Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Standard text messaging rates apply

# Sas code for examples from a first course in statistics

301

Published on

Published in: Technology
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
301
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
23
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Transcript

• 1. SAS Code for Examples from a First Course in Statistics If you are running in batch mode, set options at the start of each script so that output will be formatted to fit on a letter size page. options linesize=64 pagesize=55; Do a simple probability calculation and display the result data race; pr = probnorm(-15/sqrt(325)); run; proc print data=race; var pr; run; Do a simple probability calculation and display the result with PROC IML proc iml; FF = FINV(0.05/32,2,29); print FF; quit; Compute, display and plot the ratio of confidence limits for a normal variance (Try writing a simpler version of this using PROC IML.) data chisq; input df; chirat = cinv(.995,df)/cinv(.005,df); datalines; 20 21 22 23 24 25 26 27 28 29 30 ; run; proc print data=chisq; var df chirat; run; proc plot data=chisq;
• 2. plot chirat*df; run; Do a 2-Factor ANOVA, data entered in the script data copper; input id warp temp pct; datalines; 1 17 50 40 2 20 50 40 3 16 50 60 4 21 50 60 5 24 50 80 6 22 50 80 9 12 75 40 10 9 75 40 11 18 75 60 12 13 75 60 13 17 75 80 14 12 75 80 25 21 125 40 26 17 125 40 27 23 125 60 28 21 125 60 29 23 125 80 30 22 125 80 ; proc anova data=copper; class temp pct; model warp= temp | pct; run; Do a Simple Linear Regression and plot the result from PROC REG (Plotting from PROC REG does not work in batch mode) data crack; input id age load; datalines; 1 20 11.45 2 20 10.42 3 20 11.14 4 25 10.84 5 25 11.17 6 25 10.54 7 31 9.47 8 31 9.19 9 31 9.54 ; proc reg data=crack; model load = age; plot predicted. * age = 'P' load * age = '*' / overlay;
• 3. run; Scatter plot in batch mode data crack; input id age load; datalines; 1 20 11.45 2 20 10.42 3 20 11.14 4 25 10.84 5 25 11.17 6 25 10.54 7 31 9.47 8 31 9.19 9 31 9.54 ; proc plot data=crack; plot load * age = "*"; run; Simple Linear Regression and scatter plot with overlay in batch mode data crack; input id age load; datalines; 1 20 11.45 2 20 10.42 3 20 11.14 4 25 10.84 5 25 11.17 6 25 10.54 7 31 9.47 8 31 9.19 9 31 9.54 ; proc reg data=crack; model load = age / p; output out=crackreg p=pred r=resid; run; proc plot data=crackreg; plot load*age="*" pred*age="+"/ overlay; run; Simple Linear Regression ANOVA with non-linearity test, scatter plot with overlay in batch mode data crack; input id age load agef; datalines; 1 20 11.45 20
• 4. 2 20 10.42 20 3 20 11.14 20 4 25 10.84 25 5 25 11.17 25 6 25 10.54 25 7 31 9.47 31 8 31 9.19 31 9 31 9.54 31 ; proc glm data=crack; class agef; model load = age agef / p; output out=crackreg p=pred r=resid; run; proc plot data=crackreg; plot load*age="*" pred*age="+"/ overlay; run; Two-Factor ANOVA, data entered in the script data toxic; input life poison \$ treatment \$; datalines; 0.31 I A 0.45 I A 0.46 I A 0.43 I A 0.36 II A 0.29 II A 0.40 II A 0.23 II A 0.22 III A 0.21 III A 0.18 III A 0.23 III A 0.82 I B 1.10 I B 0.88 I B 0.72 I B 0.92 II B 0.61 II B 0.49 II B 1.24 II B 0.30 III B 0.37 III B 0.38 III B 0.29 III B 0.43 I C 0.45 I C 0.63 I C 0.76 I C 0.44 II C 0.35 II C 0.31 II C
• 5. 0.40 II C 0.23 III C 0.25 III C 0.24 III C 0.22 III C 0.45 I D 0.71 I D 0.66 I D 0.62 I D 0.56 II D 1.02 II D 0.71 II D 0.38 II D 0.30 III D 0.36 III D 0.31 III D 0.33 III D ; run; proc anova data=toxic; class poison treatment; model life = poison treatment poison*treatment; run; Two-Factor ANOVA, data from a comma-delimited text file data toxic; infile "toxic.dat" dlm=","; input life poison \$ treatment \$; run; proc anova data=toxic; class poison treatment; model life = poison treatment poison*treatment; run; SAS Program *** EXAMPLE 1 ********************; *** Data input, sort and print ***; **********************************; OPTIONS PS=55 LS=77 NOCENTER NODATE NONUMBER; DATA paintdry; INFILE CARDS MISSOVER; INPUT status \$ luster hardness timeoday \$; CARDS; RUN; Fresh 7 3 Early Dried 8 9 Early Fresh 6 3 Dried 8 7 Late Fresh 5 6 Late ; PROC SORT; BY status luster hardness; RUN; PROC PRINT; RUN;
• 6. *** EXAMPLE 2 ******************************; *** Data input and means on two variables ***; *** Output statement ***; ********************************************; OPTIONS PS=51 LS=78 NOCENTER NODATE NONUMBER; data one; infile cards; input x y; cards; run; 1 1 2 3 3 4 4 4 4 5 5 7 7 6 9 7 ; proc means MIN MAX SUM STD USS; var x y; run; Proc print data=one; run; OPTIONS PS=31 LS=80; Proc plot data=one; plot x*y; run; OPTIONS PS=52; *** EXAMPLE 3 ********************; *** Data input, sort and print ***; **********************************; OPTIONS PS=53 LS=79 NOCENTER NODATE NONUMBER; DATA NEW3; INFILE CARDS MISSOVER; INPUT day number type \$ model \$; CARDS; RUN; 17 9 TRUCKS SEMI 18 8 TRUCKS SEMI 19 2 TRUCKS PICKUP 22 4 TRUCKS SEMI 16 3 CARS COUPE 17 2 CARS COUPE 18 3 CARS SEDAN 19 1 CARS SEDAN 22 5 CARS SEDAN 17 1 VANS 5DOOR 17 4 VANS 4DOOR 19 2 VANS 5DOOR ; PROC SORT DATA=NEW3; BY type model day number; RUN; TITLE1 'My raw data is listed below'; PROC PRINT DATA=NEW3 double; VAR type model day number; RUN; PROC SORT DATA=NEW3; BY TYPE; RUN; TITLE1 'Selected means are provided below'; PROC MEANS DATA=NEW3; BY type; VAR number day; RUN; PROC SORT DATA=NEW3; BY type; RUN; PROC MEANS DATA=NEW3 NOPRINT; BY type; VAR number day; OUTPUT OUT=THREE N=NNo DNo MEAN=NMEAN DMEAN VAR=NVAR DVAR; RUN; TITLE1 'Outputted means are listed below';
• 7. PROC PRINT DATA=THREE; VAR TYPE NNo DMEAN NVAR DNo NMEAN DVAR; RUN; *** EXAMPLE 4 ********************************************; *** Reading a file and saving a permanent SAS data set ***; **********************************************************; OPTIONS PS=55 LS=77 NOCENTER NODATE NONUMBER; libname mylib 'A:'; DATA mylib.OLD_DATA; INFILE CARDS MISSOVER; INPUT MONTH DAY YEAR STATION \$ SPECIES \$ NUMBER; LABEL STATION = 'Sample stations'; LABEL SPECIES = 'Species common name'; LABEL STATION = 'Number caught'; CARDS; RUN; 01 8 97 North Spot 8 01 8 97 North Croaker 3 01 8 97 South Spot 11 03 23 97 North Spot 2 03 23 97 South Spot 5 05 15 97 North Spot 1 05 15 97 North Croaker 3 05 15 97 South Spot 17 05 15 97 South Croaker 2 08 12 97 North Spot 8 08 12 97 North Croaker 3 08 12 97 North RedDrum 1 08 12 97 North Spot 8 08 12 97 North Croaker 9 ; *** EXAMPLE 5 **************************; *** Reading a permanent SAS data set ***; *** Concatenating SAS data sets ***; ****************************************; OPTIONS PS=55 LS=77 NOCENTER NODATE NUMBER PAGENO=1; libname mylib 'A:'; TITLE1 'Example program #5'; DATA NEW_DATA; INFILE CARDS MISSOVER; INPUT MONTH DAY YEAR STATION \$ SPECIES \$ NUMBER; CARDS; RUN; 01 14 98 North Spot 12 01 14 98 North Croaker 1 01 14 98 North RedDrum 4 01 14 98 South Spot 5 03 6 98 South Spot 3 03 6 98 South Croaker 9 05 26 98 North Spot 11 05 26 98 North Croaker 12 05 26 98 South Spot 4 07 29 98 North Spot 24 07 29 98 North Croaker 16 07 29 98 North Spot 12 07 29 98 North Croaker 7 ; DATA MYLIB.ALL_DATA; SET mylib.old_data NEW_DATA; sasdate = mdy(month, day, year); format sasdate date7.;
• 8. RUN; PROC SORT DATA=MYLIB.ALL_DATA; BY SPECIES YEAR MONTH DAY; RUN; PROC PRINT DATA=MYLIB.ALL_DATA; TITLE2 'Raw data listing sorted by species y m d'; VAR SPECIES sasdate STATION NUMBER; RUN; PROC FREQ DATA=MYLIB.ALL_DATA; BY SPECIES; WEIGHT NUMBER; TITLE2 'Species frequency (weighted by number)'; TABLE MONTH*STATION; RUN; PROC FREQ DATA=MYLIB.ALL_DATA; WEIGHT NUMBER; TITLE2 'Species frequency - chi square test'; TABLE MONTH*STATION / chisq cellchi2 norow nocol nopercent; RUN; proc plot data=mylib.all_data; TITLE2 'Scatter plot of number by date'; plot number*sasdate=species; run; proc chart data=mylib.all_data; by species; TITLE2 'Horizontal bar chart'; hbar species / sumvar=number group=station type=sum; run; OPTIONS PS=30 LS=88; proc chart data=mylib.all_data; TITLE2 'Histogram'; vbar species / sumvar=number type=mean; run; SAS Log 1 *** EXAMPLE 1 ********************; 2 *** Data input, sort and print ***; 3 **********************************; 4 OPTIONS PS=55 LS=77 NOCENTER NODATE NONUMBER; 5 DATA paintdry; INFILE CARDS MISSOVER; 6 INPUT status \$ luster hardness timeoday \$; 7 CARDS; NOTE: The data set WORK.PAINTDRY has 5 observations and 4 variables. NOTE: The DATA statement used 0.05 seconds. 7 RUN; 13 ; 14 PROC SORT; BY status luster hardness; RUN; NOTE: The data set WORK.PAINTDRY has 5 observations and 4 variables. NOTE: The PROCEDURE SORT used 0.05 seconds. 15 PROC PRINT; RUN; NOTE: The PROCEDURE PRINT printed page 1. NOTE: The PROCEDURE PRINT used 0.05 seconds. 16 17 18 *** EXAMPLE 2 ******************************;
• 9. 19 *** Data input and means on two variables ***; 20 *** Output statement ***; 21 ********************************************; 22 OPTIONS PS=51 LS=78 NOCENTER NODATE NONUMBER; 23 data one; infile cards; 24 input x y; 25 cards; NOTE: The data set WORK.ONE has 8 observations and 2 variables. NOTE: The DATA statement used 0.05 seconds. 25 run; 34 ; 35 proc means MIN MAX SUM STD USS; var x y; run; NOTE: The PROCEDURE MEANS printed page 2. NOTE: The PROCEDURE MEANS used 0.0 seconds. 36 Proc print data=one; run; NOTE: The PROCEDURE PRINT printed page 3. NOTE: The PROCEDURE PRINT used 0.0 seconds. 37 OPTIONS PS=31 LS=80; 38 Proc plot data=one; plot x*y; run; 39 OPTIONS PS=52; 40 41 *** EXAMPLE 3 ********************; 42 *** Data input, sort and print ***; 43 **********************************; 44 OPTIONS PS=53 LS=79 NOCENTER NODATE NONUMBER; NOTE: The PROCEDURE PLOT printed page 4. NOTE: The PROCEDURE PLOT used 0.0 seconds. 45 DATA NEW3; INFILE CARDS MISSOVER; 46 INPUT day number type \$ model \$; 47 CARDS; NOTE: The data set WORK.NEW3 has 12 observations and 4 variables. NOTE: The DATA statement used 0.05 seconds. 47 RUN; 60 ; 61 PROC SORT DATA=NEW3; BY type model day number; RUN; NOTE: The data set WORK.NEW3 has 12 observations and 4 variables. NOTE: The PROCEDURE SORT used 0.05 seconds. 62 TITLE1 'My raw data is listed below'; 63 PROC PRINT DATA=NEW3 double; VAR type model day number; RUN; NOTE: The PROCEDURE PRINT printed page 5. NOTE: The PROCEDURE PRINT used 0.0 seconds. 64 65 PROC SORT DATA=NEW3; BY TYPE; RUN; NOTE: Input data set is already sorted, no sorting done. NOTE: The PROCEDURE SORT used 0.0 seconds. 66 TITLE1 'Selected means are provided below'; 67 PROC MEANS DATA=NEW3; BY type; VAR number day; RUN; NOTE: The PROCEDURE MEANS printed page 6. NOTE: The PROCEDURE MEANS used 0.0 seconds. 68 69 PROC SORT DATA=NEW3; BY type; RUN; NOTE: Input data set is already sorted, no sorting done. NOTE: The PROCEDURE SORT used 0.0 seconds. 70 PROC MEANS DATA=NEW3 NOPRINT; BY type; VAR number day; 71 OUTPUT OUT=THREE N=NNo DNo MEAN=NMEAN DMEAN VAR=NVAR DVAR; RUN; NOTE: The data set WORK.THREE has 3 observations and 9 variables. NOTE: The PROCEDURE MEANS used 0.0 seconds.
• 10. 72 TITLE1 'Outputted means are listed below'; 73 PROC PRINT DATA=THREE; VAR TYPE NNo DMEAN NVAR DNo NMEAN DVAR; RUN; NOTE: The PROCEDURE PRINT printed page 7. NOTE: The PROCEDURE PRINT used 0.0 seconds. 74 75 76 *** EXAMPLE 4 ********************************************; 77 *** Reading a file and saving a permanent SAS data set ***; 78 **********************************************************; 79 OPTIONS PS=55 LS=77 NOCENTER NODATE NONUMBER; 80 libname mylib 'A:'; NOTE: Libref MYLIB was successfully assigned as follows: Engine: V612 Physical Name: A: 81 DATA mylib.OLD_DATA; INFILE CARDS MISSOVER; 82 INPUT MONTH DAY YEAR STATION \$ SPECIES \$ NUMBER; 83 LABEL STATION = 'Sample stations'; 84 LABEL SPECIES = 'Species common name'; 85 LABEL STATION = 'Number caught'; 86 CARDS; NOTE: The data set MYLIB.OLD_DATA has 14 observations and 6 variables. NOTE: The DATA statement used 5.21 seconds. 86 RUN; 101 ; 102 103 *** EXAMPLE 5 **************************; 104 *** Reading a permanent SAS data set ***; 105 *** Concatenating SAS data sets ***; 106 ****************************************; 107 OPTIONS PS=55 LS=77 NOCENTER NODATE NUMBER PAGENO=1; 108 libname mylib 'A:'; NOTE: Libref MYLIB was successfully assigned as follows: Engine: V612 Physical Name: A: 109 110 TITLE1 'Example program #5'; 111 DATA NEW_DATA; INFILE CARDS MISSOVER; 112 INPUT MONTH DAY YEAR STATION \$ SPECIES \$ NUMBER; 113 CARDS; NOTE: The data set WORK.NEW_DATA has 13 observations and 6 variables. NOTE: The DATA statement used 0.05 seconds. 113 RUN; 127 ; 128 DATA MYLIB.ALL_DATA; SET mylib.old_data NEW_DATA; 129 sasdate = mdy(month, day, year); format sasdate date7.; 130 RUN; NOTE: The data set MYLIB.ALL_DATA has 27 observations and 7 variables. NOTE: The DATA statement used 4.55 seconds. 131 PROC SORT DATA=MYLIB.ALL_DATA; BY SPECIES YEAR MONTH DAY; RUN; NOTE: The data set MYLIB.ALL_DATA has 27 observations and 7 variables. NOTE: The PROCEDURE SORT used 4.16 seconds. 132 PROC PRINT DATA=MYLIB.ALL_DATA; 133 TITLE2 'Raw data listing sorted by species y m d'; 134 VAR SPECIES sasdate STATION NUMBER; 135 RUN; NOTE: The PROCEDURE PRINT printed page 1.
• 11. NOTE: The PROCEDURE PRINT used 0.0 seconds. 136 PROC FREQ DATA=MYLIB.ALL_DATA; BY SPECIES; WEIGHT NUMBER; 137 TITLE2 'Species frequency (weighted by number)'; 138 TABLE MONTH*STATION; 139 RUN; NOTE: The PROCEDURE FREQ printed pages 2-4. NOTE: The PROCEDURE FREQ used 0.05 seconds. 140 PROC FREQ DATA=MYLIB.ALL_DATA; WEIGHT NUMBER; 141 TITLE2 'Species frequency - chi square test'; 142 TABLE MONTH*STATION / chisq cellchi2 norow nocol nopercent; 143 RUN; NOTE: The PROCEDURE FREQ printed page 5. NOTE: The PROCEDURE FREQ used 0.05 seconds. 144 145 proc plot data=mylib.all_data; 146 TITLE2 'Scatter plot of number by date'; 147 plot number*sasdate=species; 148 run; NOTE: The PROCEDURE PLOT printed page 6. NOTE: The PROCEDURE PLOT used 0.0 seconds. 149 proc chart data=mylib.all_data; by species; 150 TITLE2 'Horizontal bar chart'; 151 hbar species / sumvar=number group=station type=sum; 152 run; NOTE: The PROCEDURE CHART printed pages 7-9. NOTE: The PROCEDURE CHART used 0.05 seconds. 153 OPTIONS PS=30 LS=88; 154 proc chart data=mylib.all_data; 155 TITLE2 'Histogram'; 156 vbar species / sumvar=number type=mean; 157 run; NOTE: The PROCEDURE CHART printed page 10. NOTE: The PROCEDURE CHART used 0.0 seconds. NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414 SAS Output The SAS System OBS STATUS LUSTER HARDNESS TIMEODAY 1 Dried 8 7 Late 2 Dried 8 9 Early 3 Fresh 5 6 Late 4 Fresh 6 3 5 Fresh 7 3 Early The SAS System Variable Minimum Maximum Sum Std Dev USS ------------------------------------------------------------------------------ X 1.0000000 9.0000000 35.0000000 2.6152028 201.0000000 Y 1.0000000 7.0000000 37.0000000 2.0658793 201.0000000 ------------------------------------------------------------------------------
• 12. The SAS System OBS X Y 1 1 1 2 2 3 3 3 4 4 4 4 5 4 5 6 5 7 7 7 6 8 9 7 The SAS System Plot of X*Y. Legend: A = 1 obs, B = 2 obs, etc. X ‚ ‚ 9 ˆ A ‚ 8 ˆ ‚ 7 ˆ A ‚ 6 ˆ ‚ 5 ˆ A ‚ 4 ˆ A A ‚ 3 ˆ A ‚ 2 ˆ A ‚ 1 ˆ A ‚ Šƒƒˆƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒˆƒƒ 1 2 3 4 5 6 7 Y My raw data is listed below OBS TYPE MODEL DAY NUMBER 1 CARS COUPE 16 3 2 CARS COUPE 17 2 3 CARS SEDAN 18 3 4 CARS SEDAN 19 1 5 CARS SEDAN 22 5
• 13. 6 TRUCKS PICKUP 19 2 7 TRUCKS SEMI 17 9 8 TRUCKS SEMI 18 8 9 TRUCKS SEMI 22 4 10 VANS 4DOOR 17 4 11 VANS 5DOOR 17 1 12 VANS 5DOOR 19 2 Selected means are provided below TYPE=CARS Variable N Mean Std Dev Minimum Maximum -------------------------------------------------------------------- NUMBER 5 2.8000000 1.4832397 1.0000000 5.0000000 DAY 5 18.4000000 2.3021729 16.0000000 22.0000000 -------------------------------------------------------------------- TYPE=TRUCKS Variable N Mean Std Dev Minimum Maximum -------------------------------------------------------------------- NUMBER 4 5.7500000 3.3040379 2.0000000 9.0000000 DAY 4 19.0000000 2.1602469 17.0000000 22.0000000 -------------------------------------------------------------------- TYPE=VANS Variable N Mean Std Dev Minimum Maximum -------------------------------------------------------------------- NUMBER 3 2.3333333 1.5275252 1.0000000 4.0000000 DAY 3 17.6666667 1.1547005 17.0000000 19.0000000 -------------------------------------------------------------------- Outputted means are listed below OBS TYPE NNO DMEAN NVAR DNO NMEAN DVAR 1 CARS 5 18.4000 2.2000 5 2.80000 5.30000 2 TRUCKS 4 19.0000 10.9167 4 5.75000 4.66667 3 VANS 3 17.6667 2.3333 3 2.33333 1.33333 Example program #5 1 Raw data listing sorted by species y m d OBS SPECIES SASDATE STATION NUMBER 1 Croaker 08JAN97 North 3 2 Croaker 15MAY97 North 3 3 Croaker 15MAY97 South 2
• 14. 4 Croaker 12AUG97 North 3 5 Croaker 12AUG97 North 9 6 Croaker 14JAN98 North 1 7 Croaker 06MAR98 South 9 8 Croaker 26MAY98 North 12 9 Croaker 29JUL98 North 16 10 Croaker 29JUL98 North 7 11 RedDrum 12AUG97 North 1 12 RedDrum 14JAN98 North 4 13 Spot 08JAN97 North 8 14 Spot 08JAN97 South 11 15 Spot 23MAR97 North 2 16 Spot 23MAR97 South 5 17 Spot 15MAY97 North 1 18 Spot 15MAY97 South 17 19 Spot 12AUG97 North 8 20 Spot 12AUG97 North 8 21 Spot 14JAN98 North 12 22 Spot 14JAN98 South 5 23 Spot 06MAR98 South 3 24 Spot 26MAY98 North 11 25 Spot 26MAY98 South 4 26 Spot 29JUL98 North 24 27 Spot 29JUL98 North 12 Example program #5 2 Species frequency (weighted by number) Species common name=Croaker TABLE OF MONTH BY STATION MONTH STATION(Number caught) Frequency‚ Percent ‚ Row Pct ‚ Col Pct ‚North ‚South ‚ Total ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 1 ‚ 4 ‚ 0 ‚ 4 ‚ 6.15 ‚ 0.00 ‚ 6.15 ‚ 100.00 ‚ 0.00 ‚ ‚ 7.41 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 3 ‚ 0 ‚ 9 ‚ 9 ‚ 0.00 ‚ 13.85 ‚ 13.85 ‚ 0.00 ‚ 100.00 ‚ ‚ 0.00 ‚ 81.82 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 5 ‚ 15 ‚ 2 ‚ 17 ‚ 23.08 ‚ 3.08 ‚ 26.15 ‚ 88.24 ‚ 11.76 ‚ ‚ 27.78 ‚ 18.18 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
• 15. 7 ‚ 23 ‚ 0 ‚ 23 ‚ 35.38 ‚ 0.00 ‚ 35.38 ‚ 100.00 ‚ 0.00 ‚ ‚ 42.59 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 8 ‚ 12 ‚ 0 ‚ 12 ‚ 18.46 ‚ 0.00 ‚ 18.46 ‚ 100.00 ‚ 0.00 ‚ ‚ 22.22 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 54 11 65 83.08 16.92 100.00 Example program #5 3 Species frequency (weighted by number) Species common name=RedDrum TABLE OF MONTH BY STATION MONTH STATION(Number caught) Frequency‚ Percent ‚ Row Pct ‚ Col Pct ‚North ‚ Total ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 1 ‚ 4 ‚ 4 ‚ 80.00 ‚ 80.00 ‚ 100.00 ‚ ‚ 80.00 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 8 ‚ 1 ‚ 1 ‚ 20.00 ‚ 20.00 ‚ 100.00 ‚ ‚ 20.00 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 5 5 100.00 100.00 Example program #5 4 Species frequency (weighted by number) Species common name=Spot TABLE OF MONTH BY STATION MONTH STATION(Number caught) Frequency‚ Percent ‚ Row Pct ‚ Col Pct ‚North ‚South ‚ Total ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
• 16. 1 ‚ 20 ‚ 16 ‚ 36 ‚ 15.27 ‚ 12.21 ‚ 27.48 ‚ 55.56 ‚ 44.44 ‚ ‚ 23.26 ‚ 35.56 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 3 ‚ 2 ‚ 8 ‚ 10 ‚ 1.53 ‚ 6.11 ‚ 7.63 ‚ 20.00 ‚ 80.00 ‚ ‚ 2.33 ‚ 17.78 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 5 ‚ 12 ‚ 21 ‚ 33 ‚ 9.16 ‚ 16.03 ‚ 25.19 ‚ 36.36 ‚ 63.64 ‚ ‚ 13.95 ‚ 46.67 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 7 ‚ 36 ‚ 0 ‚ 36 ‚ 27.48 ‚ 0.00 ‚ 27.48 ‚ 100.00 ‚ 0.00 ‚ ‚ 41.86 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 8 ‚ 16 ‚ 0 ‚ 16 ‚ 12.21 ‚ 0.00 ‚ 12.21 ‚ 100.00 ‚ 0.00 ‚ ‚ 18.60 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 86 45 131 65.65 34.35 100.00 Example program #5 5 Species frequency - chi square test TABLE OF MONTH BY STATION MONTH STATION(Number caught) Frequency ‚ Cell Chi-Square‚North ‚South ‚ Total ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 1 ‚ 28 ‚ 16 ‚ 44 ‚ 0.441 ‚ 1.1418 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 3 ‚ 2 ‚ 17 ‚ 19 ‚ 9.9983 ‚ 25.888 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 5 ‚ 27 ‚ 23 ‚ 50 ‚ 2.2805 ‚ 5.905 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 7 ‚ 59 ‚ 0 ‚ 59 ‚ 6.3484 ‚ 16.438 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 8 ‚ 29 ‚ 0 ‚ 29 ‚ 3.1204 ‚ 8.0796 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 145 56 201
• 17. STATISTICS FOR TABLE OF MONTH BY STATION Statistic DF Value Prob ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Chi-Square 4 79.641 0.001 Likelihood Ratio Chi-Square 4 98.373 0.001 Mantel-Haenszel Chi-Square 1 35.363 0.001 Phi Coefficient 0.629 Contingency Coefficient 0.533 Cramer's V 0.629 Sample Size = 201 Example program #5 6 Scatter plot of number by date Plot of NUMBER*SASDATE. Symbol is value of SPECIES. NUMBER ‚ ‚ 24 ˆ S 23 ˆ 22 ˆ 21 ˆ 20 ˆ 19 ˆ 18 ˆ 17 ˆ S 16 ˆ C 15 ˆ 14 ˆ 13 ˆ 12 ˆ S C S 11 ˆ S S 10 ˆ 9 ˆ C C 8 ˆ S S 7 ˆ C 6 ˆ 5 ˆ S S 4 ˆ R S 3 ˆ C C C S 2 ˆ S C 1 ˆ S R C ‚ Šƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒ 17DEC96 27MAR97 05JUL97 13OCT97 21JAN98 01MAY98 09AUG98 SASDATE NOTE: 1 obs hidden. Example program #5 7 Horizontal bar chart
• 18. Species common name=Croaker STATION Species common name NUMBER Freq Sum ‚ North Croaker ‚*************************** 8 54.00000 ‚ South Croaker ‚****** 2 11.00000 ‚ Šƒƒƒƒˆƒƒƒƒˆƒƒƒƒˆƒƒƒƒˆƒƒƒƒˆƒƒ 10 20 30 40 50 NUMBER Sum Example program #5 8 Horizontal bar chart Species common name=RedDrum STATION Species common name NUMBER Freq Sum ‚ North RedDrum ‚************************* 2 5.000000 ‚ Šƒƒƒƒˆƒƒƒƒˆƒƒƒƒˆƒƒƒƒˆƒƒƒƒˆ 1 2 3 4 5 NUMBER Sum Example program #5 9 Horizontal bar chart Species common name=Spot STATION Species common name NUMBER Freq Sum ‚ North Spot ‚********************************** 9 86.00000 ‚ South Spot ‚****************** 6 45.00000 ‚ Šƒƒƒˆƒƒƒˆƒƒƒˆƒƒƒˆƒƒƒˆƒƒƒˆƒƒƒˆƒƒƒˆƒƒ 10 20 30 40 50 60 70 80 NUMBER Sum Example program #5 10 Histogram NUMBER Mean ‚ ***** 8 ˆ ***** ‚ ***** ‚ ***** ‚ ***** *****
• 19. 6 ˆ ***** ***** ‚ ***** ***** ‚ ***** ***** ‚ ***** ***** 4 ˆ ***** ***** ‚ ***** ***** ‚ ***** ***** ‚ ***** ***** ***** 2 ˆ ***** ***** ***** ‚ ***** ***** ***** ‚ ***** ***** ***** ‚ ***** ***** ***** Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Croaker RedDrum Spot Species common name