>	  Marke(ng	  Analy(cs	  <	      Using	  data	  to	  boost	  return	  on	          marke1ng	  investment	  
>	  Short	  but	  sharp	  history	  §         Datalicious	  was	  founded	  in	  late	  2007	  §         Strong	  Omnitu...
>	  Smart	  data	  driven	  marke(ng	                               “Using	  data	  to	  widen	  the	  funnel”	           ...
10101101001001001010111101001001010101010000101111100101010101010010101100110001010010100110110100110100101010011100101001...
>	  The	  ideal	  media	  dashboard	    Channel	                                   Investment	                            ...
>	  Duplica(on	  across	  channels	  	                          Paid	  	                  Bid	  	                         ...
>	  Cookie	  expira(on	  impact	                                  Paid	  	                                            Bid	...
>	  De-­‐duplica(on	  across	  channels	  	                          Paid	  	                         Search	             ...
>	  Campaign	  flows	  are	  complex	          =	  Paid	  media	                                                           ...
>	  Media	  channels	  feed	  each	  other	                                  TV/Print/DM	  	                              ...
>	  Ad	  server	  exposure	  test	                                 Banner	               TV/Print	                      Se...
>	  Indirect	  display	  impact	  	  December	  2011	     ©	  Datalicious	  Pty	  Ltd	     12	  
>	  Indirect	  display	  impact	  	  December	  2011	     ©	  Datalicious	  Pty	  Ltd	     13	  
>	  Indirect	  display	  impact	  	  December	  2011	     ©	  Datalicious	  Pty	  Ltd	     14	  
>	  Success	  a<ribu(on	  models	  	         Banner	  	      Paid	  	                                                   Or...
>	  First	  and	  last	  click	  a<ribu(on	  	                                                                            ...
>	  Full	  purchase	  path	  tracking	       Introducer	        Influencer	               Influencer	                       ...
>	  Search	  call	  to	  ac(on	  for	  offline	  	  December	  2011	      ©	  Datalicious	  Pty	  Ltd	     18	  
>	  Personalised	  URLs	  for	  direct	  mail	   VickyCarroll.myspaday.com	  >	  redirect	  to	  >	  myspaday.com?	   	   ...
>	  Offline	  sales	  driven	  by	  online	       Adver(sing	  	     Phone	                                                 ...
>	  Event	  ROI	  extrapola(on	                         Product	          Applica(on	                       Applica(on	   ...
>	  Single	  source	  of	  truth	  repor(ng	   Insights	                                                 Repor(ng   	  Dec...
>	  Where	  to	  collect	  the	  data	  	                    Ad	  Server	                                                 ...
>	  Raw	  a<ribu(on	  data	  Web	  Analy(cs	  data	  sample	  (AD	  IMPRESSION	  >)	  AFFILIATE	  >	  SEARCH	  >	  $$$	  S...
>	  Purchase	  path	  for	  each	  cookie	                 Mobile	              Home	                                 Work...
>	  Understanding	  channel	  mix	  December	  2011	     ©	  Datalicious	  Pty	  Ltd	     28	  
>	  Website	  entry	  survey	  	   De-­‐duped	  Campaign	  Report	                                                      Gr...
>	  Adjus(ng	  for	  offline	  impact	                         -­‐5	                               -­‐15	     -­‐10	        ...
>	  Custom	  a<ribu(on	  models	  	       Introducer	      Influencer	           Influencer	                    Closer	     ...
>	  Path	  across	  different	  segments	       Introducer	       Influencer	              Influencer	                      C...
10101101001001001010111101001001010101010000101111100101010101010010101100110001010010100110110100110100101010011100101001...
>	  Increase	  revenue	  by	  10-­‐20%	  	     Capture	  internet	  traffic	     Capture	  50-­‐100%	  of	  fair	  market	  ...
>	  New	  consumer	  decision	  journey	   The	  consumer	  decision	  process	  is	  changing	  from	  linear	  to	  circ...
>	  New	  consumer	  decision	  journey	   The	  consumer	  decision	  process	  is	  changing	  from	  linear	  to	  circ...
December	  2011	     ©	  Datalicious	  Pty	  Ltd	     38	  
December	  2011	     ©	  Datalicious	  Pty	  Ltd	     39	  
40	  December	  2011	     ©	  Datalicious	  Pty	  Ltd	  
December	  2011	     ©	  Datalicious	  Pty	  Ltd	     41	  
>	  Seamless	  research	  experience	         TV,	  print,	  	                                                            ...
>	  Network	  wide	  re-­‐targe(ng	          Frequent	  Flyer	  campaign	     Access	  Advantage	  campaign	          Home...
>	  Network	  wide	  re-­‐targe(ng	           Group	  wide	  campaign	  with	  approximate	  impression	  targets	  by	  p...
Targe(ng	  before	  tes(ng	  December	  2011	     ©	  Datalicious	  Pty	  Ltd	     45	  
>	  Developing	  a	  targe(ng	  matrix	                            Segmenta(on	  based	  on:	  Search	  keywords,	        ...
>	  Combining	  data	  sources	            Website	  behavioural	  data	             Campaign	  response	  data	          ...
>	  Transac(ons	  plus	  behaviours	                 CRM	  Profile	                                                        ...
>	  Maximise	  iden(fica(on	  points	  	  160%	  140%	  120%	  100%	    80%	    60%	                                       ...
>	  Developing	  a	  tes(ng	  matrix	           Test	            Segment	         Content	                   Success	     ...
>	  The	  holy	  trinity	  of	  tes(ng	  1.	  The	  headline	          –  Have	  a	  headline!	          –  Headline	  sho...
>	  Best	  prac(ce	  tes(ng	  roadmap	  §  Phase	  #1:	  A/B	  test	          –  Test	  the	  same	  landing	            ...
>	  Use	  unique	  phone	  numbers	                                                              2	  out	  of	  3	  caller...
December	  2011	     ©	  Datalicious	  Pty	  Ltd	     54	  
Contact	  me	                         cbartens@datalicious.com	                                    	                      ...
Data	  >	  Insights	  >	  Ac(on	  December	  2011	       ©	  Datalicious	  Pty	  Ltd	     56	  
ANZ Marketing Analytics
ANZ Marketing Analytics
ANZ Marketing Analytics
Upcoming SlideShare
Loading in...5
×

ANZ Marketing Analytics

408
-1

Published on

The presentation discusses the significance of data in marketing campaigns.

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
408
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
10
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

ANZ Marketing Analytics

  1. 1. >  Marke(ng  Analy(cs  <   Using  data  to  boost  return  on   marke1ng  investment  
  2. 2. >  Short  but  sharp  history  §  Datalicious  was  founded  in  late  2007  §  Strong  Omniture  web  analy1cs  history  §  1  of  4  preferred  Omniture  partners  globally  §  Now  360  data  agency  with  specialist  team  §  Combina1on  of  analysts  and  developers  §  Carefully  selected  best  of  breed  partners  §  Driving  industry  best  prac1ce  (ADMA)  §  Turning  data  into  ac1onable  insights  §  Execu1ng  smart  data  driven  campaigns      December  2011   ©  Datalicious  Pty  Ltd   2  
  3. 3. >  Smart  data  driven  marke(ng   “Using  data  to  widen  the  funnel”   Media  A<ribu(on  &  Modeling   Op(mise  channel  mix,  predict  sales   Targeted  Direct  Marke(ng     Increase  relevance,  reduce  churn   Tes(ng  &  Op(misa(on   Remove  barriers,  drive  sales   Boos(ng  ROMI  December  2011   ©  Datalicious  Pty  Ltd   3  
  4. 4. 101011010010010010101111010010010101010100001011111001010101010100101011001100010100101001101101001101001010100111001010010010101001001010010100100101001111101010100101001001001010  >  Media  a<ribu(on  December  2011   ©  Datalicious  Pty  Ltd   4  
  5. 5. >  The  ideal  media  dashboard   Channel   Investment   ROMI   Return   Brand  equity   ($100)   n/a   $40   Baseline   Offline   $7   330%   $30   TV,  print,  outdoor,  etc   Direct   $1   400%   $5   Direct  mail,  email,  etc   Online   $2   1150%   $25   Search,  display,  social,  etc  December  2011   ©  Datalicious  Pty  Ltd   5  
  6. 6. >  Duplica(on  across  channels     Paid     Bid     Search   Mgmt   $   Banner     Ad     Ads   Server   $   Email     Email   Blast   PlaNorm   $   Organic   Google   Search   Analy(cs   $  December  2011   ©  Datalicious  Pty  Ltd   6  
  7. 7. >  Cookie  expira(on  impact   Paid     Bid     Search   Mgmt   $   Banner     Banner     Ad     Ad  Click   Ad  View   Server   $   Email     Email   Expira(on   Blast   PlaNorm   $   Organic   Google   Search   Analy(cs   $  December  2011   ©  Datalicious  Pty  Ltd   7  
  8. 8. >  De-­‐duplica(on  across  channels     Paid     Search   $   Banner     Ads   $   Central   Analy(cs   PlaNorm   Email     Blast   $   Organic   Search   $  December  2011   ©  Datalicious  Pty  Ltd   8  
  9. 9. >  Campaign  flows  are  complex   =  Paid  media   Organic     PR,  WOM,   search   events,  etc   =  Viral  elements   =  Sales  channels   YouTube,     Home  pages,   Paid     TV,  print,     blog,  etc   portals,  etc   search   radio,  etc   Direct  mail,     Landing  pages,   Display  ads,   email,  etc   offers,  etc   affiliates,  etc   CRM   Facebook   program   Twi<er,  etc   POS  kiosks,   Call  center,     loyalty  cards,  etc   retail  stores,  etc  December  2011   ©  Datalicious  Pty  Ltd   9  
  10. 10. >  Media  channels  feed  each  other   TV/Print/DM     audience   Banner   Search   audience   audience  December  2011   ©  Datalicious  Pty  Ltd   10  
  11. 11. >  Ad  server  exposure  test   Banner   TV/Print   Search   Impression   Response   Response   $   Banner   Search   Direct   Impression   Response   Response   $   Users  are   segmented   before  1st   ad  is  even   Exposed  group:  90%  of  users  get  branded  message   served     Control  group:  10%  of  users  get  non-­‐branded  message   Banner   Search   Direct   Impression   Response   Response   $  December  2011   ©  Datalicious  Pty  Ltd   11  
  12. 12. >  Indirect  display  impact    December  2011   ©  Datalicious  Pty  Ltd   12  
  13. 13. >  Indirect  display  impact    December  2011   ©  Datalicious  Pty  Ltd   13  
  14. 14. >  Indirect  display  impact    December  2011   ©  Datalicious  Pty  Ltd   14  
  15. 15. >  Success  a<ribu(on  models     Banner     Paid     Organic   Success   Last  channel   Search   Ad   Search   $100   $100   gets  all  credit   Banner     Paid     Email     Success   First  channel   Ad   $100   Search   Blast   $100   gets  all  credit   Paid     Banner     Affiliate     Success   All  channels  get   Search   Ad   Referral   $100   $100   $100   $100   equal  credit   Print     Social     Paid     Success   All  channels  get   Ad   Media   Search   $33   $33   $33   $100   par(al  credit  December  2011   ©  Datalicious  Pty  Ltd   15  
  16. 16. >  First  and  last  click  a<ribu(on     Chart  shows   percentage  of   channel  touch   points  that  lead   Paid/Organic  Search   to  a  conversion.   Neither  first     Emails/Shopping  Engines   nor  last-­‐click   measurement   would  provide   true  picture    December  2011   ©  Datalicious  Pty  Ltd   16  
  17. 17. >  Full  purchase  path  tracking   Introducer   Influencer   Influencer   Closer   $   Paid     Display     Social   Direct     Online   search   ad  clicks   referrals   site  visits   sales   Display     Affiliate   Social     Retail     Offline   ad  views   clicks   buzz   store  visits   sales   TV/print     Organic   Website   Direct  mail,   Life(me   ad  views   search   events   emails   profit  December  2011   ©  Datalicious  Pty  Ltd   17  
  18. 18. >  Search  call  to  ac(on  for  offline    December  2011   ©  Datalicious  Pty  Ltd   18  
  19. 19. >  Personalised  URLs  for  direct  mail   VickyCarroll.myspaday.com  >  redirect  to  >  myspaday.com?     CampaignID=DM:123&   Demographics=F|35&   CustomerSegment=A1&   CustomerValue=High&   CustomerSince=2001&   ProductHistory=P1|P2&   NextBestOffer=P3&   ChurnRisk=Low   [...]  December  2011   ©  Datalicious  Pty  Ltd   21  
  20. 20. >  Offline  sales  driven  by  online   Adver(sing     Phone   Credit  check,   campaign   order   fulfilment   Retail   Confirma(on   order   email,  1st  login   Website   Online   Online  order   Virtual  order   research   order   confirma(on   confirma(on   Cookie  December  2011   ©  Datalicious  Pty  Ltd   22  
  21. 21. >  Event  ROI  extrapola(on   Product   Applica(on   Applica(on   Offline   Campaign   view   start   complete   conversion   @   @   Campaign   $10   $30   $60   $100   Campaign   $10   $30   $100   Campaign   $10   $100  December  2011   ©  Datalicious  Pty  Ltd   23  
  22. 22. >  Single  source  of  truth  repor(ng   Insights   Repor(ng  December  2011   ©  Datalicious  Pty  Ltd   24  
  23. 23. >  Where  to  collect  the  data     Ad  Server   Web  Analy(cs   Banner  impressions   Referral  visits   Banner  clicks   Social  media  visits   +   Organic  search  visits   Paid  search  clicks   Paid  search  visits   Email  visits,  etc   Lacking  organic  visits   Lacking  ad  impressions   More  granular  &  complex   Less  granular  &  complex  December  2011   ©  Datalicious  Pty  Ltd   25  
  24. 24. >  Raw  a<ribu(on  data  Web  Analy(cs  data  sample  (AD  IMPRESSION  >)  AFFILIATE  >  SEARCH  >  $$$  SEARCH  >  SOCIAL  >  EMAIL  >  DIRECT  >  $$$    Ad  Server  data  sample  01/01/2011  12:00  AD  IMPRESSION  01/01/2011  12:05  PAID  SEARCH  07/01/2011  17:00  EMAIL  08/01/2011  15:00  $$$    December  2011   ©  Datalicious  Pty  Ltd   26  
  25. 25. >  Purchase  path  for  each  cookie   Mobile   Home   Work   Tablet   Media   Etc  December  2011   ©  Datalicious  Pty  Ltd   27  
  26. 26. >  Understanding  channel  mix  December  2011   ©  Datalicious  Pty  Ltd   28  
  27. 27. >  Website  entry  survey     De-­‐duped  Campaign  Report   Greatest  Influencer  on  Branded  Search  /  STS   }   Channel   %  of  Conversions   Channel   %  of  Influence   Straight  to  Site   27%   Word  of  Mouth   32%   SEO  Branded   15%   Blogging  &  Social  Media   24%   SEM  Branded   9%   Newspaper  Adver1sing   9%   SEO  Generic   7%   Display  Adver1sing   14%   SEM  Generic   14%   Email  Marke1ng   7%   Display  Adver1sing   7%   Retail  Promo1ons   14%   Affiliate  Marke1ng   9%   Referrals   5%   Conversions  aoributed  to  search  terms   Email  Marke1ng   7%   that  contain  brand  keywords  and  direct   website  visits  are  most  likely  not  the   origina1ng  channel  that  generated  the   awareness  and  as  such  conversion   credits  should  be  re-­‐allocated.    December  2011   ©  Datalicious  Pty  Ltd   30  
  28. 28. >  Adjus(ng  for  offline  impact   -­‐5   -­‐15   -­‐10   +5   +15   +10  December  2011   ©  Datalicious  Pty  Ltd   31  
  29. 29. >  Custom  a<ribu(on  models     Introducer   Influencer   Influencer   Closer   $   Even     25%   25%   25%   25%   A<rib.   Exclusion   33%   33%   33%   0%   A<rib.   ?   ?   ?   ?   Custom   A<rib.  December  2011   ©  Datalicious  Pty  Ltd   32  
  30. 30. >  Path  across  different  segments   Introducer   Influencer   Influencer   Closer   $   Product     Channel  1   Channel  2   Channel  3   Channel  4   A  vs.  B   New   Channel  1   Channel  2   Channel  3   Channel  4   prospects   Exis(ng   Channel  1   Channel  2   Channel  3   Product  4   customers  December  2011   ©  Datalicious  Pty  Ltd   33  
  31. 31. 101011010010010010101111010010010101010100001011111001010101010100101011001100010100101001101101001101001010100111001010010010101001001010010100100101001111101010100101001001001010  >  Experience  op(misa(on  December  2011   ©  Datalicious  Pty  Ltd   34  
  32. 32. >  Increase  revenue  by  10-­‐20%     Capture  internet  traffic   Capture  50-­‐100%  of  fair  market  share  of  traffic   Increase  consumer  engagement   Exceed  50%  of  best  compe1tor’s  engagement  rate     Capture  qualified  leads  and  sell   Convert  10-­‐15%  to  leads  and  of  that  20%  to  sales   Building  consumer  loyalty   Build  60%  loyalty  rate  and  40%  sales  conversion   Increase  online  revenue   Earn  10-­‐20%  incremental  revenue  online  December  2011   ©  Datalicious  Pty  Ltd   35  
  33. 33. >  New  consumer  decision  journey   The  consumer  decision  process  is  changing  from  linear  to  circular.  December  2011   ©  Datalicious  Pty  Ltd   36  
  34. 34. >  New  consumer  decision  journey   The  consumer  decision  process  is  changing  from  linear  to  circular.   Online  research     Change  increases   the  importance  of   experience  during   research  phase.  December  2011   ©  Datalicious  Pty  Ltd   37  
  35. 35. December  2011   ©  Datalicious  Pty  Ltd   38  
  36. 36. December  2011   ©  Datalicious  Pty  Ltd   39  
  37. 37. 40  December  2011   ©  Datalicious  Pty  Ltd  
  38. 38. December  2011   ©  Datalicious  Pty  Ltd   41  
  39. 39. >  Seamless  research  experience   TV,  print,     Display     direct  mail,  etc   ads   Ad  Server  /  SuperTag   Organic,  paid   Display  ad     search   re-­‐targe(ng   AdWords   Ad  Server  /  SuperTag   Test&Target  /  SuperTag   Customised   landing  pages   Test&Target  /  SuperTag   ANZ.com     Applica(on   re-­‐targe(ng   process   Fall-­‐out  email   follow-­‐up  December  2011   ©  Datalicious  Pty  Ltd   42  
  40. 40. >  Network  wide  re-­‐targe(ng   Frequent  Flyer  campaign   Access  Advantage  campaign   Home  Loans  campaign   Card   Access   Loan   prospect   prospect   prospect   Card   Access   Loan   customer   customer   customer   Loan   Loan   Access   prospect   prospect   prospect  December  2011   ©  Datalicious  Pty  Ltd   43  
  41. 41. >  Network  wide  re-­‐targe(ng   Group  wide  campaign  with  approximate  impression  targets  by  product  rather  than  hard  budget  limita(ons   Card   Access   Loan   prospect   prospect   prospect   Card   Access   Loan   customer   customer   customer   Loan   Loan   Access   prospect   prospect   prospect  December  2011   ©  Datalicious  Pty  Ltd   44  
  42. 42. Targe(ng  before  tes(ng  December  2011   ©  Datalicious  Pty  Ltd   45  
  43. 43. >  Developing  a  targe(ng  matrix   Segmenta(on  based  on:  Search  keywords,   display  ad  clicks  and  website  behaviour   Purchase   Data     Cycle   Points   Access   Frequent   Etc   Advantage   Flyers   Research,   Acquisi(on   Acquisi(on   Acquisi(on   Ad  clicks,   considera(on   message  #A1   message  #A3   message  #A5   prod  views   Conversion   Acquisi(on   Acquisi(on   Acquisi(on   Applica(on   intent   message  #A2   message  #A4   message  #A6   starts   Reten(on,   Reten(on   Reten(on   Reten(on   Email  clicks,   cross-­‐sell   message  #R1   message  #R2   message  #R3   logins,  etc  December  2011   ©  Datalicious  Pty  Ltd   46  
  44. 44. >  Combining  data  sources   Website  behavioural  data   Campaign  response  data   +   The  whole  is  greater     than  the  sum  of  its  parts   Customer  profile  data  December  2011   ©  Datalicious  Pty  Ltd   47  
  45. 45. >  Transac(ons  plus  behaviours   CRM  Profile   Site  Behaviour   one-­‐off  collec1on  of  demographical  data     tracking  of  purchase  funnel  stage   +   age,  gender,  address,  etc   browsing,  checkout,  etc   customer  lifecycle  metrics  and  key  dates   tracking  of  content  preferences   profitability,  expira(on,  etc   products,  brands,  features,  etc   predic1ve  models  based  on  data  mining   tracking  of  external  campaign  responses   propensity  to  buy,  churn,  etc   search  terms,  referrers,  etc   historical  data  from  previous  transac1ons   tracking  of  internal  promo1on  responses   average  order  value,  points,  etc   emails,  internal  search,  etc   Updated  Occasionally   Updated  Con(nuously  December  2011   ©  Datalicious  Pty  Ltd   48  
  46. 46. >  Maximise  iden(fica(on  points    160%  140%  120%  100%   80%   60%   −−−  Probability  of  iden1fica1on  through  Cookies   40%   20%   0   4   8   12   16   20   24   28   32   36   40   44   48   Weeks  December  2011   ©  Datalicious  Pty  Ltd   49  
  47. 47. >  Developing  a  tes(ng  matrix   Test   Segment   Content   Success   Difficulty   Poten(al   New   Acquisi(on   Clicks,     Test  #1A     prospects   offer  A   orders,  etc   Low   $50k   New   Acquisi(on   Clicks,     Test  #1B   prospects   offer  B   orders,  etc   Exis(ng   Up-­‐sell   Clicks,     Test  #2A   customers   offer  A   orders,  etc   High   $75k   Exis(ng   Up-­‐sell   Clicks,     Test  #2B   customers   offer  B   orders,  etc  December  2011   ©  Datalicious  Pty  Ltd   50  
  48. 48. >  The  holy  trinity  of  tes(ng  1.  The  headline   –  Have  a  headline!   –  Headline  should  be  concrete   –  Headline  should  be  first  thing  visitors  look  at  2.  Call  to  ac(on   –  Don’t  have  too  many  calls  to  ac1on   –  Have  an  ac1onable  call  to  ac1on   –  Have  a  big,  prominent,  visible  call  to  ac1on  3.  Social  proof   –  Logos,  number  of  users,  tes1monials,     case  studies,  media  coverage,  etc  December  2011   ©  Datalicious  Pty  Ltd   51  
  49. 49. >  Best  prac(ce  tes(ng  roadmap  §  Phase  #1:  A/B  test   –  Test  the  same  landing   Element  #1:  Prominent  headline   page  content  in   completely  different   layouts  §  Phase  #2:  MV  test   Suppor1ng     Element  #2:     –  Then  test  different   content   Call  to  ac1on   content  element   combina1ons  within  the   winning  layout   Element  #3:  Social  proof  /  trust  §  Phase  #3:  Challenge   –  Con1nue  tes1ng  and   introducing  layout  and   Terms  and  condi1ons   content  challengers  December  2011   ©  Datalicious  Pty  Ltd   52  
  50. 50. >  Use  unique  phone  numbers   2  out  of  3  callers   hang  up  as  they   cannot  get  their     informa1on  fast   enough.     Unique  phone   numbers  can   help  improve   call  experience.  December  2011   ©  Datalicious  Pty  Ltd   53  
  51. 51. December  2011   ©  Datalicious  Pty  Ltd   54  
  52. 52. Contact  me   cbartens@datalicious.com     Learn  more   blog.datalicious.com     Follow  me   twi<er.com/datalicious    December  2011   ©  Datalicious  Pty  Ltd   55  
  53. 53. Data  >  Insights  >  Ac(on  December  2011   ©  Datalicious  Pty  Ltd   56  
  1. ¿Le ha llamado la atención una diapositiva en particular?

    Recortar diapositivas es una manera útil de recopilar información importante para consultarla más tarde.

×