SXSW 2015  Panel: How Data Can Help Brick & Mortar Businesses Thrive
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

SXSW 2015 Panel: How Data Can Help Brick & Mortar Businesses Thrive

on

  • 148 views

Despite the hype that Amazon and other e-com sites receive, it is estimated that 94% of US retail sales still happen “In the Real World”. Yet precisely because brick & mortar businesses rely on ...

Despite the hype that Amazon and other e-com sites receive, it is estimated that 94% of US retail sales still happen “In the Real World”. Yet precisely because brick & mortar businesses rely on their physical locations to drive sales, they often don’t have the same rich data sets available to online retailers. Worse, the data they do have is often siloed between different departments and in different databases. So they don’t connect the dots for potentially transformative insights into customer behavior, media vehicle effectiveness, cross-sell opportunities, or new approaches for dealing with competitors.

This panel will discuss strategies and challenges in combining media, social, and sales data to improve understanding across an increasing number of online and offline data sets. We will present real-world examples of how multi-unit retail business are connecting store sales, media impression, and local social engagement data to drive actionable insights and real-world results.

Statistics

Views

Total Views
148
Views on SlideShare
145
Embed Views
3

Actions

Likes
0
Downloads
0
Comments
0

1 Embed 3

https://www.linkedin.com 3

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

SXSW 2015 Panel: How Data Can Help Brick & Mortar Businesses Thrive Presentation Transcript

  • 1. #DigitalBricks   How  Data     Can  Help     Brick  &  Mortar   Businesses     Thrive  
  • 2. Brad  B  McCormick   Chief  Digital  Officer   Moroch  Adver5sing     •  Mul5-­‐Unit  Retail  Marke5ng   •  Brand  Adver5sing   •  Paid,  Owned,  Earned  Media  Integra5on   Chris  Treadaway   President  &  CEO     Polygraph  Media     •  Social  Media  &  Big  Data   •  Decision  Driven  Marke5ng   •  Author:  Facebook  Marke;ng,  A  Hour  a  Day   Dr.  Edo  Airoldi   Associate  Professor  Sta5s5cs     Harvard  University     •  Media  AHribu5on  Modeling   •  Sta5s5cal  Methodologies   •  AB  Test  in  Complex  Systems   Speakers
  • 3. Retail Spends Most on Advertising
  • 4. "Half the money I spend on advertising is wasted; the trouble is I don't know which half.” -John Wannamaker New York Retailer 1874  
  • 5. Big Data to the Rescue?
  • 6. The Vision Store  Sale  &   Transac5on  Data   Localized   Social   Media  Data   Na5onal  &  DMA  Specific   Media  Impression  Data   Na5onal  &  DMA  Related   Economic  &  Local  (i.e.   Weather)  Data  
  • 7. The Vision Store  Sale  &   Transac5on  Data   Localized   Social   Media  Data   Na5onal  &  DMA  Specific   Media  Impression  Data   Na5onal  &  DMA  Related   Economic  &  Local  (i.e.   Weather)  Data   BeHer  Insights,  BeHer  Campaigns,  BeHer  ROI,  Less  Waste,  Less  CluHer  
  • 8. The Reality Store  Sale  &   Transac5on  Data   Localized   Social   Media  Data   Na5onal  &  DMA  Specific   Media  Impression  Data   Na5onal  &  DMA  Related   Economic  &  Local  (i.e.   Weather)  Data  
  • 9. The Reality Store  Sale  &   Transac5on  Data   Localized   Social   Media  Data   Na5onal  &  DMA  Specific   Media  Impression  Data   Na5onal  &  DMA  Related   Economic  &  Local  (i.e.   Weather)  Data   •  Archaic  POS  Systems   •  Employee  Era   •  Cadence  &  Timing  of   Reports   •  Frequency  &  Reach   Duplica5on   •  Changing  Customer   Habits   •  Cadence  &  Timing  of   Reports   •  User  Opt-­‐In     •  Outdated  Bios   •  Loca5on  accuracy   •  Loca5on  at  moment  of   engagement   •  Correla5on  vs.   Causa5on   •  Cadence  &  Timing  of   Report    
  • 10. Store  Sale  &   Transac5on  Data   •  Archaic  POS  Systems   •  Employee  Era   •  Cadence  &  Timing  of   Reports   Weekly Sales Reports, by DMA, By Store
  • 11. Store  Sale  &   Transac5on  Data   •  Archaic  POS  Systems   •  Employee  Era   •  Cadence  &  Timing  of   Reports   Week to Week vs. Comp Sale Analysis
  • 12. Localized   Social   Media  Data   =  Above  Average  Social  Engagement   =  Below  Average  Social  Engagement   •  User  Opt-­‐In     •  Outdated  Bios   •  Loca5on  accuracy   •  Loca5on  at  moment  of   engagement   Real Time Social Engagement Segmented by DMA
  • 13. Localized   Social   Media  Data   •  User  Opt-­‐In     •  Outdated  Bios   •  Loca5on  accuracy   •  Loca5on  at  moment  of   engagement   Weekly Fan Engagement Analysis By DMA
  • 14. Localized   Social   Media  Data   •  User  Opt-­‐In     •  Outdated  Bios   •  Loca5on  accuracy   •  Loca5on  at  moment  of   engagement   Understanding DMA-specific Social Trends
  • 15. Localized   Social   Media  Data   •  User  Opt-­‐In     •  Outdated  Bios   •  Loca5on  accuracy   •  Loca5on  at  moment  of   engagement   Programmatic Media Buys Initiated by Social Activity.
  • 16. Na5onal  &  DMA  Specific   Media  Impression  Data   •  Frequency  &  Reach   Duplica5on   •  Changing  Customer   Habits   •  Cadence  &  Timing  of   Reports   Tracking Largest Ad Spend Against Changing Trends.
  • 17. Na5onal  &  DMA  Specific   Media  Impression  Data   •  Frequency  &  Reach   Duplica5on   •  Changing  Customer   Habits   •  Cadence  &  Timing  of   Reports   Correlating DMA Media Dollars to DMA Transactions.
  • 18. Na5onal  &  DMA  Related   Economic  &  Local  (i.e.   Weather)  Data   •  Correla5on  vs.   Causa5on   •  Cadence  &  Timing  of   Report     How Weather Influencers Local Economic Activity.
  • 19. The Vision – In Beta.
  • 20. Questions?
  • 21. #DigitalBricks   How  Data     Can  Help     Brick  &  Mortar   Businesses     Thrive