• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
P&O Analytics

P&O Analytics



The presentation discusses the concepts, principles and significance of data driven marketing.

The presentation discusses the concepts, principles and significance of data driven marketing.



Total Views
Views on SlideShare
Embed Views



0 Embeds 0

No embeds



Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
Post Comment
Edit your comment

    P&O Analytics P&O Analytics Presentation Transcript

    • >  P&O  Analy+cs  Workshop  <   Smart  data  driven  marke-ng  
    • >  Short  but  sharp  history  §  Datalicious  was  founded  late  2007  §  Strong  Omniture  web  analy-cs  history  §  Now  360  data  agency  with  specialist  team  §  Combina-on  of  analysts  and  developers  §  Carefully  selected  best  of  breed  partners  §  Driving  industry  best  prac-ce  (ADMA)  §  Turning  data  into  ac-onable  insights  §  Execu-ng  smart  data  driven  campaigns  June  2011   ©  Datalicious  Pty  Ltd   2  
    • >  Smart  data  driven  marke+ng   Media  A@ribu+on  &  Modeling   Op+mise  channel  mix,  predict  sales   Targeted  Direct  Marke+ng     Increase  relevance,  reduce  churn   Tes+ng  &  Op+misa+on   Remove  barriers,  drive  sales   Boost  ROMI  June  2011   ©  Datalicious  Pty  Ltd   3  
    • >  Wide  range  of  data  services   Data   Insights   Ac+on   PlaIorms   Analy+cs   Campaigns         Data  collec+on  and  processing   Data  mining  and  modelling   Data  usage  and  applica+on         Web  analy+cs  solu+ons   Customised  dashboards   Marke+ng  automa+on         Omniture,  Google  Analy+cs,  etc   Tableau,  SpoIire,  SPSS,  etc   Alterian,  SiteCore,  Inxmail,  etc         Tag-­‐less  online  data  capture   Media  a@ribu+on  models   Targe+ng  and  merchandising         End-­‐to-­‐end  data  plaIorms   Market  and  compe+tor  trends   Internal  search  op+misa+on         IVR  and  call  center  repor+ng   Social  media  monitoring   CRM  strategy  and  execu+on         Single  customer  view   Customer  profiling   Tes+ng  programs    June  2011   ©  Datalicious  Pty  Ltd   4  
    • >  Clients  across  all  industries  June  2011   ©  Datalicious  Pty  Ltd   5  
    • >  Today  §  Data  Roadmap  Prerequisites:   1.  How  do  you  want  to  differen-ate  your   promo-on  ac-vity  to  different  segments  of   consumers/web  users/customers?     (What  would  these  segments  be?)       OUTPUT:  Dra[  Targe-ng  Matrix   2.  What  metrics  are  available  at  different  points   in  the  consumer  path  to  purchase?   OUTPUT:  Dra[  Metrics  Framework    June  2011   ©  Datalicious  Pty  Ltd   6  
    • Clive  Humby:  Data  is  the  new  oil   June  2011   ©  Datalicious  Pty  Ltd   7  
    • >  Corporate  data  journey     Stage  1   Stage  2     Stage  3 Data   Insights   Ac+on   “Leaders”   Data  is  fully  owned     “Followers”     Sophis-ca-on in-­‐house,  advanced   Data  is  being  brought     predic-ve  modelling   “Laggards”   in-­‐house,  shi[  towards   and  trigger  based   Third  par-es  control   insights  genera-on  and   marke-ng,  i.e.  what     data  mining,  i.e.  why   will  happen  and     most  data,  ad  hoc   did  it  happen?   making  it  happen!   repor-ng  only,  i.e.     what  happened?   Time,  Control  June  2011   ©  Datalicious  Pty  Ltd   8  
    • Oil  and  data  come  at  a  price  June  2011   ©  Datalicious  Pty  Ltd   9  
    • >  Google  Ngram:  Privacy    June  2011   ©  Datalicious  Pty  Ltd   10  
    • Collec+ng  data     for  the  sake  of  it   or  to  add  value   to  customers?  June  2011   ©  Datalicious  Pty  Ltd   11  
    • >  Data  driven  marke+ng  to  …  §  Improve  media  planning  and  targe-ng  §  Op-mise  media  placements  across  channels  §  Increase  campaign/content  engagement  §  Increase  website/call  center  conversion  §  Iden-fy  profitable  product  bundles/prices  §  Improve  targe-ng  and  increase  up/cross-­‐sell    §  Improve  travel  agent  engagement/training  §  And  much  more  …  June  2011   ©  Datalicious  Pty  Ltd   12  
    • Product   Partners   Price   Marke+ng  Process   Mix   Place   People   Promo+on   Physical   Evidence  
    • 101011010010010010101111010010010101010100001011111001010101010100101011001100010100101001101101001101001010100111001010010010101001001010010100100101001111101010100101001001001010  >  Targe+ng  matrix  November  12   ©  Datalicious  Pty  Ltd   14  
    • Targe+ng   The  right  message   Via  the  right  channel   To  the  right  person   At  the  right  -me  June  2011   ©  Datalicious  Pty  Ltd   15  
    • >  Increase  revenue  by  10-­‐20%     Capture  internet  traffic   Capture  50-­‐100%  of  fair  market  share  of  traffic   Increase  consumer  engagement   Exceed  50%  of  best  compe-tor’s  engagement  rate     Capture  qualified  leads  and  sell   Convert  10-­‐15%  to  leads  and  of  that  20%  to  sales   Building  consumer  loyalty   Build  60%  loyalty  rate  and  40%  sales  conversion   Increase  online  revenue   Earn  10-­‐20%  incremental  revenue  online  June  2011   ©  Datalicious  Pty  Ltd   16  
    • >  New  consumer  decision  journey   The  consumer  decision  process  is  changing  from  linear  to  circular.  June  2011   ©  Datalicious  Pty  Ltd   17  
    • >  New  consumer  decision  journey   The  consumer  decision  process  is  changing  from  linear  to  circular.   Online  research     Change  increases   the  importance  of   experience  during   research  phase.  June  2011   ©  Datalicious  Pty  Ltd   18  
    • June  2011   ©  Datalicious  Pty  Ltd   19  
    • Exercise:  Customer  journey  June  2011   ©  Datalicious  Pty  Ltd   20  
    • >  The  consumer  data  journey     To  transac+onal  data   To  reten+on  messages   From  suspect  to   prospect   To  customer   Time   Time   From  behavioural  data   From  awareness  messages  June  2011   ©  Datalicious  Pty  Ltd   21  
    • >  Coordina+on  across  channels         Genera+ng   Crea+ng   Maximising   awareness   engagement   revenue   TV,  radio,  print,   Retail  stores,  in-­‐store   Outbound  calls,  direct   outdoor,  search   kiosks,  call  centers,   mail,  emails,  social   marke-ng,  display   brochures,  websites,   media,  SMS,  mobile   ads,  performance   mobile  apps,  online   apps,  etc   networks,  affiliates,   chat,  social  media,  etc   social  media,  etc   Off-­‐site   On-­‐site   Profile     targe+ng   targe+ng   targe+ng  June  2011   ©  Datalicious  Pty  Ltd   22  
    • >  Combining  targe+ng  plaIorms     Off-­‐site   targe-ng   Profile   On-­‐site   targe-ng   targe-ng  June  2011   ©  Datalicious  Pty  Ltd   23  
    • Take  a  closer   look  at  our   cash  flow   solu+ons  November  2010   ©  Datalicious  Pty  Ltd   24  
    • 0  June  2011   ©  Datalicious  Pty  Ltd   25  
    • 0  November  2010   ©  Datalicious  Pty  Ltd   26  
    • >  Affinity  re-­‐targe+ng  in  ac+on     Different  type  of     visitors  respond  to     different  ads.  By   using  category   affinity  targe-ng,     response  rates  are     li[ed  significantly     across  products.   CTR  By  Category  Affinity   Message   Postpay   Prepay   Broadb.   Business   Blackberry  Bold   - - - + Google:  “vodafone   5GB  Mobile  Broadband   - - + - omniture  case  study”     Blackberry  Storm   + - + + or  h@p://bit.ly/de70b7   12  Month  Caps   - + - +June  2011   ©  Datalicious  Pty  Ltd   27  
    • >  Ad-­‐sequencing  in  ac+on   Marke-ng  is  about   telling  stories  and   stories  are  not  sta-c   but  evolve  over  -me   Ad-­‐sequencing  can  help  to   evolve  stories  over  -me  the     more  users  engage  with  ads  June  2011   ©  Datalicious  Pty  Ltd   28  
    • >  Prospect  targe+ng  parameters    June  2011   ©  Datalicious  Pty  Ltd   29  
    • >  Sample  site  visitor  composi+on     30%  new  visitors  with  no   30%  repeat  visitors  with   previous  website  history   referral  data  and  some   aside  from  campaign  or   website  history  allowing   referrer  data  of  which   50%  to  be  segmented  by   maybe  50%  is  useful   content  affinity   30%  exis+ng  customers  with  extensive   10%  serious   profile  including  transac-onal  history  of   prospects   which  maybe  50%  can  actually  be   with  limited   iden-fied  as  individuals     profile  data  June  2011   ©  Datalicious  Pty  Ltd   30  
    • >  Search  call  to  ac+on  for  offline    June  2011   ©  Datalicious  Pty  Ltd   31  
    • Include  in  press  June  2011   ©  Datalicious  Pty  Ltd   32  
    • >  PURLs  boos+ng  DM  response  rates   Text  June  2011   ©  Datalicious  Pty  Ltd   33  
    • >  Unique  phone  numbers  §  1  unique  phone  number     –  Phone  number  is  considered  part  of  the  brand   –  Media  origin  of  calls  cannot  be  established   –  Added  value  of  website  interac-on  unknown  §  2-­‐10  unique  phone  numbers   –  Different  numbers  for  different  media  channels   –  Exclusive  number(s)  reserved  for  website  use   –  Call  origin  data  more  granular  but  not  perfect   –  Difficult  to  rotate  and  pause  numbers  June  2011   ©  Datalicious  Pty  Ltd   34  
    • >  Unique  phone  numbers  §  10+  unique  phone  numbers   –  Different  numbers  for  different  media  channels   –  Different  numbers  for  different  product  categories   –  Different  numbers  for  different  conversion  steps   –  Call  origin  becoming  useful  to  shape  call  script   –  Feasible  to  pause  numbers  to  improve  integrity  §  100+  unique  phone  numbers   –  Different  numbers  for  different  website  visitors   –  Call  origin  and  -me  stamp  enable  individual  match   –  Call  conversions  matched  back  to  search  terms  June  2011   ©  Datalicious  Pty  Ltd   35  
    • >  Jet  Interac+ve  phone  call  data  June  2011   ©  Datalicious  Pty  Ltd   36  
    • >  Poten+al  calls  to  ac+on    §  Unique  click-­‐through  URLs   Calls  to  ac+on  §  Unique  vanity  domains  or  URLs   can  help  shape  §  Unique  phone  numbers   the  customer  §  Unique  search  terms   experience  not   just  evaluate  §  Unique  email  addresses   responses  §  Unique  personal  URLs  (PURLs)  §  Unique  SMS  numbers,  QR  codes  §  Unique  promo-onal  codes,  vouchers  §  Geographic  loca-on  (Facebook,  FourSquare)  §  Plus  regression  analysis  of  cause  and  effect  June  2011   ©  Datalicious  Pty  Ltd   37  
    • >  Combining  data  sources   Website  behavioural  data   Campaign  response  data   +   The  whole  is  greater     than  the  sum  of  its  parts   Customer  profile  data  June  2011   ©  Datalicious  Pty  Ltd   38  
    • >  Transac+ons  plus  behaviours   CRM  Profile   Site  Behaviour   one-­‐off  collec-on  of  demographical  data     tracking  of  purchase  funnel  stage   +   age,  gender,  address,  etc   browsing,  checkout,  etc   customer  lifecycle  metrics  and  key  dates   tracking  of  content  preferences   profitability,  expira+on,  etc   products,  brands,  features,  etc   predic-ve  models  based  on  data  mining   tracking  of  external  campaign  responses   propensity  to  buy,  churn,  etc   search  terms,  referrers,  etc   historical  data  from  previous  transac-ons   tracking  of  internal  promo-on  responses   average  order  value,  points,  etc   emails,  internal  search,  etc   Updated  Occasionally   Updated  Con+nuously  June  2011   ©  Datalicious  Pty  Ltd   39  
    • >  Customer  profiling  in  ac+on     Using  website  and  email  responses   to  learn  a  limle  bite  more  about   subscribers  at  every     touch  point  to  keep    refining  profiles   and  messages.  June  2011   ©  Datalicious  Pty  Ltd   40  
    • >  Online  form  best  prac+ce   Maximise  data  integrity   Age  vs.  year  of  birth   Free  text  vs.  op-ons   Use  auto-­‐complete     wherever  possible  June  2011   ©  Datalicious  Pty  Ltd   41  
    • >  Enhancing  data  sources   Customer  profile  data   Geo-­‐demographic  data   +   The  whole  is  greater     than  the  sum  of  its  parts   3rd  party  data  June  2011   ©  Datalicious  Pty  Ltd   42  
    • >  Geo-­‐demographic  segments  June  2011   ©  Datalicious  Pty  Ltd   43  
    • >  Quality  content  is  key     Avinash  Kaushik:     “The  principle  of  garbage  in,  garbage  out   applies  here.  […  what  makes  a  behaviour   targe;ng  pla<orm  ;ck,  and  produce  results,  is   not  its  intelligence,  it  is  your  ability  to  actually   feed  it  the  right  content  which  it  can  then  target   [….  You  feed  your  BT  system  crap  and  it  will   quickly  and  efficiently  target  crap  to  your   customers.  Faster  then  you  could     ever  have  yourself.”  June  2011   ©  Datalicious  Pty  Ltd   44  
    • Exercise:  Targe+ng  matrix  June  2011   ©  Datalicious  Pty  Ltd   45  
    • >  Exercise:  Targe+ng  matrix   Segments:  Colour,  price,   Purchase   product  affinity,  etc   Media   Data     Cycle   Channels   Points   X   Y   Default,   awareness   Research,   considera+on   Purchase   intent   Reten+on,   up/cross-­‐sell  June  2011   ©  Datalicious  Pty  Ltd   46  
    • >  Exercise:  Targe+ng  matrix   Segments:  Colour,  price,   Purchase   product  affinity,  etc   Media   Data     Cycle   Channels   Points   X   Y   Default,   Have  you     Have  you     Display,   Default   awareness   seen  A?   seen  B?   search,  etc   Research,   A  has  great     B  has  great     Search,   Ad  clicks,   considera+on   features!   features!   website,  etc   prod  views   Purchase   A  delivers   B  delivers   Website,   Cart  adds,   intent   great  value!   great  value!   emails,  etc   checkouts   Reten+on,   Why  not   Why  not   Direct  mails,   Email  clicks,   up/cross-­‐sell   buy  B?   buy  A?   emails,  etc   logins,  etc  June  2011   ©  Datalicious  Pty  Ltd   47  
    • 101011010010010010101111010010010101010100001011111001010101010100101011001100010100101001101101001101001010100111001010010010101001001010010100100101001111101010100101001001001010  >  Metrics  framework  November  12   ©  Datalicious  Pty  Ltd   48  
    • >  AIDA  and  AIDAS  formulas     Old  media   New  media   Awareness   Interest   Desire   Ac+on   Sa+sfac+on   Social  media  June  2011   ©  Datalicious  Pty  Ltd   49  
    • >  Simplified  AIDAS  funnel     Reach   Engagement   Conversion   +Buzz   (Awareness)   (Interest  &  Desire)   (Ac-on)   (Sa-sfac-on)  June  2011   ©  Datalicious  Pty  Ltd   50  
    • >  Marke+ng  is  about  people     People   People   People   People   reached   40%   engaged   10%   converted   1%   delighted  June  2011   ©  Datalicious  Pty  Ltd   51  
    • >  Addi+onal  funnel  breakdowns     Brand  vs.  direct  response  campaign   People   People   People   People   reached   40%   engaged   10%   converted   1%   delighted   New  prospects  vs.  exis-ng  customers  June  2011   ©  Datalicious  Pty  Ltd   52  
    • New  vs.  returning  visitors  June  2011   ©  Datalicious  Pty  Ltd   53  
    • AU/NZ  vs.  rest  of  world  June  2011   ©  Datalicious  Pty  Ltd   54  
    • >  Poten+al  funnel  breakdowns    §  Brand  vs.  direct  response  campaign  §  New  prospects  vs.  exis-ng  customers  §  Baseline  vs.  incremental  conversions  §  Compe--ve  ac-vity,  i.e.  none,  a  lot,  etc  §  Segments,  i.e.  age,  loca-on,  influence,  etc  §  Channels,  i.e.  search,  display,  social,  etc  §  Campaigns,  i.e.  this/last  week,  month,  year,  etc  §  Products  and  brands,  i.e.  iphone,  htc,  etc  §  Offers,  i.e.  free  minutes,  free  handset,  etc  §  Devices,  i.e.  home,  office,  mobile,  tablet,  etc      June  2011   ©  Datalicious  Pty  Ltd   55  
    • Exercise:  Metrics  framework  June  2011   ©  Datalicious  Pty  Ltd   56  
    • >  Exercise:  Metrics  framework     Level   Reach   Engagement   Conversion   +Buzz   Level  1,   people   Level  2,   strategic   Level  3,   tac+cal   Funnel   breakdowns  June  2011   ©  Datalicious  Pty  Ltd   57  
    • >  Exercise:  Metrics  framework     Level   Reach   Engagement   Conversion   +Buzz   Level  1   People   People   People   People   People   reached   engaged   converted   delighted   Level  2   Display   Strategic   impressions   ?   ?   ?   Level  3   Interac+on   Tac+cal   rate,  etc   ?   ?   ?   Funnel   Exis+ng  customers  vs.  new  prospects,  products,  etc   Breakdowns  June  2011   ©  Datalicious  Pty  Ltd   58  
    • >  Establishing  a  baseline   Switch  all  adver-sing  off  for  a  period   of  -me  (unlikely)  or  establish  a  smaller   control  group  that  is  representa-ve  of   the  en-re  popula-on  (i.e.  search  term,   geography,  etc)  and  switch  off  selected   channels  one  at  a  -me  to  minimise   impact  on  overall  conversions.  June  2011   ©  Datalicious  Pty  Ltd   59  
    • >  Importance  of  calendar  events     Traffic  spikes  or  other  data  anomalies  without  context  are   very  hard  to  interpret  and  can  render  data  useless  June  2011   ©  Datalicious  Pty  Ltd   60  
    • Don’t  wait     for  be@er  data,   get  started  now.  June  2011   ©  Datalicious  Pty  Ltd   61  
    • Contact  me   cbartens@datalicious.com     Learn  more   blog.datalicious.com     Follow  me   twi@er.com/datalicious    June  2011   ©  Datalicious  Pty  Ltd   62  
    • Data  >  Insights  >  Ac+on