Your SlideShare is downloading. ×
Data Science
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Data Science

338
views

Published on

The presentation discusses the relevance of scientific methods to digital data.

The presentation discusses the relevance of scientific methods to digital data.

Published in: Technology

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
338
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
18
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. >  Data  Science  <  Where  does  a  Physics  degree  fit?  
  • 2. >  Life  as  a  Data  Scien/st  §  What  is  it?  §  Data  Science  Examples  §  Why  you  should  think  about  it?  §  About  Datalicious  (my  current  company)  August  2011   ©  Datalicious  Pty  Ltd   2  
  • 3. 101011010010010010101111010010010101010100001011111001010101010100101011001100010100101001101101001101001010100111001010010010101001001010010100100101001111101010100101001001001010  >  What  is  it?  August  2011   ©  Datalicious  Pty  Ltd   3  
  • 4. >  Mixing  the  old  to  produce  new   Business   Marke/ng  /   Performance   Adver/sing   IT  /  Coding   Sta/s/cs   Data   Science  August  2011   ©  Datalicious  Pty  Ltd   4  
  • 5. >  By  Defini/on  Data:  “Facts  and  sta)s)cs  collected  together  for  reference  or  analysis”    Science:  “The  systema)c  study  of  the  structure  and  behaviour  of  the  physical  and  natural  world  through  observa)on  and  experiment”    Hmmm,  so  what?  August  2011   ©  Datalicious  Pty  Ltd   5  
  • 6. >  Sounds  like  nothing  new  §  Data,  Science,  ObservaPon,  Hypothesis,   Experiment,  Analysis,  PredicPon  à  are  all   nothing  new.    §  BUT,  the  digital  age  has  created  new   opportuniPes  where  scienPfic  methods  can   be  applied  to  massive,  real  world  digital  data   sets.    August  2011   ©  Datalicious  Pty  Ltd   6  
  • 7. >  And  Data  is  Exploding  “Every  2  Days  We  Create  As  Much  Informa)on  As  We  Did  Up  To  2003”  –  Eric  Schmidt.  CEO,  Google    “AdMob  Seeing  2  Billion  Ad  Requests  Per  Day;  Up  300  Percent  Over  Past  Year”  –  TechCrunch    “The  amount  of  digital  informa)on  created  annually  will  grow  by  a  factor  of  44  from  2009  to  2020,  as  all  major  forms  of  media  -­‐  voice,  TV,  radio,  print  -­‐  complete  the  journey  from  analog  to  digital”  August  2011   ©  Datalicious  Pty  Ltd   7  
  • 8. >  EMC  -­‐  "The  Digital  Universe  Decade  -­‐  Are  You  Ready?"  “In  2009,  amid  the  "Great  Recession,"  the  amount  of  digital  informa)on  grew  62%  over  2008  to  800  billion  gigabytes  (0.8  Zeabytes).”      But  how  much  is  that  really?    707  trillion  copies  of  the  more  than  2,000-­‐page  U.S.  PaPent  ProtecPon  and  Affordable  Care  Act  signed  into  Law  in  March  2010.  Stacked  end  to  end,  the  documents  would  stretch  from  Earth  to  Pluto  and  back  16  Pmes  or  cover  every  inch  of  the  United  States  in  paper  3  feet  deep        August  2011   ©  Datalicious  Pty  Ltd   8  
  • 9. [  Mo/va/on  ]     Data  =   ©  Datalicious  Pty  Ltd   9  
  • 10. 101011010010010010101111010010010101010100001011111001010101010100101011001100010100101001101101001101001010100111001010010010101001001010010100100101001111101010100101001001001010  >  Data  Science  Examples  August  2011   ©  Datalicious  Pty  Ltd   10  
  • 11. >  Search  and  the  product  lifecycle     Nokia  N-­‐Series   Apple  iPhone  October  2010   ©  Datalicious  Pty  Ltd   11  
  • 12. >  Financial  Predic/on   ©  Datalicious  Pty  Ltd   12  
  • 13. >  Trigger  based  Sales   2  years  on     the  beach   Iden/fies  themself     User  visits   User  visits   (e.g.  sale  or   Looks  at  lots  of   Site   Site  again   registra/on)   ‘widgets’   anonymously   ‘anonymously’   Cookie   Web   Cookie   Analy/cs   Database   Hi  John,  long   /me  no  talk,  we   have  a  special   Name:  John  Example   on  widgets!   Interest:  Widgets   History:     Business   -­‐Last  visit  2  years  ago.   Intelligence   -­‐Purchased  10  blue  widgets   Database   -­‐High  value  band   Loca/on:  2000,  Sydney       ©  Datalicious  Pty  Ltd   13  
  • 14. >  The  science  of  Banner  Ads     Control   Group   Normal  Display  Adver/sing  (90%)   (10%)   Impressions  =  1  M   Impressions  =  9  M   Visitors  =  1,000   Visitors  =  10,000   Sales  =  50   Sales  =  550   Cost  =  $1,000   Cost  =  $9,000   $  per  sale  =  $20   $  per  sale  =  $16       Without  display     With  display   adverPsing,  1  in   every  20,000  people   22%   adverPsing  1  in   every  16,363  people   will  convert     uplie     will  convert         -­‐  Banner  Ads  do  influence  sales  despite  what  people  think   -­‐  Even  if  you  don’t  click  on  them   ©  Datalicious  Pty  Ltd   14  
  • 15. [  Affinity  targe/ng  in  ac/on  ]   Different  types  of     visitors  respond  to     different  ads.  By   using  category   affinity  targePng,     response  rates  are     lieed  significantly     across  products.   Click-­‐Through  Rate  By  Category  Affinity   Message   Postpay   Prepay   Broadb.   Business   Blackberry  Bold   - - - + 5GB  Mobile  Broadband   - - + - Blackberry  Storm   + - + + 12  Month  Caps   - + - + ©  Datalicious  Pty  Ltd   15  
  • 16. 14/11/12   ©  Datalicious  Pty  Ltd   16  
  • 17. 101011010010010010101111010010010101010100001011111001010101010100101011001100010100101001101101001101001010100111001010010010101001001010010100100101001111101010100101001001001010  >  Why  should  you  do  it?  August  2011   ©  Datalicious  Pty  Ltd   17  
  • 18. >  The  start  of  a  trend…  August  2011   ©  Datalicious  Pty  Ltd   18  
  • 19. >  Big  Data  also…  August  2011   ©  Datalicious  Pty  Ltd   19  
  • 20. >  Supply  is  way  behind  demand…  August  2011   ©  Datalicious  Pty  Ltd   20  
  • 21. IT  needs  more  Scien/sts  August  2011   ©  Datalicious  Pty  Ltd   21  
  • 22. >  Difficult  to  believe?   §  Marketers  typically  just  don’t  get  it,  but  their  bosses   now  know  you  can  measure  the  ROI  of  digital  Ads,  so   they’re  screwed  without  the  data  scienPsts      §  The  business  guys  mostly  (not  all)  see  the  value,  but   the  Internet  wasn’t  around  when  they  were  back  in   Harvard,  so  they  can’t  do  it  alone     §  Developers  are  predominantly  good  at  following  a   spec.  They  rarely  understand  data,  staPsPcs  and  how   to  go  about  sejng  up  and  analysing  an  experiment     August  2011   ©  Datalicious  Pty  Ltd   22    
  • 23. >  You  can  work  across  all  industries  August  2011   ©  Datalicious  Pty  Ltd   23  
  • 24. >  Work  on  wide  ranging  issues…  August  2011   ©  Datalicious  Pty  Ltd   24  
  • 25. >  Work  from  Anywhere  August  2011   ©  Datalicious  Pty  Ltd   25  
  • 26. 101011010010010010101111010010010101010100001011111001010101010100101011001100010100101001101101001101001010100111001010010010101001001010010100100101001111101010100101001001001010  >  About  Datalicious  August  2011   ©  Datalicious  Pty  Ltd   26  
  • 27. >  Across  major  data  categories   Campaign  data   TV,  print,  call  center,  search,   web  analyPcs,  ad  serving,  etc       Campaigns   Customers   Customer  data   Direct  mail,  call  center,  web   analyPcs,  emails,  surveys,  etc       Consumer  data   Search,  social  media,  trends,   Compe/tors   Consumers   research,  news,  etc       Compe/tor  data   Search,  social  media,  ad   spend,  news,  offers,  etc    August  2011   ©  Datalicious  Pty  Ltd   27  
  • 28. >  Defining  data  strategies   Con/nuous  tes/ng  and  op/miza/on   AcquisiPon   Up-­‐Sell   RetenPon   Advocacy   Analy/cs  and  metrics  frameworks  August  2011   ©  Datalicious  Pty  Ltd   28  
  • 29. >  Guiding  the  customer  journey   To  transac/onal  data   To  reten/on  messages   From  suspect  to   prospect   To  customer   Time   Time   From  behavioural  data   From  awareness  messages  August  2011   ©  Datalicious  Pty  Ltd   29  
  • 30. >  Summary  §  Do  you:     1.  Know  how  to  idenPfy  trends  in  numbers  and  to   graph  data   2.  Know  how  to  write  reports  and  validate   experimental  predicPons   3.  Understand  some  business  thinking,  i.e.  cost  of   sales,  maximising  return,  etc   4.  Understand  the  principles  of  wriPng  code  §  If  yes,  then  Data  Science  may  be  for  you.  August  2011   ©  Datalicious  Pty  Ltd   30  
  • 31. Contact  us   hogilvy@datalicious.com     Learn   blog.datalicious.com     Follow   twiner.com/hamishogilvy   twiner.com/datalicious    August  2011   ©  Datalicious  Pty  Ltd   31