Making Data Sexy
Upcoming SlideShare
Loading in...5
×
 

Making Data Sexy

on

  • 603 views

The presentation discusses the four main data categories in correlation with marketing and analytics strategies.

The presentation discusses the four main data categories in correlation with marketing and analytics strategies.

Statistics

Views

Total Views
603
Views on SlideShare
603
Embed Views
0

Actions

Likes
0
Downloads
7
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Making Data Sexy Making Data Sexy Presentation Transcript

  • >  Making  data  sexy  <   Turning  raw  data  into     ac.onable  insights  
  • >  The  datalicious  elevator  pitch   “Using  data  to  widen  the  funnel”   Media  A:ribu<on  &  Modeling   Op<mise  channel  mix,  predict  sales   Targeted  Direct  Marke<ng     Increase  relevance,  reduce  churn   Tes<ng  &  Op<misa<on   Remove  barriers,  drive  sales   Boos<ng  ROI  
  • Make  data  sexy   by  turning  it  into     ac<onable  insights  August  2011   ©  Datalicious  Pty  Ltd   3   View slide
  • Standardise  metrics  August  2011   ©  Datalicious  Pty  Ltd   4   View slide
  • August  2011   ©  Datalicious  Pty  Ltd   5  
  • Break  down  data  silos  August  2011   ©  Datalicious  Pty  Ltd   6  
  • >  Establish  a  single  source  of  truth   Insights   Repor<ng  August  2011   ©  Datalicious  Pty  Ltd   7  
  • >  Combine  profile  data  sources   CRM  Profile   Site  Behaviour   one-­‐off  collec.on  of  demographical  data     tracking  of  purchase  funnel  stage   +   age,  gender,  address,  etc   browsing,  checkout,  etc   customer  lifecycle  metrics  and  key  dates   tracking  of  content  preferences   profitability,  expira<on,  etc   products,  brands,  features,  etc   predic.ve  models  based  on  data  mining   tracking  of  external  campaign  responses   propensity  to  buy,  churn,  etc   search  terms,  referrers,  etc   historical  data  from  previous  transac.ons   tracking  of  internal  promo.on  responses   average  order  value,  points,  etc   emails,  internal  search,  etc   Updated  Occasionally   Updated  Con<nuously  August  2011   ©  Datalicious  Pty  Ltd   8  
  • >  3rd  party  data  enhancements   Customer  profile  data   Geo-­‐demographic  data   +   The  whole  is  greater     than  the  sum  of  its  parts   3rd  party  data  August  2011   ©  Datalicious  Pty  Ltd   9  
  • Visualise  your  data  August  2011   ©  Datalicious  Pty  Ltd   10  
  • What  trends  can  you  iden<fy  in  5  seconds     by  looking  at  the  raw  data  only?  August  2011   ©  Datalicious  Pty  Ltd   11  
  • August  2011   ©  Datalicious  Pty  Ltd   12  
  • August  2011   ©  Datalicious  Pty  Ltd   13  
  • August  2011   ©  Datalicious  Pty  Ltd   14  
  • August  2011   ©  Datalicious  Pty  Ltd   15  
  • RED  =  No  single  men   August  2011   ©  Datalicious  Pty  Ltd   16  
  • Allocate  a  data  budget  August  2011   ©  Datalicious  Pty  Ltd   17  
  • Combine  data  &  crea<vity  August  2011   ©  Datalicious  Pty  Ltd   18  
  • August  2011   ©  Datalicious  Pty  Ltd   19  
  • Contact  us   insights@datalicious.com     Learn  more   blog.datalicious.com     Follow  me   twi:er.com/datalicious    August  2011   ©  Datalicious  Pty  Ltd   20  
  • Data  >  Insights  >  Ac<on  August  2011   ©  Datalicious  Pty  Ltd   21