdiri: 28,58% berasal dari pembangkit berbahan bakar gas, 25,28% dari minyak bumi, dan 18,99% berasal dari batu bara. Sedangkan tenaga listrik yang dihasilkan oleh tenaga air sebesar 11,96%, dan yang dihasilkan oleh panas bumi sebesar 1,51%. Harga BBM yang mencapai antara 60-70 US dollar per barel berdampak terhadap semakin mahalnya biaya penyediaan tenaga listrik nasional. Hal ini dipersulit lagi dengan kemampuan negara untuk menanggung subsidi semakin menurun, sehingga Tarif Daya Listrik (TDL) selalu mengalami kenaikan secara signifikan. Keadaan ini diperparah lagi dengan perilaku pengusaha yang mematikan generator listriknya pada saat beban puncak. Masalah ini ditambah dengan semakin tuanya pembangkit milik PLN yang berdampak terhadap terjadinya krisis tenaga listrik pada saat beban puncak. Pemadaman listrik secara bergilir akan berdampak terhadap menurunnya produktivitas perekonomian. Ketiadaan tenaga listrik secara kontinyu akan mematikan industri kecil dan menengah yang rata-rata tidak memiliki sumber daya cadangan untuk menghadapi black out. Kebijakan hemat listrik nasional di satu sisi akan mengurangi konsumsi listrik, tetapi di sisi yang lain akan mengurangi kualitas kehidupan manusia. Tertundanya operasi medis, macetnya jalan raya, pembatasan jam tayang TV dan siaran radio merupakan bukti kongkret yang dialami masyarakat. Apakah ini merupakan opportunity cost yang harus dibayar untuk menjamin kecukupan tenaga listrik nasional? Tentunya dalam jangka panjang biaya yang harus dikeluarkan akan semakin besar. Kebijakan hemat listrik seharusnya diimbangi dengan riset dan pengembangan tentang penyediaan alat-alat elektronik yang hemat listrik di pasaran. Dalam jangka panjang seiring dengan meningkatnya pertumbuhan ekonomi, maka kebutuhan energi listrik nasional juga mengalami pertumbuhan yang cukup pesat. PLN seharusnya memperbaiki kondisi pembangkitnya dan menambah jumlah pembangkit untuk menjamin pasokan tenaga listrik nasional. Disamping itu untuk menghindari gejolak harga energi dunia, maka perlu dilakukan diversifikasi energi. Hal ini untuk mengurangi resiko dan menjamin kepastian penyediaan energi listrik nasional. Pertanyaan yang menarik untuk diajukan, adalah: Bagaimanakah diversifikasi energi yang harus dilakukan? dan Bagaimanakah potensi penggunaan sumber energi alternatif untuk pembangkitan listrik? DIVERSIFIKASI ENERGI Ahli energi, membagi energi menjadi 3 bagian, yaitu: energi fosil (minyak bumi, batu bara, dan gas alam), energi nuklir, dan energi terbarukan. Sifat dasar energi yang berasal dari fosil adalah tidak terbarukan, sehingga ada kemungkinan sumber energi ini akan habis jika digunakan secara terus menerus. Padahal proses pembentukan energi jenis ini diperlukan waktu yang sangat panjang. Disamping itu energi yang berasal dari fosil akan menyebabkan pencemaran air, udara, dan tanah yang luar biasa. Energi nuklir berasal dari proses fisi inti radioaktif, yang dapat menimbulkan energi panas. Sedangkan energi terbarukan biasanya berasal dari bahan nabati. Tujuan diversifikasi energi untuk pembangkitan listrik diharapkan akan mengurangi ketergantungan terhadap minyak bumi, menjamin kecukupan untuk pembangkit, bersifat sustainable, dan mengurangi pencemaran lingkungan. Langkah yang diambil oleh PLN untuk beralih dari penggunaan minyak bumi ke batu bara dan gas merupakan kebijakan yang "bijaksana" pada saat ini. PLN dalam jangka pendek akan mengganti 12 pembangkitnya dengan menggunakan bahan bakar LPG (Liquid Petroleum Gas). Fuel plant development, management excluded for local electricity supply crisis short-term (one to two years ahead) pending the completion of the construction of non-fuel plants that have been planned, by rental plants using fuel MFO. If the non-fuel plants that have been planned are now operating, the generator fuel is in the non-operated. Considering the high growth power, providing electricity access to all the community and encourage the use of renewable energy, the development acceleration program of 10,000 MW phase II varied composition of primary energy (not just coal) offered to be developed by PT PLN (Persero) and private by providing facilities as has been done in the development acceleration program of 10,000 MW phase I. Development of small-scale coal-fired power plant can be considered as an alternative to replace power plants that use fossil fuels in small-scale systems to reduce the cost of operating the electrical system. In addition, the development of steam power plant (CPP) is a small-scale coal can also be used to partially replace the role of Diesel Power Plant (diesel) in the electrical system in Outer Java-Madura-Bali that dominance is still quite high. Taking into account the difficulties in acquiring land to build large-scale power plant on the island of Java, and consider increasing the peak load from year to year, the development of coal-fired power plant with a capacity of 1,000 MW supercritical boiler technology to gain efficiency and better emission levels, can developed by PT PLN (Persero) and private. In general, the national energy policy more reliant on energy derived from fossil fuels, especially fuel oil (BBM). Specifically on the provision of electricity from PLN's installed capacity, amounting to 72.85% of energy generated from fossil fuels comprising: 28.58% comes from gas-fired plants, 25.28% from oil, and 18.99% were of coal. While electricity generated by hydropower for 11.96%, and the heat generated by the earth of 1.51%. Fuel prices reaching between 60-70 U.S. dollars per barrel impact on the high cost of electricity supply nationwide. This is compounded by the ability of the state to bear the subsidy has declined, so the rates of Electric Power (TDL) always increase significantly. This situation is compounded by the behavior of entrepreneurs deadly power generators during peak hours. This problem coupled with the aging of plants PLN crisis affecting the electric power during peak loads. Power outages in turn will impact on the declining productivity of the economy. The absence of continuous power will turn off the small and medium industries are on average do not have the resources to deal with black back out. National power-saving policies on the one hand will reduce electricity consumption, but on the other hand will reduce the quality of human life. Delays in medical operations, highway breakdown, limiting hours of TV and radio broadcast is concrete evidence that the community experienced. Is this an opportunity cost that must be paid to ensure adequate national power? Surely in the long term the costs will be even greater. Power saving policies should be balanced with research and development on the provision of electronic tools that save electricity in the market. In the long term in line with the increase in economic growth, the need for national electrical energy also increased quite rapidly. PLN should improve the condition of the generator and increase the number of generators to ensure electricity supply nationwide. In addition, to avoid the world energy price fluctuations, it is necessary to diversify energy. This is to reduce risk and ensure certainty of the national electricity production. Interesting question to ask, is: How is energy diversification to be done? and What is the potential use of alternative energy sources for electricity generation? ENERGY DIVERSIFICATION Energy experts, energy split into 3 parts, namely: fossil energy (oil, coal, and natural gas), nuclear energy, and renewable energy. Nature of the energy that comes from non-renewable fossil is, so there is the possibility of energy sources will be depleted if used continuously. Though the process of the formation of this type of energy required a very long time. Besides, the energy derived from fossil fuels will lead to pollution of water, air, and soil incredible. Nuclear energy comes from radioactive nuclei fission process, which can lead to heat energy. While renewable energy is usually derived from plant materials. Goal of diversifying energy for electricity generation is expected to reduce dependence on petroleum, to ensure sufficient generation, is sustainable, and reduce environmental pollution. Steps taken by PLN to switch from coal to oil and gas is a policy that "wise" at this time. PLN in the short term will replace 12 fuel generator using LPG (Liquid Petroleum Gas).
  • 3. Secara kimiawi, LPG lebih baik jika dibandingkan dengan LNG, karena LPG termasuk kategori hidrokarbon C3-C4 (Propana dan Butana), sedangkan LNG C1-C2 (Methana). Disamping itu, potensi LPG di Indonesia sangat besar yaitu sebesar 68,87 triliun kaki kubik yang terdiri atas cadangan non-associated gas sebesar 60 triliun dan cadangan associated gas sebesar 8,87 triliun kaki kubik. Cadangan tersebut tersebar di seluruh wilayah Indonesia, dengan cadangan terbesar berada di Pulau Natuna, Kalimantan Timur, dan Nangro Aceh Darussalam (NAD). Selama ini LPG tersebut banyak digunakan sebagai komoditi ekspor, dan kurang dimanfaatkan untuk sumber energi pada industri. Dengan menggunakan LPG, maka PLN akan menikmati penghematan sebesar Rp. 1.950,00 per liter jika dibandingkan dengan HSD (High Solar Diesel). Penghematan ini berdasarkan perhitungan selisih harga antara LPG dan HSD. Harga LPG impor sekitar US$ 380 per ton, sedangkan harga HSD sebesar Rp. 4.800 per liter. Sedangkan harga dalam negeri LPG sekitar US$ 320 per ton dan HSD sebesar Rp 4.300. Beban biaya tambahan yang harus ditanggung PLN antara lain penyediaan tempat penampungan LPG beserta segala infrastrukturnya atau menanggung biaya sandar kapal jika menggunakan kapal sebagai tempat penampungannya. Menggunakan kapal pengangkut sebagai penampungan LPG membawa kemudahan untuk pendistribusiannya, sehingga keterlambatan stok energi bagi pembangkit dapat dikurangi, tetapi disisi lain PLN akan menanggung biaya sandar kapal sekitar US$ 10.000/hari. Selain gas, bahan bakar fosil yang tersedia berlimpah di Indonesia yaitu batu bara. Potensi cadangan batu bara di Indonesia sekitar 36,34 x 109 ton, yang sebagian besar tersebar di Sumatera dan Kalimantan. Dengan menggunakan R/P ratio (rasio antara reserve dan production), maka batu bara akan habis sekitar 500 tahun lagi, sedangkan BBM dan gas alam akan habis 16 dan 34 tahun lagi. Fakta ini menunjukkan, bahwa batu bara merupakan sumber energi fosil yang paling berlimpah di Indonesia. Pangsa batu bara sebagai sumber energi primer saat ini hanya sekitar 9%, dari jumlah tersebut yang digunakan untuk bahan bakar pembangkit listrik baru menghasilkan 18,99% dari kapasitas terpasang milik PLN. Saat ini pemanfaatan batu bara masih sebatas untuk kebutuhan rumah tangga dan sebagai komoditi ekspor. Disisi yang lain penggunaan batu bara sebagai sumber energi akan menyebabkan pencemaran lingkungan. Pemanfaatan gas methana yang berada pada lapisan batu bara merupakan salah satu kebijakan yang patut dipertimbangkan. Hal ini karena Indonesia mempunyai cadangan gas methana sebesar 1,4 kali jumlah yang ada sekarang. Batu bara yang ada tidak perlu diangkat ke permukaan, tetapi dirubah dengan menggunakan teknik pencairan di bawah tanah kemudian gasnya diambil. Manfaatnya akan mengurangi biaya penambangan dan bersih lingkungan. Dengan melakukan diversifikasi energi dan tidak bertumpu pada BBM, maka keberlanjutan penyediaan tenaga listrik mempunyai harapan yang cerah. Harus tetap pula disadari, bahwa batu bara dan gas juga bersifat non renewable resources, sehingga dalam jangka panjang perlu dilakukan penggunaan energi alternatif dan sebaiknya dimasukan dalam kebijakan energi nasional. Subsidi dana penelitian dan pengembangan serta kebijakan alih energi alternatif merupakan faktor penting untuk suksesnya kebijakan energi nasional. DAFTAR ISI KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABLE BAB I PENDAHULUAN 1.1. Latar Belakang 1.1.1. Pengelolaan sistem ketenagalistrikan di Indonesia 1.1.1.1. Sistem Kelistrikan di Jawa-Bali 1.1.1.2. Sistem ketenagalistrikan di Sumatera sudah terpadu 1.1.1.3. Sistem kelistrikan di Pulau lain 1.1.2. Kondisi Sistem Pembangkitan 1.1.2.1. Perkembangan pembangkit 1.1.3. Kondisi Sistem Transmisi 1.1.4. Realisasi pertumbuhan sektor tenaga listrik 1.2. Tujuan dan Ruang Lingkup 1.3. Sumber Data dan Informasi BAB II PERTUMBUHAN PEREKONOMIAN DAN PENDUDUK INDONESIA 2.1. Pertumbuhan Ekonomi Indonesia, Triwulan IV-2012 2.1.1. Pertumbuhan Ekonomi, Tahun 2012 2.1.2. Pertumbuhan Ekonomi, Triwulan IV-2012 2.1.3. Struktur PDB menurut lapangan usaha, Tahun 2010-2012 2.1.4. PDB menurut Penggunaan 2.1.5. PDB dan Produk Nasional Bruto (PNB) Per Kapita 2.1.6. Profil Spasial Ekonomi Indonesia menurut Kelompok Provinsi, Triwulan IV-2012 Chemically, LPG is better when compared to LNG, LPG categorized as C3-C4 hydrocarbons (Propane and Butane), while the C1-C2 LNG (Methane). In addition, the potential of LPG in Indonesia is very large in the amount of 68.87 trillion cubic feet consisting of non-associated gas reserves of 60 trillion and associated gas reserves of 8.87 trillion cubic feet. The reserves are spread across Indonesia, with the largest reserves are in Natuna Island, East Kalimantan, and Nangro Aceh Darussalam (NAD). During the LPG is widely used as an export commodity, and underutilized energy source in the industry. By using LPG, the PLN will enjoy savings of Rp. 1950.00 per liter when compared with HSD (High Solar Diesel). This savings is based on the calculation of the difference in price between LPG and HSD. LPG import prices of around U.S. $ 380 per ton, while the price of HSD at Rp. 4,800 per liter. While domestic LPG prices around U.S. $ 320 per ton and HSD at Rp 4,300. Additional costs to be borne by, among others, the provision of PLN shelter along with all the LPG infrastructure or bear the costs if the ship docked using the ship as a reservoir. Using LPG storage tankers as bringing convenience to the distribution, so that the delay for generating energy stocks can be reduced, but on the other hand will bear the cost of PLN ship docked around U.S. $ 10.000/day. In addition to gas, fossil fuels are available in abundance in Indonesia, namely coal. Potential coal reserves in Indonesia around 36.34 x 109 tons, which are mostly in Sumatra and Kalimantan. By using the R / P ratio (ratio between reserves and production), then the coal will run out about 500 years, while fuel oil and natural gas will run out 16 and 34 years. This fact indicates that coal is the energy source of the most abundant fossils in Indonesia. The share of coal as a primary energy source is currently only about 9%, from the amount used to fuel new power plants produce 18.99% of PLN's installed capacity. Currently still limited to the use of coal for household needs and as an export commodity. On the other hand the use of coal as an energy source will cause environmental pollution. Utilization of methane gas that is in coal seams is one of the policies that should be considered. This is because Indonesia has reserves of methane gas at 1.4 times the current amount. Existing coal does not need to be raised to the surface, but changed by using the technique of melting in the basement and then the gas is taken. The benefit will reduce the cost of mining and clean environment. By diversifying energy and does not rely on fuel, the sustainability of electricity supply has a bright hope. Should remain well aware that coal and gas are non-renewable resources as well, so in the long term is necessary to use alternative energy and should be included in the national energy policy. Subsidies and funding research and development of alternative energy over the policy is an important factor for the success of national energy policy. LIST OF CONTENTS INTRODUCTION TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES CHAPTER I INTRODUCTION 1.1. Background 1.1.1. Management of the electricity system in Indonesia 1.1.1.1. Electrical system in Java-Bali 1.1.1.2. Electricity system has been integrated in Sumatra 1.1.1.3. Island electricity system in another 1.1.2. Conditions Generation System 1.1.2.1. Plant development 1.1.3. Transmission System Conditions 1.1.4. Realization of the power sector growth 1.2. Purpose and Scope 1.3. Source of Data and Information CHAPTER II POPULATION GROWTH AND INDONESIA 2.1. Economic growth in Indonesia, Quarter IV-2012 2.1.1. Economic growth, in 2012 2.1.2. Economic Growth, Quarter IV-2012 2.1.3. Structure of GDP by economic activities, 2010-2012 Year 2.1.4. GDP by expenditure 2.1.5. GDP and Gross National Product (GNP) Per Capita 2.1.6. Indonesian Economic Spatial profile by province group, Quarter IV-2012
  • 4. 2.2. Pertumbuhan Ekonomi Indonesia Triwulan I-2013 tumbuh 6,3- 6,8 Persen 2.3. Perkembangan indeks harga konsumen/inflasi 2.4. Ekonomi Indonesia Triwulan II-2013 tumbuh 5,81 Persen 2.4.1. PDB Menurut Lapangan Usaha, Triwulan II-2013 2.4.2. PDB menurut Pengeluaran, Triwulan II-2013 2.4.3. Profil Spasial Ekonomi Indonesia menurut Kelompok Provinsi, Triwulan II-2013 2.5. Penduduk Indonesia bisa mencapai lebih dari 257 Juta Jiwa, Tahun 2013 BAB III TEORI TENTANG TURBIN UAP (STEAM TURBINE) 3.1. Mengenal turbin uap 3.1.1. Definisi turbin uap 3.1.2. Komponen-komponen Turbin Uap 3.1.3. Cara kerja Turbin Uap 3.1.4. Klasifikasi Turbin Uap 3.1.5. Fungsi Turbin Uap 3.2. Daftar Pembangkit Listrik di Indonesia 3.2.1. Pembangkit Listrik Tenaga Air (PLTA) 3.2.2. Pembangkit Listrik Tenaga Uap (PLTU) 3.2.3. Pembangkit Listrik Tenaga Gas (PLTG) 3.2.4. Pembangkit Listrik Tenaga Diesel (PLTD) 3.2.5. Pembangkit Listrik Tenaga Nuklir 3.3. Lima energi alternatif yang cocok untuk Indonesia 3.3.1. Tenaga Turbin Angin (Windmill) 3.3.2. Tenaga Panas Bumi (Geothermal) 3.3.3. Tenaga Ombak (Wave) 3.3.4. Tenaga Air (Water) 3.3.5. Energi Sampah (Biomass) 3.4. Kriteria Pemilihan Pembangkit 3.4.1. Karakteristik Beban 3.4.2. Keandalan Pembangkit 3.4.3. Aspek Ekonomi 3.4.4. Aspek Lingkungan dan Geografis 3.4.5. Aspek Sosial dan Politik 3.5. Jenis-Jenis Pembangkit 3.5.1. Pembangkit Listrik berbahan Bakar Minyak 3.5.2. Pembangkit Listrik Berbahan Bakar Gas 3.5.3. Pembangkit Listrik Berbahan Bakar Batu bara 3.5.4. Pembangkit Listrik Tenaga Nuklir 3.5.5. Pembangkit Listrik Energi Terbarukan 3.5.6. Tenaga Surya 3.5.7. Tenaga Angin 3.5.8. Biomassa 3.5.9. Tenaga Panas Bumi (Geothermal) 3.6. Mengenal Mikro Turbin 3.6.1. Sepuluh unit mikro turbin bisa menyuplai listrik untuk Apartemen seluas 44.520 meter 3.6.2. Mikro turbin Biogas Kotoran Ternak Pedesaan BAB IV KONDISI PASAR 4.1. PT Siemens Industrial Power, pemain kunci Turbin Uap Nasional 4.2. Indonesia merupakan pasar kuat untuk Industri Pembangkit Listrik 4.3. Investor China kucurkan dana senilai US$ 20 Juta untuk membangun pabrik mesin turbin uap 4.4. Turbin Uap SST-140 berkapasitas output 20 MW pertama di Indonesia 4.5. GE Oil & Gas & Triveny meluncurkan Turbin Uap 4.6. Kepala BPPT resmikan Pabrik Turbin Uap Industri Nasional 4.7. Siemens SST-140, Turbin Uap terbaru Pabrik Gula 4.8. PT. Nusantara Turbin dan Propulsi (NTP) pelopor mesin uap pertama di Indonesia 4.9. PT. Krakatau Daya Listrik (KDL) realisasikan 40 persen pada pembangunan pembangkit listrik 4.10. Pembangunan Pembangkit Listrik di Papua 4.11. Proyek Listrik Tenaga Gas Rp 925 miliar dikerjakan WIKA 4.12. Turbin Siemens digunakan pada PLTU Timika 4.13. WIKA menguasai lebih dari 30% proyek 10.000 MW Tahap I 4.14. PLTU Meulaboh beroperasi awal Maret 2013 4.15. Siemens produksi turbin pembangkit listrik PLN 4.16. PLN mengurangi ketergantungan pada Komponen Impor 4.17. Mesin Turbin Gas Aeroderivatif, terangi daerah terpencil 4.18. PLN Jawa Timur membuat terobosan dengan membangun PLTMH 4.19. Investor AS bangun Pembangkit Listrik Tenaga Angin di Yogyakarta 4.19.1. Pemanfaatan energi angin di Indonesia 4.19.2. Peta potensi angin 4.19.3. Menggerakkan pompa air 4.19.4. Jenis-jenis turbin angin 2.2. Indonesian Economic Growth First Quarter-2013 grew from 6.3 to 6.8 Percent 2.3. Development of the consumer price index / inflation 2.4. Indonesian economy grew Second Quarter 2013 5.81 Percent 2.4.1. GDP by Industrial Origin, Second Quarter 2013 2.4.2. GDP by expenditure, Second Quarter 2013 2.4.3. Indonesian Economic Spatial profile according to Provincial Group, Second Quarter 2013 2.5. Indonesia's population could reach more than 257 Million People, in 2013 CHAPTER III THEORY OF STEAM TURBINE (STEAM TURBINE) 3.1. Know the steam turbine 3.1.1. Definition of steam turbine 3.1.2. Steam Turbine components 3.1.3. The workings of Steam Turbines 3.1.4. Classification of Steam Turbines 3.1.5. Function Steam Turbines 3.2. List of Power Plant in Indonesia 3.2.1. Hydroelectric Power Plant (HEPP) 3.2.2. Steam Power Plant (CPP) 3.2.3. Gas power plant (power plant) 3.2.4. Diesel Power Plant (diesel) 3.2.5. Nuclear Power Plant 3.3. Five alternative energy suitable for Indonesia 3.3.1. Wind Turbine Power (Windmill) 3.3.2. Geothermal power (Geothermal) 3.3.3. Power Wave (Wave) 3.3.4. Hydropower (Water) 3.3.5. Waste Energy (Biomass) 3.4. Plant Selection Criteria 3.4.1. Load Characteristics 3.4.2. Plant Reliability 3.4.3. Economic Aspects 3.4.4. Environmental and Geographical Aspects 3.4.5. Social and Political Aspects 3.5. Plant Types 3.5.1. Oil-fired power plants 3.5.2. Gas-Fired Power Plant 3.5.3. Power Plant Coal-Fired 3.5.4. Nuclear Power Plant 3.5.5. Renewable Energy Power Plant 3.5.6. Solar 3.5.7. Wind Power 3.5.8. Biomass 3.5.9. Geothermal power (Geothermal) 3.6. Know the Micro Turbine 3.6.1. 10 units of micro-turbines can supply electricity for the apartment measuring 44,520 meters 3.6.2. Livestock manure biogas micro turbine Rural CHAPTER IV MARKET CONDITIONS 4.1. PT Siemens Industrial Power, a key player Steam Turbine National 4.2. Indonesia is a strong market for the Power Industry 4.3. Chinese investors drizzle funds worth U.S. $ 20 million to build an engine plant steam turbine 4.4. SST-140 steam turbine with a capacity of 20 MW output in Indonesia 4.5. GE Oil & Gas & Steam Turbine launched Triveny 4.6. BPPT chief inaugurates National Industrial Steam Turbine Factory 4.7. Siemens SST-140, the latest Steam Turbine Sugar Factory 4.8. PT. Nusantara Turbine and Propulsion (NTP) first steam engine pioneer in Indonesia 4.9. PT. Krakatau Power (KDL) realized 40 percent on power plant 4.10. Power Development in Papua 4.11. Gas Power Plant Projects Rp 925 billion done WIKA 4.12. Siemens turbines used in power plant Timika 4.13. WIKA control more than 30%of the 10,000 MW Phase I 4.14. Meulaboh power plant operational by early March 2013 4.15. Siemens turbine electricity production 4.16. PLN to reduce dependence on imports Components 4.17. Aeroderivatif Gas Turbine Engines, illuminated remote areas 4.18. PLN East Java makes inroads by building PLTMH 4.19. U.S. investors woke Wind Power Plant in Yogyakarta 4.19.1. Utilization of wind energy in Indonesia 4.19.2. Wind potential map 4.19.3. Drives the water pump 4.19.4. Types of wind turbines
  • 5. 4.20. Korea tertarik untuk membangun Hidro Power di Indonesia 4.21. Cina kembangkan Proyek Listrik di Indonesia 4.22. Menteri ESDM resmikan beroperasinya 7 Proyek Kelistrikan di Sulawesi 4.23. PLN tandatangani kontrak pembangunan PLTU Timika 4 x 7 MW 4.24. Batam, Tingkatkan Kapasitas Listrik sebesar 80 MW gunakan Turbin Gas 4.25. Pengembangan energi laut di NTT 4.26. PLN sewa PLTU 2x30 MW di Bangka-Belitung (Babel) 4.27. Perusahaan Perancis mengembangkan Turbin Angin penghasil Listrik sekaligus air bersih 4.28. Indonesia dan UPC Renewables Indonesia Limited menandatangani Nota Kesepahaman (MoU) 4.29. Tenaga Angin lepas pantai: Pasar baru Energi Terbarukan 4.30. PLTMH Kalimaron, upaya memerdekakan warga 4.31. Gas gantikan BBM di PLTGU Tambak Lorok mulai 2013 4.32. Cina menggeser AS dalam pengembangan Energi Angin 4.33. Wilayah perairan Indonesia simpan potensi Energi Listrik dari arus laut 4.34. Pembangkit Listrik Tenaga arus laut bagi desa pesisir tertinggal 4.35. Desa tertinggal di pulau-pulau kecil 4.36. Agenda dan kendala Kelistrikan Nasional 4.37. Listrik sebagai Infrastruktur Dasar 4.38. Potensi Energi Arus Laut bagi pulau-pulau kecil 4.39. PLTA Peusangan siap penuhi kebutuhan Listrik Gayo 4.40. Kualitas Uap PLTP Kamojang terbaik di Indonesia 4.41. Listrik Mikro Hidro terangi Waterboom di Klaten 4.42. Melihat jaringan listrik di Amerika Serikat 4.43. Kebijakan pengembangan Energi Aternatif di India 4.44. Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) 4.45. Tahun 2013, Produksi Batu bara dalam negeri sebesar 20,30 persen 4.46. Turki mulai melirik Panas Bumi Indonesia 4.47. Bank Dunia dan Selandia Baru mendukung Pertamina Geothermal Energy melakukan Ekspansi Energi Geothermal terbesar di dunia 4.48. Tiga Pembangkit Listrik Tenaga Surya (PLTS) resmi beroperasi 4.49. Menteri ESDM meresmikan PLTU Jeneponto (2 x 125 MW) 4.50. Daftar Pembangkit Listrik Swasta dan Kapasitasnya 4.51. Daftar IPPs Indonesia (termasuk perusahaan yang tidak memasok daya listrik mereka ke PLN) BAB V PERKEMBANGAN SUMBER ENERGI DI INDONESIA 5.1. Batu Bara 5.1.1. Produsen dan Produksi Batu Bara 5.1.2. Peta lokasi penyebaran sumber daya dan cadangan batu bara 5.1.3. Pasokan Batu Bara 5.1.4. Produksi Briket 5.1.5. Harga Batu Bara 5.2. Gas Bumi 5.2.1. Cadangan Gas Bumi 5.2.2. Produksi Gas Bumi 5.2.3. Produksi dan Pemanfaatan Gas Bumi 5.2.4. Perkembangan Ekspor Gas 5.2.5. Produksi dan Impor LPG 5.2.6. Produksi dan Ekspor LNG 5.3. Listrik 5.3.1. Rasio Elektrifikasi Nasional 5.3.2. Neraca Listrik Nasional 5.3.3. Kapasitas Pembangkit Listrik PLN 5.3.4. Produksi Listrik per jenis pembangkit 5.3.5. Penjualan Listrik per Sektor 5.4. Minyak Bumi 5.4.1. Cadangan Minyak Bumi 5.4.2. Produksi Minyak Bumi 5.4.3. Harga Minyak Bumi 5.4.4. Ekspor Minyak Bumi 5.4.5. Impor Minyak Bumi berdasarkan Negara Asal 5.4.6. Produksi Bahan Bakar Minyak (BBM) 5.4.6.1. Produksi Kumulatif BBM 5.4.7. Produksi Non BBM 5.4.7.1. Produksi Kumulatif Non BBM 5.4.8. Impor BBM 5.4.9. Konsumsi BBM dan Non BBM berdasarkan jenis Energi 5.4.10. Hasil Pengolahan Minyak (Refined Products) 5.5. Energi Terbarukan 5.5.1. Perkembangan Energi Terbarukan 5.5.2. Peta Potensi Panas Bumi di Indonesia 4.20. Korea keen to build Hydro Power in Indonesia 4.21. China developed Power Project in Indonesia 4.22. Minister inaugurates operation 7 Electricity Project in Sulawesi 4.23. PLN signed power plant contracts Timika 4 x 7 MW 4.24. Batam,Boost Power Capacity of 80 MW Gas Turbine use 4.25. Marine energy development in NTT 4.26. PLN 2x30 MW rental power plant in Bangka-Belitung 4.27. French companies develop electricity-producing wind turbines as well as clean water 4.28. UPC Renewables Indonesia and Indonesia Limited signed a Memorandum of Understanding (MoU) 4.29. Offshore Wind Energy: Renewable Energy Market New 4.30. MHP Kalimaron, efforts to liberate the citizens 4.31. Substitute fuel in combined cycle gas Lorok Pond from 2013 4.32. China shifts the U.S. in the development of Wind Energy 4.33. Indonesian waters Electrical Energy savings potential of ocean currents 4.34. Power Plant ocean currents for coastal villages left behind 4.35. Backward villages in small islands 4.36. Agenda and the National Electrical constraints 4.37. Electricity as a Basic Infrastructure 4.38. Marine Current Energy Potential for small islands 4.39. Hydroelectric Power Peusangan ready to meet the needs of Gayo 4.40. Kamojang best quality geothermal steam in Indonesia 4.41. Micro Hydro Electric Waterboom illuminated in Klaten 4.42. Seeing the power grid in the United States 4.43. Alternative Energy policy development in India 4.44. Micro Hydro Power (MHP) 4.45. In 2013, coal production in the country amounted to 20.30 per cent 4.46. Turkey began to look at Geothermal Indonesia 4.47. The World Bank and the New Zealand support Pertamina Geothermal Energy Geothermal Energy's expansion in the world's biggest 4.48. Three Solar Power Plant (PLTS) officially opened 4.49. Jeneponto Minister inaugurates power plant (2 x 125 MW) 4.50. List of Private Power and Capacity 4.51. List of Indonesian IPPs (including companies that do not supply their power to PLN) CHAPTER V THE ENERGY SOURCE IN INDONESIA 5.1. Coal 5.1.1. Producers and Coal Production 5.1.2. Map location of the deployment of resources and coal reserves 5.1.3. Coal Supply 5.1.4. Briquette Production 5.1.5. Coal prices 5.2. Natural Gas 5.2.1. Natural Gas Reserves 5.2.2. Natural Gas Production 5.2.3. Production and Utilization of Natural Gas 5.2.4. Gas Exports 5.2.5. LPG Production and Imports 5.2.6. LNG Production and Export 5.3. Electricity 5.3.1. National Electrification Ratio 5.3.2. Balance of the National Electricity 5.3.3. Electricity Generating Capacity 5.3.4. Electricity production per plant type 5.3.5. Electricity Sales by Sector 5.4. Oil 5.4.1. Oil Reserves 5.4.2. Petroleum Production 5.4.3. Oil prices 5.4.4. Oil Exports 5.4.5. Petroleum Imports by Country of Origin 5.4.6. Production of fuel oil (BBM) 5.4.6.1. Cumulative oil production 5.4.7. Non-fuel production 5.4.7.1. Cumulative production of non-fuel 5.4.8. Fuel imports 5.4.9. Fuel and non-fuel consumption by type of energy 5.4.10. Results of Treatment Oil (Refined Products) 5.5. Renewable Energy 5.5.1. Renewable Energy Developments 5.5.2. Geothermal Potential Map of Indonesia
  • 6. 5.5.3. Kapasitas terpasang Panas Bumi per wilayah 5.5.4. Produksi Uap Tenaga Panas Bumi 5.5.5. Potensi Tenaga Air 5.5.6. Kapasitas Terpasang PLTA 5.5.7. Kapasitas Terpasang PLTMH 5.5.8. Kapasitas Terpasang PLT Biomassa 5.5.9. Kapasitas Terpasang PLTS/SHS 5.5.10. Kapasitas Terpasang PLT Bayu/Angin 5.6. Badan Usaha Pemegang Izin Usaha 5.6.1. Pengolahan Minyak Bumi 5.6.2. Pengolahan Hasil Olahan 5.6.3. Pengolahan Gas Bumi 5.7. Laporan Tahunan Produksi Minyak Bumi dan Kondensat Indonesia 5.8. Total Produksi LPG 5.9. Produksi dan Pemanfaatan Gas Bumi 5.10. Produksi LPG 5.11. Produksi LNG BAB VI KINERJA PT. PLN (Persero) 6.1. Neraca Daya (MW) 6.2. Neraca Energi 6.3. Faktor Beban, Faktor Kapasitas, Faktor Permintaan 6.4. Jumlah pelanggaran per jenis pelanggan 6.5. Daya tersambung per kelompok pelanggan (MVA) 6.6. Energi terjual per kelompok pelanggan (GWh) 6.7. Pendapatan per kelompok pelanggan (Juta Rp) 6.8. Energi terjual rata-rata per jenis pelanggan (kWh) 6.9. Harga jual listrik rata-rata per kelompok pelanggan (Rp/kWh) 6.10. Jumlah pelanggan per jenis tegangan 6.11. Daya tersambung 6.12. Energi terjual per jenis tegangan (GWh) 6.13. Rasio Elektrifikasi Nasional 6.14. Neraca Listrik Nasional 6.15. Kapasitas Pembangkit Listrik PLN per jenis Pembangkit 6.16. Produksi Listrik per jenis Pembangkit 6.17. Penjualan Listrik per sektor 6.18. Pendapatan per jenis tegangan (Juta Rp) 6.19. Jumlah pelanggan, daya tersambung dan Energi yang dikonsumsi per Golongan Tarif 6.20. Rasio Elektrifikasi dan Energi yang dikonsumsi per kapita 6.21. Jumlah Unit Pembangkit 6.22. Kapasitas terpasang (MW) 6.23. Daya mampu 6.24. Energi yang diproduksi (GWh) 6.25. Pemakaian bahan bakar 6.26. Harga satuan bahan bakar 6.27. Energi yang diproduksi per jenis bahan bakar (GWh) 6.28. Captive Power (CP) 6.29. Panjang jaringan transmisi (kms) 6.30. Panjang jaringan tegangan menengah dan tegangan rendah (kms) 6.31. Jumlah dan daya terpasang trafo gardu induk 6.32. Jumlah dan daya terpasang trafo gardu distribusi 6.33. Biaya operasi pembangkit per jenis 6.34. Biaya operasi pembangkit rata-rata per kWh 6.35. Energi terjual per kelompok pelanggan 6.36. Pendapatan PLN 6.37. Kapasitas terpasang 6.38. Faktor beban, faktor kapasitas dan factor permintaan (%) 6.39. Daya tersambung per kelompok pelanggan (MVA) 6.40. Energi terjual rata-rata per kelompok pelanggan (kWh) BAB VII GAMBARAN UMUM PASOKAN KEBUTUHAN GAS INDONESIA 7.1. Permasalahan Gas Bumi (Nasional, Regional, Global) 7.2. Dasar penetapan neraca Gas Indonesia 7.3. Peta neraca Gas Indonesia 7.4. Neraca gas 11 region 7.5. Pasokan kebutuhan Gas Bumi berdasarkan Region BAB VIII PERKEMBANGAN EKSPOR-IMPOR BARANG DAN BAHAN UNTUK PEMBUATAN TURBIN UAP 8.1. Impor 8.1.1. Impor bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Komoditi (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013 8.1.2. Impor bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Bulan (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013 8.1.3. Impor bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Pelabuhan (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013 5.5.3. Geothermal installed capacity by region 5.5.4. Geothermal Steam Production 5.5.5. Hydropower Potential 5.5.6. Hydropower Installed Capacity 5.5.7. Installed Capacity of MHP 5.5.8. Installed Capacity of Biomass PLT 5.5.9. Installed Capacity PLTS / SHS 5.5.10. Installed Capacity PLT Bayu / Wind 5.6. Enterprise License Holder 5.6.1. Petroleum Processing 5.6.2. Processing Processed 5.6.3. Natural Gas Processing 5.7. Annual Report of Oil and Condensate Production Indonesia 5.8. Total Production of LPG 5.9. Production and Utilization of Natural Gas 5.10. LPG production 5.11. LNG production CHAPTER VI PT. PLN (Persero) PERFORMANCE 6.1. Balance of Power (MW) 6.2. Energy Balance 6.3. Load factor, capacity factor, Factor Demand 6.4. The number of violations per type of customer 6.5. Connected power per customer group (MVA) 6.6. Energy sold per group of customers (GWh) 6.7. Revenue per customer group (Million USD) 6.8. Energy sold on average per type of customer (kWh) 6.9. Selling price of electricity on average per customer group (Rp / kWh) 6.10. Number of customers per type of voltage 6.11. Power is connected 6.12. Energy sold per type of voltage (GWh) 6.13. National Electrification Ratio 6.14. Balance of the National Electricity 6.15. Electricity Generating Capacity per type of plant 6.16. Electricity production per plant species 6.17. Electricity sales by sector 6.18. Revenue per type of voltage (Million USD) 6.19. Number of customers, the power is connected and the energy consumed per Group Rates 6.20. Electrification ratio and energy consumed per capita 6.21. Generating Unit Number 6.22. Installed capacity (MW) 6.23. Power capable 6.24. Energy produced (GWh) 6.25. Fuel consumption 6.26. Unit price of fuel 6.27. Energy produced per fuel type (GWh) 6.28. Captive Power (CP) 6.29. Long transmission lines (kms) 6.30. Length of medium voltage network and low voltage (kms) 6.31. Number and the installed power transformer substation 6.32. Amount of installed power transformer and distribution substations 6.33. Plant operating costs per type of 6.34. Plant operating cost per kWh average 6.35. Energy sold per customer group 6.36. Income of PLN 6.37. Installed capacity 6.38. Load factor, capacity factor and factor demand (%) 6.39. Connected power per customer group (MVA) 6.40. Energy sold on average per customer group (kWh) CHAPTER VII OVERVIEW INDONESIA GAS SUPPLY REQUIREMENTS 7.1. Gas problems (National, Regional, Global) 7.2. Basis for determining the balance of Gas Indonesia 7.3. Gas balance map Indonesia 7.4. Gas balance 11 region 7.5. Gas supplies by Region CHAPTER VIII THE EXPORT-IMPORT GOODS AND MATERIALS FOR STEAM TURBINE 8.1. Import 8.1.1. Imported materials and supporters to manufacture Steam Turbines (Steam Turbine) by commodities (HS Code 7304.31.20.00 - 7325.10.90.90), 2013 8.1.2. Imported materials and supporters to manufacture Steam Turbines (Steam Turbine) by Month (HS Code 7304.31.20.00 - 7325.10.90.90), 2013 8.1.3. Imported materials and supporters to manufacture Steam Turbines (Steam Turbine) by port (HS Code 7304.31.20.00 - 7325.10.90.90), 2013
  • 7. 8.1.4. Impor bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Negara (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013 8.1.5. Impor barang dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut komoditi (HS Kode 8404.20.00.00 - 8437.80.10.00), 2013 8.1.6. Impor barang dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut bulan (HS Kode 8404.20.00.00 - 8437.80.10.00), 2013 8.1.7. Impor thermometer dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut bulan (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013 8.1.8. Impor thermometer dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut negara (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013 8.1.9. Impor thermometer dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut pelabuhan (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013 8.1.10. Impor thermometer dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut bulan (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013 8.2. Ekspor 8.2.1. Ekspor bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Komoditi (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013 8.2.2. Ekspor bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Negara (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013 8.2.3. Ekspor bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Pelabuhan (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013 8.2.4. Ekspor bahan dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Bulan (HS Kode 7304.31.20.00 - 7325.10.90.90), 2013 8.2.5. Ekspor thermometer dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Komoditi (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013 8.2.6. Ekspor thermometer dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Negara (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013 8.2.7. Ekspor thermometer dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Pelabuhan (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013 8.2.8. Ekspor thermometer dan pendukungnya untuk pembuatan Turbin Uap (Steam Turbine) menurut Bulan (HS Kode 9025.19.19.00 – 9026.10.30.00), 2013 BAB IX DAFTAR PROYEK PEMBANGKIT TENAGA LISTRIK BAB X PENGGUNAAN ENERGI DI BEBERAPA SEKTOR 10.1. PulpdanKertas 10.1.1. Mengurangi biaya oportunitas 10.1.2. Tahapan Pengembangan Teknologi 10.1.2.1. Teknologi energi untuk sektor Industri 10.1.3. Penggunaan energi di industri Pulp dan Kertas 10.2. Gula 10.3. Baja 10.3.1. Industri baja konsumsi Energi dan Gas sebesar 18 persen 10.4. IPP Biomassa 10.5. Tekstil 10.6. Karbon Hitam 10.7. Limbah Kota Padat 10.8. Makanan 10.9. Pemanasan Distrik 10.10. Penyulingan 10.11. Bahan Kimia 10.12. Minyak dan Gas 10.13. Minyak Kelapa Sawit 10.14. IPP yang dipasang di Kapal 8.1.4. Imported materials and supporters to manufacture Steam Turbines (Steam Turbine) by Country (HS Code 7304.31.20.00 - 7325.10.90.90), 2013 8.1.5. Imports of goods and supporters to manufacture Steam Turbines (Steam Turbine) by commodity (HS Code 8404.20.00.00 - 8437.80.10.00), 2013 8.1.6. Imports of goods and supporters to manufacture Steam Turbines (Steam Turbine) by month (HS Code 8404.20.00.00 - 8437.80.10.00), 2013 8.1.7. Import thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by month (HS Code 9025.19.19.00 - 9026.10.30.00), 2013 8.1.8. Import thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by country (HS Code 9025.19.19.00 - 9026.10.30.00), 2013 8.1.9. Import thermometer and supporters to manufacture Steam Turbines (Steam Turbine) according to the port (HS Code 9025.19.19.00 - 9026.10.30.00), 2013 8.1.10. Import thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by month (HS Code 9025.19.19.00 - 9026.10.30.00), 2013 8.2. Export 8.2.1. Exports and supporting materials for the manufacture Steam Turbines (Steam Turbine) by commodities (HS Code 7304.31.20.00 - 7325.10.90.90), 2013 8.2.2. Exports and supporting materials for the manufacture Steam Turbines (Steam Turbine) by Country (HS Code 7304.31.20.00 - 7325.10.90.90), 2013 8.2.3. Exports and supporting materials for the manufacture Steam Turbines (Steam Turbine) by port (HS Code 7304.31.20.00 - 7325.10.90.90), 2013 8.2.4. Exports and supporting materials for the manufacture Steam Turbines (Steam Turbine) by Month (HS Code 7304.31.20.00 - 7325.10.90.90), 2013 8.2.5. Export thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by commodities (HS Code 9025.19.19.00 - 9026.10.30.00), 2013 8.2.6. Export thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by Country (HS Code 9025.19.19.00 - 9026.10.30.00), 2013 8.2.7. Export thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by port (HS Code 9025.19.19.00 - 9026.10.30.00), 2013 8.2.8. Export thermometer and supporters to manufacture Steam Turbines (Steam Turbine) by Month (HS Code 9025.19.19.00 - 9026.10.30.00), 2013 CHAPTER IX LIST OF POWER PLANT PROJECT CHAPTER X ENERGY USE IN SOME SECTORS 10.1. Pulp and Paper 10.1.1. Reduce the opportunity cost 10.1.2. Stages of Technology Development 10.1.2.1. Technology for the energy industry sector 10.1.3. Energy use in the Pulp and Paper industry 10.2. Sugar 10.3. Steel 10.3.1. Steel industry energy consumption by 18% and Gas 10.4. Biomass IPP 10.5. Textiles 10.6. Carbon Black 10.7. City Solid Waste 10.8. Food 10.9. District heating 10.10.Distillation 10.11.Chemicals 10.12.Oil and Gas 10.13.Palm oil 10.14.IPP is installed on Ships
  • 8. BAB XI PELUANG INVESTASI DAN PENDUKUNGNYA 11.1. Minyak dan Gas Bumi (Migas) 11.1.1. Kondisi Migas Indonesia 11.1.2. Potensi Sumber Daya Migas 11.1.3. Lokasi dan status tiap cekungan Sedimen Indonesia 11.1.4. Potensi Sumber Daya Coal Bed Methane (CBM) 11.1.5. Cadangan Minyak dan Gas Bumi 11.1.6. Aktivitas Eksplorasi 11.1.7. Produksi minyak dan gas bumi 11.1.8. Kondisi pasar minyak bumi 11.1.9. Sistem penyediaan bahan bakar 11.1.10. Kondisi pasar Gas Bumi 11.1.11. Infrastruktur Migas 11.1.12. Infrastruktur kilang minyak 11.1.13. Infrastruktur gas bumi 11.1.14. Peluang Investasi Migas 11.1.15. Peluang Investasi usaha penunjang Migas 11.1.16. Prosedur dan tata cara Investasi Migas 11.2. Peluang Investasi Sub Sektor Ketenagalistrikan 11.2.1. Tinjauan Kondisi Tenaga Listrik Nasional 12.2.1.1. Ketersediaan sumber daya energy 12.2.1.2. Kondisi Infrastruktur Ketenagalistrikan saat ini 12.2.1.3. Rasio Elektrifikasi 11.2.2. Peluang Investasi Ketenagalistrikan 11.2.2.1. Kondisi permintaan dan penyediaan tenaga listrik 11.2.2.2. Prioritas pengembangan infrastruktur Ketenagalistrikan ke depan 12.2.2.3. Potensi proyek di sub sektor ketenagalistrikan 12.2.2.4. Prosedur dan Tata Cara Investasi 12.2.2.5. Kewenangan dan Pemberian Izin Usaha Ketenagalistrikan 12.2.2.6. Mekanisme permohonan izin 12.2.2.7. Rekapitulasi kebutuhan Infrastruktur dan Investasi 11.3. Peluang Investasi sub sektor Pertambangan Mineral dan Batu Bara 11.3.1. Landasan Hukum 11.3.2. Tinjauan Kondisi Mineral dan Batu Bara 11.3.2.1. Potensi Sumber Daya Mineral dan Batu Bara 11.3.2.2. Kondisi Industri Mineral 11.3.2.3. Kondisi Industri Batu Bara 11.3.3. Kondisi Angkutan Batu Bara 11.3.3.1. Pelabuhan muat batu bara 11.3.3.2. Niaga 11.3.4. Peluang dan Tantangan Investasi Mineral dan Batu Bara 11.3.4.1. Kondisi Produksi dan Penjualan Mineral dan Batu Bara 11.3.5. Prioritas Pembangunan Infrastruktur Mineral dan Batu Bara ke depan 11.3.5.1. Pengolahan dan Pemurnian Mineral 11.3.5.2. Pengolahan & Pemurnian Timah 11.3.5.3. Pengolahan & Pemurnian Bauksit 11.3.5.4. Prioritas Pembangunan Infrastruktur Mineral dan Batu Bara ke depan 11.3.6. Peluang dan Tantangan Investasi di sub sektor Mineral dan Batu Bara 11.3.6.1. Peluang Investasi di Sub Sektor Mineral dan Batu Bara 11.3.6.2. Tantangan Investasi di Sub Sektor Mineral dan Batu Bara 11.3.6.3. Prosedur dan Tata Cara Investasi 11.3.6.4. Persyaratan Permohonan IUP/IUPK Eksplorasi 11.3.7. Kewenangan dan Pemberian Izin Usaha Pertambangan Mineral dan Batu Bara 11.4. Peluang Investasi sub sektor Energi Baru, Terbarukan dan Konservasi Energi 11.4.1. Landasan Hukum 11.4.2. Tinjauan Kondisi Energi Baru, Terbarukan dan Konservasi Energi 11.4.2.1. Potensi Energi Baru 11.4.2.3. Potensi Energi Terbarukan CHAPTER XI INVESTMENT OPPORTUNITIES AND SUPPORTING 11.1. Oil and Gas (Oil and Gas) 11.1.1. Indonesian Oil and Gas Conditions 11.1.2. Oil and Gas Resource Potential 11.1.3. The location and status of each basin sediments Indonesia 11.1.4. Resource Potential of Coal Bed Methane (CBM) 11.1.5. Oil and Gas Reserves 11.1.6. Exploration Activity 11.1.7. Oil and gas production 11.1.8. Petroleum market conditions 11.1.9. Fuel supply system 11.1.10. Gas market conditions 11.1.11. Oil and Gas Infrastructure 11.1.12. Refinery infrastructure 11.1.13. Natural gas infrastructure 11.1.14. Oil and Gas Investment Opportunities 11.1.15. Oil and Gas Investment Opportunities supporting business 11.1.16. Procedures and Gas Investment 11.2. Electricity Sub-Sector Investment Opportunities 11.2.1. Overview of the National Electric Power Conditions 12.2.1.1. Availability of energy resources 12.2.1.2. Current condition of Electricity Infrastructure 12.2.1.3. Electrification Ratio 11.2.2. Electricity Investment Opportunities 11.2.2.1. Conditions of demand and supply of electricity 11.2.2.2. Electricity infrastructure development priorities ahead 12.2.2.3. Potential sub-projects in the electricity sector 12.2.2.4. Procedures and Procedures for Investment 12.2.2.5. Permit Granting Authority and the Electricity Business 12.2.2.6. Mechanisms permit application 12.2.2.7. Infrastructure and Investment needs recapitulation 11.3. Investment opportunities sub sector Mineral and Coal Mining 11.3.1. Legal Basis 11.3.2. Overview of Conditions Mineral and Coal 11.3.2.1. Potential Mineral Resources and Coal 11.3.2.2. Mineral Industry Conditions 11.3.2.3. Coal Industry Conditions 11.3.3. Coal Transport Conditions 11.3.3.1. Coal loading port 11.3.3.2. Trade 11.3.4. Investment Opportunities and Challenges in Mineral and Coal 11.3.4.1. Production and Sales Conditions Mineral and Coal 11.3.5. Priority Infrastructure Development Mineral and Coal forward 11.3.5.1. Mineral Processing and Refining 11.3.5.2. Processing & Refining Tin 11.3.5.3. Processing & Refining Bauxite 11.3.5.4. Priority Infrastructure Development Mineral and Coal forward 11.3.6. Investment Opportunities and Challenges in the sub-sector of Mineral and Coal 11.3.6.1. Sub-Sector Investment Opportunities in Mineral and Coal 11.3.6.2. Sub Sector Investment Challenges in Mineral and Coal 11.3.6.3. Procedures and Procedures for Investment 11.3.6.4. Application Requirements IUP / IUPK Exploration 11.3.7. Permit Granting Authority and Mineral and Coal Mining 11.4. Investment Opportunities subsectors New Renewable Energy and Energy Conservation 11.4.1. Legal Basis 11.4.2. Overview of Conditions New Renewable Energy and Energy Conservation 11.4.2.1. Potential New Energy 11.4.2.3. Renewable Energy Potential
  • 9. 11.4.3. Potensi Konservasi Energi 11.4.4. Struktur Industri Energi Baru Terbarukan dan Efisiensi Pemanfaatan Energi 11.4.5. Inisiatif Energi Bersih 11.4.6. Peluang dan Tantangan Investasi Energi Baru, Terbarukan dan Konservasi Energi 11.4.6.1. Peluang Investasi Energi Baru 11.4.6.2. Peluang Investasi Energi Nuklir 11.4.6.3. Peluang Investasi Hidrogen 11.4.7. Peluang Investasi Energi Terbarukan 11.4.7.1. Panas Bumi 11.4.7.2. Aliran dan Terjunan Air 11.4.7.3. Bioenergi 11.4.7.4. Energi Sinar Matahari 11.4.7.5. Energi Angin 11.4.8. Peluang Investasi Konservasi Energi 11.4.9. Tantangan Investasi Energi Baru, Terbarukan dan Konservasi Energi 11.4.9.1. Tantangan Investasi Energi Baru 11.4.9.2. Tantangan Investasi Batu bara Tergaskan 11.4.9.3. Tantangan Investasi Nuklir 11.4.9.4. Tantangan Investasi Hidrogen 11.4.10. Tantangan Investasi Energi Terbarukan 11.4.10.1.Tantangan Investasi Panas Bumi 11.4.10.2.Aliran dan Terjunan Air 11.4.10.3.Bioenergi 11.4.10.4.Sinar Matahari 11.4.10.5.Angin 11.4.10.6.Tantangan Investasi Gerakan dan Perbedaan Suhu Lapisan Air Laut 11.4.10.7.Tantangan Investasi Konservasi Energi 11.4.11. Program Pengembangan Energi Baru, Terbarukan dan Konservasi Energi 11.4.11.1.Program Pengembangan Energi Baru 11.4.11.2.Program Pengembangan Energi Terbarukan 11.4.11.3.Bioenergi 11.4.11.4.Energi Gerakan dan Perbedaan Suhu Lapisan Laut (Samudera) 11.4.12. Program Konservasi Energi 11.4.12.1.Sektor Industri 11.4.12.2.Sektor Komersial 11.4.12.3.Sektor Transportasi 11.4.12.4.Sektor Rumah Tangga 11.5. Prosedur dan Tata Cara Investasi 11.5.1. Prosedur dan Tata Cara Investasi Izin Usaha Panas Bumi 11.5.2. Prosedur dan Tata Cara Izin Usaha Niaga Bahan Bakar Nabati 11.5.3. Prosedur dan Tata Cara Izin Usaha Aneka Energi Terbarukan (Energi yang menghasilkan listrik) 11.5.4. Permasalahan yang sering dipertanyakan dan penyelesaiannya dalam berinvestasi 11.5.4.1. Sub Sektor Minyak dan Gas (Migas) 11.5.4.2. Sub Sektor Mineral dan Batu Bara 11.5.4.3. Sub Sektor Ketenagalistrikan 11.5.4.4. Sub Sektor Energi Baru, Terbarukan dan Konservasi Energi (EBTKE) 11.5.5. Enclosure Permasalahan Investasi sektor Energi Sumber Daya Mineral (ESDM) 11.5.5.1. Sub Sektor Minyak dan Gas (Migas) 11.5.5.2. Sub Sektor Ketenagalistrikan 11.5.5.3. Sub Sektor Mineral dan Batu Bara 11.5.5.4. Sub Sektor Energi Baru, Terbarukan dan Konservasi Energi (EBTKE) 11.4.3. Energy Conservation Potential 11.4.4. Industrial structure of Renewable Energy and Energy Efficiency Utilization 11.4.5. Clean Energy Initiative 11.4.6. Investment Opportunities and Challenges of New Renewable Energy and Energy Conservation 11.4.6.1. New Energy Investment Opportunities 11.4.6.2. Nuclear Energy Investment Opportunities 11.4.6.3. Hydrogen Investment Opportunities 11.4.7. Renewable Energy Investment Opportunities 11.4.7.1. Geothermal 11.4.7.2. Stream and waterfall 11.4.7.3. Bioenergy 11.4.7.4. Sunlight Energy 11.4.7.5. Wind Energy 11.4.8. Energy Conservation Investment Opportunities 11.4.9. Investment Challenges New Renewable Energy and Energy Conservation 11.4.9.1. New Energy Investment Challenges 11.4.9.2. Coal Investment Challenges Tergaskan 11.4.9.3. Nuclear Investment Challenges 11.4.9.4. Hydrogen Investment Challenges 11.4.10.Challenges of Renewable Energy Investments 11.4.10.1.Geothermal Investment Challenges 11.4.10.2.Stream and waterfall 11.4.10.3.Bioenergy 11.4.10.4.Sunlight 11.4.10.5.Wind 11.4.10.6.Investment Challenges Movement and Sea Temperature Difference Layer 11.4.10.7.Energy Conservation Investment Challenges 11.4.11.Program Development of New Renewable Energy and Energy Conservation 11.4.11.1.New Energy Development Program 11.4.11.2.Renewable Energy Development Program 11.4.11.3.Bioenergy 11.4.11.4.Energy Movement and Sea Temperature Difference layer (the ocean) 11.4.12.Energy Conservation Program 11.4.12.1.Industry Sector 11.4.12.2.Commercial Sector 11.4.12.3.Transport Sector 11.4.12.4.Household sector 11.5. Procedures and Procedures for Investment 11.5.1. Procedures and Procedures for Investment Geothermal Business License 11.5.2. Procedures and Procedures for Commercial Business Licenses Biofuel 11.5.3. Procedures and Procedures for Business Licenses Various Renewable Energy (Energy generates electricity) 11.5.4. Problems that are often questionable and settlement in investing 11.5.4.1. Sub Sector Oil and Gas (Oil and Gas) 11.5.4.2. Sub Sector Minerals and Coal 11.5.4.3. Electricity Sub-Sector 11.5.4.4. Sub Sector New Renewable Energy and Energy Conservation (EBTKE) 11.5.5. Enclosure sector Investment Issues Energy and Mineral Resources (ESDM) 11.5.5.1. Sub Sector Oil and Gas (Oil and Gas) 11.5.5.2. Electricity Sub-Sector 11.5.5.3. Sub Sector Minerals and Coal 11.5.5.4. Sub Sector New Renewable Energy and Energy Conservation (EBTKE)
  • 10. BAB XII CSR BIDANG LINGKUNGAN PADA PEMBANGKIT LISTRIK 12.1. Latar Belakang CSR 12.2. Maksud dan Tujun CSR 12.3. Manfaat CSR 12.4. Potret CSR di Indonesia 12.5. Perlunya CSR Bidang Lingkungan yang Sistematis dan Terintegrasi 12.6. CSR pada Konservasi Energi dan Sumber Daya Alam (SDA) 12.7. CSR pada Energi Terbarukan (Renewable Energy) 12.8. Pelibatan Pemangku Kepentingan (stakeholder engagement) 12.9. Penerapan CSR bidang lingkungan oleh PT ADARO INDONESIA (Pembangkit Listrik Tenaga Surya) 12.10.Penerapan CSR Bidang Lingkungan - Pendidikan Lingkungan Hidup oleh PT Indonesia Power (Sekolah Lapangan Konservasi) BAB XIII STANDAR NASIONAL INDONESIA (SNI) BAB XIV DAFTAR PERUSAHAAN JASA PENUNJANG MINYAK DAN GAS 14.1. Bidang Usaha Jasa Konstruksi 14.2. Bidang Usaha Jasa Non Konstruksi 14.3. Bidang Usaha Industri Penunjang 14.4. Daftar Perusahaan - Kontraktor Kontrak Kerjasama 14.4.1. Daftar Oil Company (Hulu) 14.4.2. Daftar Oil Company (Hilir) 14.4.3. Pertamina EP 14.4.4. Unit Bisnis Pertamina 14.5. Badan Usaha Bidang Hilir 14.5.1. Daftar Perusahaan Pemegang Izin Usaha Pengolahan Minyak Bumi, Gas Bumi, dan Hasil Olahan 14.5.2. Daftar Perusahaan Pemegang Izin Usaha Pengangkutan Bahan Bakar Minyak 14.5.3. Daftar Perusahaan Pemegang Izin Usaha Penyimpanan Bahan Bakar Minyak 14.5.4. Daftar Perusahaan Pemegang Izin Usaha Penyimpanan LPG 14.5.5. Daftar Perusahaan Pemegang Izin Usaha Niaga Bahan Bakar Nabati (Biofuel) 14.5.6. Daftar Perusahaan Pemilik NPT 14.6. Bidang Jasa Teknik 14.6.1. Daftar Perusahaan Pemboran 14.6.2. Daftar Perusahaan Jasa Inspeksi Teknik 14.6.3. Daftar Perusahaan Keagenan Alat Ukur Migas 14.6.4. Konsultan Lingkungan dan Laboratorium 14.6.5. Daftar Perusahaan Seismik 14.6.6. Daftar Perakit Perekayasa Sistem Meter Minyak dan Gas Bumi BAB XV KESIMPULAN DAN SARAN DIREKTORI (PERUSAHAAN PEMBANGKIT LISTRIK DI INDONESIA) CHAPTER XII CSR IN POWER PLANT ENVIRONMENTAL AFFAIRS 12.1. Background CSR 12.2. Purpose and Tujun CSR 12.3. Benefits of CSR 12.4. Portrait of CSR in Indonesia 12.5. The need for a systematic CSR and Environmental Affairs Integrated 12.6. CSR at the Energy Conservation and Natural Resources (NR) 12.7. CSR on Renewable Energy (Renewable Energy) 12.8. Stakeholder involvement (stakeholder engagement) 12.9. CSR implementation by the environmental field ADARO INDONESIA PT (Solar Power) 12.10.CSR implementation of Environment - Environmental Education by PT Indonesia Power (Conservation Field School) CHAPTER XIII INDONESIAN NATIONAL STANDARD (SNI) CHAPTER XIV LIST OF SUPPORT SERVICES COMPANY OIL AND GAS 14.1. Line of Business Construction Services 14.2. Non Line of Business Construction Services 14.3. Supporting Industry Business Sector 14.4. List of Companies - Cooperation Contract 14.4.1. List of Oil Company (Hulu) 14.4.2. List of Oil Company (Downstream) 14.4.3. Pertamina EP 14.4.4. Pertamina Business Unit 14.5. Downstream Sector Enterprises 14.5.1. List of Business Permit Processing Crude Oil, Natural Gas, and Processed 14.5.2. List of License Holders Transportation Fuel 14.5.3. List of License Holders Fuel Storage 14.5.4. List of License Holders LPG Storage 14.5.5. List of License Holders Commercial Biofuel (Biofuel) 14.5.6. List of Company Owner NPT 14.6. Field Engineering Services 14.6.1. List of Drilling 14.6.2. List of Technical Inspection Services 14.6.3. List of Measuring Gas Agency 14.6.4. Environmental Consultants and Laboratories 14.6.5. Seismic Companies List 14.6.6. List Fabricators Meter System Engineer Oil and Gas CHAPTER XV CONCLUSION AND RECOMMENDATIONS DIRECTORY (POWER PLANT COMPANY IN INDONESIA) SAMPLE OF COMPANY PROFILE BUKAKA TEKNIK UTAMA, PT A d d r e s s : Bukaka Industrial Complex Jl. Raya Bekasi Cibinong Km. 19,5 Cileungsi Bogor 16820 – West Java Phones : +62 (021) 8232323 Fax. : +62 (021) 8231150, 8231780 Site : http://www.bukaka.co.id/ Contact :  MARKETING DIVISION Phone1 : +62.21.8234803 Phone2 : +62.21.8231149 Facsimile : +62.21.8231150, 8231780 marketing@bukaka.com  BUSINESS DEVELOPMENT Phone1 : +62.21.823 1146 (direct) Phone2 : +62.21.823 2323 (hunting) Ext. 533, 509 Facsimile : +62.21.823 1762 bdv@bukaka.com  HUMAN RESOURCE DEVELOPMENT Telephone1 : +62.21.823 4811 (direct) Telephone2 : +62.21.823 2323 (hunting) Ext 541,542 Facsimile : +62.21.823 4810 hrd@bukaka.com  BUSINESS UNIT CONTACT PASSENGER BOARDING BRIDGE STEEL TOWER STEEL BRIDGE ROAD CONSTRUCTION EQUIPMENT OIL AND GAS EQUIPMENTS OFFSHORE MAINTENANCE AND SERVICE POWER GENERATION SPECIAL PURPOSE VEHICLES GALVANIZE
  • 11. HYDRO POWER GENERATION SERVICES Date of Establishment : a. 25 October 1978 as PT BUKAKA TEKNIK UTAMA b. 25 June 1997 as PT BUKAKA TEKNIK UTAMA Tbk. Date of Operation Commencement : 1 9 7 9 Total Investment : Initial a. Equity Capital – Rp. 3,200 million b. Loan Capital – Rp. 7,300 million c. Total Investment– Rp. 10,500 million Expansion Unit a. Equity Capital – Rp. 22,600 million b. Loan Capital – Rp. 83,200 million c. Total Investment– Rp. 105,800 million Capitalization : a. Authorized Capital - Rp. 200,000,000,000 b. Issued Capital - Rp. 70,306,000,000 c. Paid Up Capital - Rp. 70,306,000,000 S t a t u s : Limited Liability & Public Listed Company C a t e g o r y : National Private and Domestic Investment (PMDN) Company Condition of Company : G o o d P e r m i t s : The Capital Investment Coordinating Board - No. 174/I/PMDN/1982, Dated 2 October 1982 - No. 31/VI/PMDN/1985, Dated 7 May 1985 - No. 357/II/PMDN/1990, Dated 30 May 1990 - No. 405/III/PMDN/1990, Dated 30 June 1990 - No. 358/III/PMDN/1991, Dated 7 May 1991 - No. 29/III/PMDN/1992, Dated 16 January 1992 Line of Business : - Manufacturing & Distribution of Special Vehicles, Construction Equipment, Agricultural, Machinery, Steel Structure - General Contracting - Investment Holding - Power Generation Power Name : PLTGU Tambaklorok (100 MW) Production of Capacity : Initial - Fire Fighting Trucks – 100 units p.a. - Asphalt Sprayers – 100 units p.a. - Asphal Mixing Plants – 8 units p.a. - Stone Crushers – 25 units p.a. - Steel Tower Electric Power Distribution – 12,000 units p.a. - Wide Flange Beams – 5,000 units p.a. - Seed Processing Plant – 150 units p.a - Transplanters – 150 units p.a. - Harvesteres – 150 units p.a - Redressers – 150 units p.a - Treshers – 150 units p.a - Elevators – 150 units p.a. - Farm Browers – 150 units p.a - Dryers – 150 units p.a - Milling Plants – 150 units p.a - Rice Millings – 150 units p.a - Parts & Component for Oil & Gas Drilling - 15,000 units p.a - Containers & Trailers – 2,000 units p.a. - Fire Extingulisher Pumps – 10 units p.a - Tail Gate Speaders – 100 units p.a - Asphalt Melting Kettle – 120 units p.a - Asphalt Finishers – 50 units p.a - Asphalt Distribution – 50 units p.a - Concrete Mixers – 70 units p.a - Pumping Units – 500 units p.a - Microwave Powers – 500 units p.a - Parabolic Antenna – 500 units p.a Expansion Units - High Voltage Electric Powers – 47,930 tons p.a - Bridge Contructions – 50,000 units p.a - Machine Equipment Mining & Gas – 12,000 units p.a - Container & Trailers – 2,400 units p.a - Fire Extingulisher Pumps – 120 units p.a - Tail Gate Speaders – 240 units p.a - Asphalt Melting Kettle – 60 units p.a - Asphalt Finishers – 144 units p.a - Asphalt Distribution – 60 units p.a - Concrete Mixers – 84 units p.a - Pumping Units – 699 units p.a - Telecommunication Equipments – 1,200 units p.a - Ductile Iron Casting – 1,200 units p.a - Tyrd Roliers – 120 units p.a - Vibrating Compactors – 120 units p.a - Hand Operated Vibrating – 120 units p.a - Motor Graders – 120 units p.a - Steam Generators – 180 units p.a - Gear Box Pumps – 1,200 units p.a - Machine Tools – 480 units p.a - Passenger Boarding Bridges – 70 units p.a - Mini Tractors – 2,000 units p.a - Hand Tractors – 2,000 units p.a - Gantry Crane/Transtainers – 10 units p.a - Electric Transmission – 20 units p.a Total Employees : 2,480 workers Number of R&D Staff : 50-100 workers Main Shareholders / : a. PT BUKAKA INVESTINDO Parent company b. PT TASPEN (Persero) c. Yayasan Kesejahteraan Karyawan PT BUKAKA TEKNIK UTAMA d. PT Asuransi Kerugian JASA RAHARDJA (Persero) e. Mr. Drs. Mohammad Jusuf Kalla f. Mr. Ir. Fadel Muhammad g. Mr. Drs. Suhaeli Kalla h. PT DANAREKSA (Persero) i. Mr. Ir. Achmad Kalla j. Mr. Ir. Muhammad Azhary k. Mr. Ir. Kusnan Nuryadi l. Mr. Ir. Muhammad Imron Zubaidy m. Mr. Ir. Erwin Kurniadi n. The Publics B a n k e r s : a. PT Bank MANDIRI Tbk. b. The Bank of Tokyo – Mitsubishi UFJ Ltd. Main Markets : Domestic Supervisory Board : a. Mr. Suhaeli Kalla (Pres. Commissioner) b. Mr. Solichin Jusuf (Commissioner) c. Mr. Muhamad Abduh (Commissioner) d. Mr. Sumarsono (Indep. Commissioner) Board of Management : a. Mr. Irsal Kamarudin (President Director) b. Mr. Alimudin Sewang (Hydropower Director) c. Mrs. Saptiastuti Hapsari (Operational Director I) d. Mrs. Sofiah Balfas (Operational Director II) e. Mr. Pradana Ramadhian G. (Finance Director) Associated Companies : Member of the BUKAKA Group
  • 12. R E M A R K S : Commencing in 1978, from a small scale operation with only twelve employees and a single product line, this company has grown into a multi- million dollar company with thousand of employees. Pioneer in the line of its genuine businesses, PT Bukaka Teknik Utama’s main activities cover the engineering and manufacturing of infra-structure related products and services. The focus and strength of the company lie with its continuing and innovating experience in serving the rapid national development of the most important support sectors, namely energy transportation, and communication. The challenging enormous demand for the infra-structure, strives the company to keep its attention to the ongoing innovation competing world-wide. This is a company with breakthroughs of utilizing the maximum use of its productive personnel and continuous efficiency improvement to the attainable level of innovation. The company is opened to all opportunities that promote efficiency in such a spread-wise area of activities. Though delivery as the final stage of operation is executed in an efficient and economical manner, the company keeps its improving process, even it has to invite and or to cooperate with expertises. This is a company which implements the objective function of the good corporate governance. Governing the internal audit implementation to meet the objectives of good cooperate governance is totally inseparable. POWER GENERATION Beginning of Construction & Diesel Engine rent, then do the conversion of high speed diesel (HSD) fuel to the MFO (MFO-nization) and the conversion of HSD fuel to dual fuel (HSD & LNG) and reduce gas emission for Diesel Generating Unit, with most customers are PT PLN (Persero), for approximately 16 years has worked on dozens of projects relating to electricity, particularly Power Generation. Start of work on the project on a small capacity power about 1 MW up to the greatest engineering work for the project MFO-nization PLTGU Tambaklorok, PT Indonesia Power Semarang with a capacity up to 100 MW. Power Generation Division is currently engaged in Engineering, Procurement and Construction, Power Rental, IPP Development, Reduce Fuel Cost, Optimization, O&M and Supply part. Armed with the experience of existing as well as adequate human resources, as well as business development in the field of power generation, Power Generation Division forward strategies include: - Perform internal improvements (already achieved ISO 9001:2008) - Strengthen the marketing by adding personnel and reorganize marketing strategy - Pioneering partnership with a company that has experience and a wider business network so as to grow the business and capture opportunities - Conducting R & D for new technologies include: solar, mini hydro power plants, coal gasification fuel utilization and processing of waste as a fuel Along with the campaign the use of environmentally friendly energy sources, Power Generation division will also develop projects in the field of MHP (Micro Hydro Power Plant) and SPP (Solar Power Plant).
  • 13. Commercial Head office: Sukamanah RT. 04/06 Cisaat Sukabumi Phones: +62 (0266) 9296038 Branch office: Kompleks Deppen Blok X/3 Ha Kirimkan kepada kami buku : “STUDI TENTANG UAP (PEMBANGKIT LISTRIK) Send us the book : "STUDY ON THE TURBINE (POWER PLANT) Please select the version of your book Versi/version Tanggal Pemesanan : ………………………………………………………………………… Booking date Nama Pemesan : ………………………………………………………………………… Name of buyer Jabatan : ………………………………………………………………………… Position Nama Perusahaan : ………………………………………………………………………… Name of Company Alamat Perusahaan : ………………………………………………………………………… Company Address Telepon/Fax : ………………………………………………………………………… Phone/Fax E-mail : ………………………………………………………………………… Hubungi kami / Contact Us : DENI SILALAHI (Marketing Department) Address : Sukamanah RT. 04/06 No. 199 Phone : +62 (0266) 9296038, 085793929829 Pembayaran melalui : √ Cash Payment via Nama Bank : BANK OCBC NISP Bank name Cabang Sukabumi Nomor Rekening : 14081015480 Account number Rekening atas nama : ROHIYAH Account in the name Buku pesanan Anda akan segera kami kirim setelah ada konfirmasi dari pihak pemesan. Book your order will immediately tell us when there is confirmation from the buyer Terima kasih atas kepercayaan anda bermitra dengan kami. Commercial Global Data Consultant – Survey – Sukamanah RT. 04/06 Cisaat Sukabumi, Jawa Barat Website: http://commercialglobaldataresearch.blogspot.com/ : +62 (0266) 9296038, 085793929829, Fax:+62 (0266) 241346 Email: Kompleks Deppen Blok X/3 Harjamukti Cimanggis – Kota Depok, HP: 087743196076 FORMULIR PEMESANAN ORDER FORM STUDI TENTANG KONDISI PASAR DAN PROSPEK INDUSTRI UAP (PEMBANGKIT LISTRIK) DI INDONESIA”, 201 ON THE MARKET CONDITIONS AND PROSPECTS OF TURBINE (POWER PLANT) INDUSTRY IN INDONESIA” Silahkan pilih versi buku anda Please select the version of your book version : √ ( ) Indonesia atau/or ( ) English ……………………………………………………………………………………………………… : ……………………………………………………………………………………………………… : ……………………………………………………………………………………………………… : ……………………………………………………………………………………………………… : ……………………………………………………………………………………………………… : ……………………………………………………………………………………………………… : ……………………………………………………………………………………………………… (Marketing Department) “Commercial Global Data Research” No. 199 Cisaat, Sukabumi, West Java – INDONESIA 5793929829; Fax: +62 (0266) 241346; E-mail: cg.dataresearch@gmail.com Cash Cheque Transfer OCBC NISP Sukabumi 14081015480-1 segera kami kirim setelah ada konfirmasi dari pihak pemesan. Book your order will immediately tell us when there is confirmation from the buyer Terima kasih atas kepercayaan anda bermitra dengan kami. Data Research – Research – Report , Jawa Barat – INDONESIA Website: http://commercialglobaldataresearch.blogspot.com/ cg.dataresearch@gmail.com Kota Depok, HP: 087743196076 KONDISI PASAR DAN PROSPEK INDUSTRI TURBIN DI INDONESIA”, 2013-2014. PROSPECTS OF STEAM INDONESIA”, 2013-2014. …………………………… …………………………… …………………………… …………………………… …………………………… …………………………… …………………………… mail: cg.dataresearch@gmail.com