• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Multi Nodal Operation Protection-DWDM
 

Multi Nodal Operation Protection-DWDM

on

  • 1,600 views

Approach & perspectives for next generation DWDM network Planning & engineering Beyond 100G . Network planning with flexi colorless, directionless ,contetionless & griddles DWDM for ...

Approach & perspectives for next generation DWDM network Planning & engineering Beyond 100G . Network planning with flexi colorless, directionless ,contetionless & griddles DWDM for succesful long haul network on 40G/100G

Statistics

Views

Total Views
1,600
Views on SlideShare
1,599
Embed Views
1

Actions

Likes
3
Downloads
0
Comments
5

1 Embed 1

http://www.linkedin.com 1

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel

15 of 5 previous next Post a comment

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
  • This need to be improved and practised. I see a ray of hope to have some real solution beyond the sells jargons of vendors like GMPLS, MD-ROADM, WSON etc
    Are you sure you want to
    Your message goes here
    Processing…
  • I had observed in large number of Indian telecom networks long haul links have maximum with 4 to 8 channels. The network is a true bottleneck for 4G/3G expansion because of fibre cuts and protection issues. This is a very good way to mitigate that !! I had spent more than decade in various vendors protection features. None of the system whether from Nortel-ciena, Tellabs, Huawei etc succesfully meet the protection requirements
    Are you sure you want to
    Your message goes here
    Processing…
  • This is an intersting topology !
    Are you sure you want to
    Your message goes here
    Processing…
  • does this MNOP can be invoked on Huawei system with its GMPLS ? It will be of great interest if the alien wavelengths can be inserted in Huawei 10g system and managed from same GMPLS. This apperas as a very effective way for protections in long haul. How this can influnce metro ?
    Are you sure you want to
    Your message goes here
    Processing…
  • Best effective way to achieve CDC.. Does it need any special consideration for alien wavelengths ?
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Multi Nodal Operation Protection-DWDM Multi Nodal Operation Protection-DWDM Presentation Transcript

    • MNOP ( Multi Nodal Operation Protection )Approach & perspectives for next generation telecom transport network Planning & engineering Beyond 100G and flexi colorless, directionless ,contetionless & griddles DWDM By Debasish Choudhury, VP- United Telecoms Limited, July/2011 Mail : dchoudhury@utlindia.com , debasishchoudhury.sai@gmail.com
    • Target goals and objectives• Bringing a TB ready transport infrastructure in DWDM: – The network and system limitations arising from fiber etc need to be reduced by hybrid modulations. – The link budget and scaling the channel capacity to 100G plus with the parameters of 10G system.• Achieving GMPLS powered protection & restorations without Cross Connects (XC) by O-O Systems : – A colourless feature at Channel/transponders – Bundling channels and creating virtual paths for directionless systems. – Near Zero contentionless architecture• Building a truly multivendor direction & contention less system for Metro, Data centers & Long haul – Building aspects of Wavelength routing in DWDM nodes. (MNOP) – Sub lambda level of ODU0 based traffic grooming L2 feature with a channel capacity of 100g or more
    • Multi nodal Operation Protection (MNOP) -- The proposed methodology--• Building blocks with MNOP ( Multi Nodal Operation Protection ) scheme: – MNOP is a pattern built in leveraging GMPLS & other traffic engineering with enhanced MUX /DEMUX systems. This enhances the ROADM and existing nodes similar in line to IPoWDM based wavelength routing. The main aspects are : A. Aggregation of wavelengths at a defined node and creating Virtual Lambda paths. B. Enabling a tunable DEMUX layer with directionless MUX. C. Enriching Alen wavelength on g.709 pattern to build 100g plus lambda on same systems.• Focus points: – Flexible system to support 10G to 100g plus channel capacity. – Creating a complete flexible lambda pattern with wavelength routing on low overheads. – Adding new Optical compensatory systems for enhancing optical layers.• System advantages – The network behaves with a linear L2 & L3 powered structure. – Easy to evolve direct services to emerging data centre needs ( like Warehouse scale computing, clouds etc) – Multi vendor and heterogeneous channel capacity assignments for Metro and long haul networks.
    • For Multi vendor scenarios IMPORTANT NOTEThe system had considered the GMPLS protocol based backplane schematics and latest ITU-T recommendations on CDC.Some references for understanding consideration are• GMPLS Architecture : – Quagga Routing Suite – DRAGON GMPLS Architecture• Research Initiatives: – Lambda User Controlled Infrastructure for European Research architecture for Consolidated Grid-GMPLS Control Plane prototype by POZNAN SUPERCOMUPTING & NETWORKING CENTRE (EU)• Product , network planning & standards: – Verizon – IETF – JDSU
    • MNOP ( Multi Nodal Operation Protection )• What are the achievements by MNOP ( Multi Nodal Operation Protection ) scheme: – This is a dynamic enhancement to GMPLS and OTN features which protects the lambdas in multiple routes with pre assigned virtual paths. – This also bundles multiple traffic in an effective way and enables wavelength routing at DWDM equipments similar to that an MPLS router.
    • MNOP ( Multi Nodal Operation Protection ) - Nodes with traffic intelligence• What are the achievements by MNOP ( Multi Nodal Operation Protection ) scheme: – The leader node is assigned to have a task of picking all the snaps of traffic lambda it passes through it and verifies with assigned link budgets to normal working conditions. It holds multiple virtual traffic matrix and inserts this when there is a link disruption. – The leader node have/can have a different modulated higher channel card. – The leader nodes always keep a virtual backup path.
    • MNOP ( Multi Nodal Operation Protection )• How MNOP ( Multi Nodal Operation Protection ) scheme works: – This is a virtual topology built with a virtual link design built amongst the selected nodes. – The virtual path is bidirectional and have a backup traffic matrix in sync with GMPLS layer. – The traffics through this node are summed up and assigned the dynamic backup routes keeping the traffic in directionless pattern. – When a disruption in link arises the pass through pattern of node extends a colorless pattern to reroute the wavelength with alerting the traffic pattern.
    • MNOP ( Multi Nodal Operation Protection ) Wavelength routing• How MNOP ( Multi Nodal Operation Protection ) wavelength routing works: – Colourless wavelength add/drop with directional routing – Choose the bandwidth of the light path to match the service bitrate – Use multiple copies of the same colour wavelength on the add/drop structure
    • MNOP ( Multi Nodal Operation Protection ) Wavelength routing-- continued• advantages: – Enables improved applications – Network Defragmentation – Bandwidth Adjustments – Network Maintenance – Network Restoration
    • MNOP ( Multi Nodal Operation Protection ) High capacity on local rings-IPoWDM• Inserting CO-OFDM based alien wavelengths (Future ) or higher channel capacities : – Ease of same control plane mapped virtualisation opens up the door inside upper capacity transponders in same modulation or different modulation to be inserted. – The higher capacity channels with alien wavelengths will also support IP on wavelengths.
    • MNOP ( Multi Nodal Operation Protection ) what it solves ??
    • Why Rapidly-Dynamic ROADM Networks Not Feasible?A long-haul (L > ~800 km) transport system contains: Many optical amplifiers:• Most with adjustments needed for multiple pump laser powers• Some with adjustable gain flattening filters (GFF)• All with control circuits for optical transient control Multiple ROADMs:• Usually with per-channel variable optical attenuator adjustments Multiple transponders• Each with tuneable laser• Many with tuneable dispersion compensators (TDC)• Each with variable optical attenuator (VOA)• Together, there DOZENS of things which need to be adjusted (“tuned”) and collection of control loops makes some of them get VERY slow [frequently minutes to converge]
    • Dynamic ROADM Networks : Photonic way
    • Legacy DWDMLonger provisioning cycle than desired– Many manual steps– Across the country (both ends + maybe middle)– Mux/demux inflexible Static mapping: circuit - - wavelength Transponders cannot be pre-deployed without Committing wavelengths.
    • Evolving DWDM- wish list•Colourless: Able to send any wavelength to any port, and to change these assignmentsautomatically.•Directionless: Allowing output ports to send traffic in any direction.•Contention less: Allowing one ROADM port to use a wavelength that got dropped byanother port. This could be accomplished with an NxN switching element. Large all-opticalswitches, of sizes up to 768x768, could also play a role here.•Griddles: Some carriers think theyll want ROADM to assign wavelengths off of theInternational Telecommunication Union (ITU) grid. When Terabit Ethernet gets invented,for example, it might be easiest to let it occupy two ITU grid spaces, or 1.5, or some otherarbitrary proportion.
    • Evolving DWDMColourless add/drops– Currently: transponders are tuneable but demux is not.– Tuneable demux will enable transponders to be pre-deployed, and circuits to beturned up rapidly. Transponder at B can be connected to A or C simply by tuning pairof transponders to the same wavelength, and setting demux and ROADMs properly.- Wavelength does not need to be chosen in advance.
    • Evolving DWDM : alternate approach-1Building a metro/Data centre network– This will require 100G (OTU4) ‘gray’ (non-WDM) optics on routers– Preferably it will have NO colored optics in routers– There will be multiple vendors for routers and for transport– While IP routers are a big source of traffic, they are not the only one . There willhave other network layers and private line traffic which use long-haul transport –not through core routers.The approach will lead to :• Interfaces to have ‘colored’ (long-haul wavelength) interfaces directly on IProuters •Or integrate long-haul optics in IP routers• This is also “alien wavelength” architectureThis demands :• A robust dynamic wavelength layer• Converged cross-layer control and timing• Functionalities with control and management software.
    • alternate approach-1 : Target Features and Objectives• Terabyte capacity Optical metro area network – Reduce OEO in the core, allow alien Waves by enhancing IPoWDM• Extended GMPLS protocols for dynamic provisioning – Addition of CSPF Path Computation algorithms for wavelength routing• Inter-domain service routing techniques – Network Aware Resource Broker (NARB) for service advertising• Application Specific Topology Description Language – Formalized means to describe the application topology and network service requirements• Integration with real applications: – Storage and other enterprise specific interfaces – Various application level interfaces in service providers network
    • alternate approach-1 : target Features and Objectives Photonic Architecture• Principles: – Standard practice of OEO engineering at every node is unnecessary in metro/regional networks • Allow the user/client to define the transport – Core switching nodes should be all-optical: • Any wavelength on any port to any other port • Framing agnostic – OEO is provisioned only as a service function at core nodes: • To provide wavelength translation to avoid wavelength blocking conditions • To provide regeneration iff network diameter and service specs require it, and only on a request specific basis. – OEO transponders are used at edge only for ITU translation • External ITU wavelength signaling and sourcing is encouraged – All waves are dynamically allocated using GMPLS protocols • Extensions for CSPF path computation and inter-domain are new
    • alternate approach-1 : suggestive Features and Objectives Generic Architectural CellsCore Wavelength Switching Primitive Cell Edge Service Introduction and-All waves are C-Band ITU compliant on 50/100 Ghz ITU spacing-Any wave can be individually switched from any input port to any Validation Cell output port -Client interfaces provide wavelength-Each port goes to either a) another core switching cell, or b) an edge conversion to ITU grid lambdascell -External wavelength interfaces verify-Other wavelengths outside the C-Band are extinguished on entry and conformance of customer provisioned waves are not progressed thru the switch. to network constraints-The switching cell can block any/all input waves on any input port -Can also be used at core nodes to provide-The switch is not sensitive to the content, framing of any data plane wavelength translationwave.
    • where we are now• The major scenarios at service providers are: – Reconfigurable OADMs – Alien wavelength conditioning ( minimum) – Tunable wavelength transponders – 40 gigabit wavelengths (?) – Possibly other digital encoding formats such as RZ, DPSK, etc.• The development and deployment plans other modulations and 100G on NLD networks are less.
    • how ideally we should be Dissecting GMPLS Transport : The missing blocks IP/ {Ethernet, sonet, wavelength } Core services No standardized Inter-Domain Routing Architecture, including transport layer GMPLS-{OSPF, ISIS}-TE capability set advertisements intra-domain routing GMPLS-RSVP-TE signaling No end-to-endIP/Ethernet instantiationcampus LAN No Simple API Integration across Non-GMPLS enabled networks
    • MNOP takes where ?
    • MNOP Building block : Virtual Label Switched Router: VLSR• Many networks consist of switching components that do not speak GMPLS, e.g. current ethernet switches, fiber switches, etc• Contiguous sets of such components can be abstracted into a Virtual Label Switched Router• The VLSR implements GMPLS-OSPF-TE and GMPLS-RSVP-TE . – Zebra OSPF extended to GMPLS – KOM-RSVP likewise• The VLSR translates GMPLS protocol events into generic pseudo-commands for the covered switches. – The pseudo commands are tailored to each specific vendor/architecture using SNMP, TL1, CLI, or a similar protocol.• The VLSR can abstract and present a non-trivial internal topology as a “black box” to an external peering entity.
    • Virtual Label Switched Router: VLSR VLSR VLSR VLSR VLSR OSPF-TE / RSVP-TEOSPF-TE / RSVP-TE ? ? LSR LSR SNMP control Ethernet network GMPLS network VLSR Abstraction
    • MNOP Building block :Network Aware Resource Broker (NARB) Functions – IntraDomain • IGP Listener • Edge Signaling Enforcement • Authentication • Path Computation • ASTDL Induced Topology Computations • Accounting • Scheduling • Authorization (flexible policy based) • Edge Signaling Authentication NARB Edge Signaling Authorization Scheduling IP Control Plane Authentication Authorization Accounting End End System System Data Plane AS# LSP Ingress Egress LSR LSR Data Plane
    • Network Aware Resource Broker (NARB) Functions – Inter Domain • InterDomain NARB must do all IntraDomain functions plus: – EGP Listener – Exchange of InterDomain transport layer capability sets – InterDomain path calculation – InterDomain AAA policy/capability/data exchange and execution Transport Layer Capability Set Exchange NARB NARB NARB End EndSystem System AS 1 AS 3 AS 2
    • MNOP moves the NW to“ Route & select” from “broadcast & select “
    • MNOP moves the NW to“ Route & select” from “broadcast & select “ + Effective CDC for M*N ROADM
    • MNOP moves the NW to“ Route & select” from “broadcast & select “ + Effective flexible Grid spectrum
    • Reference and Citations-1• D. Basak, D. Awduche, J. Drake, and Y. Rekhter. Multi-Protocol Lambda Switching: Issues in Combining MPLS Traffic Engineering Control with Optical Corssconnects. Internet Draft, January, 2000.• S. Chaudhuri, G. Hjalmtysson, and J. Yates. Control of Lightpaths in an Optical Network. Internet Draft, February, 2000.• R. Coltun. The OSPF Opaque LSA Option. Request for Comments No. 2370, July, 1998.• Coherent Optical OFDM Transmission Up to 1 Tb/s per Channel, Yan Tang Shieh, W. Dept. of Electr. & Electron. Eng., Univ. of Melbourne, http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.o rg%2Fiel5%2F50%2F5170198%2F05071214.pdf%3Farnumber%3D5071214&authD ecision=-203• Sidney Shiba and Kumar Peddanarappagari, "Optical Power level Management in Metro Networks,”NFOEC, pp. 1186-1195, September 2001.• Roudas I., et.al.,“ Accurate Modelling of Optical Multiplexer/Demultiplexer Concatenation in Transparent Mult iwavelength Optical Networks,” Journal of Lightwave Technology, Vol. 20, No. 6, pp. 921-936, June 2002.
    • Reference and Citations-2• M. Ali, B. Ramamurthy, and J. Deogun. Routing and Wavelength Assignment (RWA) with power considerations in Optical Networks. IEEE Globecom 99 Symposium on High-Speed Networks, December, 1999.• Anderson, J. Manchester, A. Rordiguez-Moral, and M. Veeraraghvan. Protocols and Architectures for IP Optical Networking. Bell Labs Technical Jounal, January, 1999.• G. Apostolopoulos, R. Guerin, S. Kamat, and S. Tripathi. Quality of Service Based Routing: A performance Perspective. Proceedings of SIGCOMM, September, 1998.• Apostolopoulos, D. Williams, S. Kamat, A. O. R. Guerin, and T. Przygienda. QoS Routing Mechanisms and OSPF Extensions. Request for Comments No. 2676, August, 1999.• Awduche, J. Malcolm, J. Agogbua, and J. M. M. ODell. Requirements for Traffic Engineering over MPLS. Request for Comments No. 2702, September, 1999.
    • Reference and Citations-3• IETF. The MPLS Operations Mailing List. IETFs MPLS Working Group.• K. Kompella, Y. Rekhter, D. Awduche, J. L. G. Hjalmtysson, S. Okamoto, D. Basak, G. Bernstein, J. Drake, N. Margalit, and E. Stern. Extensions to IS-IS/OSPF and RSVP in support of MPL(ambda)S. Internet Draft, October, 1999.• H. Zang, J. Jue, and B. Mukherjee. A Review of Routing and Wavelength Assignment Approaches for Wavelength-Routed Optical WDM Network. Optical Networks Magazine, August, 1999.• ECOC 2009 - Symposium 6.7 : Dynamic Multi-Layer Mesh A Provider’s Perspective, by Peter Magill, Executive Director, Optical Systems Research, AT&T Labs• Dynamic Resource Allocation over GMPLS Optical Networks , The DRAGON Project http://www.dragon.maxgigapop.net
    • Reference and Citations-4• J. Moy. OSPF Version 2. Request for Comments No. 2178, July, 1997.• R. Perlman. Interconnections Bridges and Routers. Addison Wesley, June, 1993.• R. Ramaswami and K. Sivarajan. Optical Networks: A Practical Perspective. Morgan Kaufmann Publishers, Inc, 1998.• G. Wang, D. Fdyk, V. Sharma, K. Owens, G. Ash, M. Krishnaswamy, Y. Cao, M. Girish, H. Ruck, S. Bernstein, P. Nquyen, S. Ahluwalia, L. Wang, A. Doria, and H. Hummel. Extensions to OSPF/IS-IS for Optical Routing. Internet Draft, March, 2000.