Nuclear energy (1)
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Nuclear energy (1)

  • 285 views
Uploaded on

Presentation about green energies, the future of the world

Presentation about green energies, the future of the world

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
285
On Slideshare
285
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
3
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. NUCLEAR ENERGY Universidad Nacional de Colombia RenewableEnergies 2012 – II Fabián Poveda Andrés Barreto Daniel Zambrano Hierman Galeano
  • 2. CONTENTS• Introduction• Potential• Howitworks• Reactors• Economy 2
  • 3. INTRODUCTION• Nuclear energy is the energy obtained by manipulating the internal structure of atoms. It can be obtained by dividing the nucleus (nuclear fission) or joining two atoms (nuclear fusion)• Nuclear energy is the only option to produce and supply large amounts of electricity globally• 440 nuclear reactors produce electricity around the world. More than 15 countries have nuclear energy to produce 25% or more of their electricity needs 3
  • 4. HOW IT WORKS NUCLEAR FISSION• A neutron traveling at high speed hits the nucleus of an element of high atomic weight• Uranium 235 2• Plutonium 239 E=m c 4
  • 5. HOW IT WORKS – Fuel cycleFRONT END – Uranium mining, conversion, enrichment And fuel fabrication Uranium ore is mined by Natural uranium U-235 mustextraction or in situ leaching be‘enriched’ to 0.71% to 3.5% Small pellets of uranium Uranium hexafluoride gas dioxide, a ceramic material UF6 or‘hex’ 2 cm long , 1.5 cm diameterLoaded intozirconium alloy or Light Water Reactors (LWR)stainless steel tubes 4 m long fuel rods 5
  • 6. HOW IT WORKS – Fuel cycle SERVICE PERIOD 6
  • 7. HOW IT WORKS – Fuel cycleBACK END – Safety procedures either to reprocess or dispose of spent nuclear fuel Open fuel cycle Closed fuel cycleFuel is used once and then sent After being removed from the to storage without further reactor, the fuel rods go to a processing reprocessing plant where they are chopped up and dissolved in acid US, Canada and Sweden UK, France and Japan 7
  • 8. 8
  • 9. Fossil fuel plants Nuclear powerplants 39%NUCLEAR FISSION CO2 = 22% 67%NONE EMISSIONS NOx SO2 41% FUEL CYCLE Hg = just 2% of theemissions of 25 billiontonnes of CO2 are fossilfuels producedbyburningfossilfue ls Coal plantemissionsis 100 times higherthanthose of 9 nuclear plants
  • 10. Fuel-dependentemissionfactorsfrompowerplants in EUPollutant Hardcoal Brown coal Fueloil Otheroil GasCO2 (g/GJ) 94600 101000 77400 74100 56100SO2 (g/GJ) 765 1361 1350 228 0,68NOx (g/GJ) 292 183 195 129 93,3CO (g/GJ) 89,1 89,1 15,7 15,7 14,5No 4,92 7,78 3,7 3,24 1,58methaneorganiccompound (g/GJ)ParticulateMatter 1203 3254 16 191 0,1(g/GJ)Flue gas volume total 360 444 279 276 272(m^3/GJ) 10
  • 11. A safety comparisonbetweenthesources of electricalenergyEnergysource Number of Causes Installation Inmediatefatali Total Immediatefat eventswithfat ties per event immediate alities per alities fatalities GW/yearCoal 62 Mine disasters Coal mines 70 3900 0,4Oil 160 Fire- Refineriesplata 40 6200 0,3 explosiontrans formtankers formationaccid entGas 80 Fire- Gas wells and 50 3100 0,4 explosion- distribution eartquakeHydro 20 Overtoppingfai Dams 300 5200 2 lureNuclear 1 Design and Chernobyl 31 31 Lowerthan operation 0,01 11
  • 12. Aatmosphericpollution and solidwstefromworldwideenergy use (Million of tons)Source SO2 NOx Particulates CO CO2 Solid wasteCoal 100 Overthan 20 500 3 9000 Overthan 300Gas Lowerthan 2 Lowerthan 5 4000 Minor 0,5 0,5Oil 40 10 2 200 9000 15Wood 0,2 3 100 200 5000 50Hydro 0 0 0 0 0 0Nuclear 0 0 0 0 0 0,04 12
  • 13. 13
  • 14. 14
  • 15. 15
  • 16. Sources of publicannualradiationexposure in the U.S. 16
  • 17. 17
  • 18. 18
  • 19. 19
  • 20. 20
  • 21. World nuclear industry status reportNuclear electricitygeneration in theworld (total and share of electricitygeneration) 21
  • 22. World nuclear industry status reportNumber of nuclear reactorsunderconstruction, 1954-2012 22
  • 23. World nuclear industry status reportRelativechanges in net income of major nuclear companies 2007-2011 23
  • 24. World nuclear industry status reportGlobal investmentdecisions in new renewables and nuclear power, 2004-2011 24
  • 25. World nuclear industry status reportNuclear, wind, and solar capacityincreasesaroundtheworld, 2000-2011 25
  • 26. World nuclear industry status report• Manycontrieslike China, Japan, Germany, Italy, France, USA, Russiahavestoppedtheri nuclear projectsbecause of thefeartoterrorism, radiation• Evenwhencountriesincreasetheamount of nuclear energy, it has notkept pace withoverallincreases in electricitydemands 26
  • 27. World nuclear industry status report• Thecurrentworld reactor fleet has a total nominal capacity of about 364 gigawatts• Normalythe time thatwilltaketobuild a nuclear plantis 5 to 7 years. Nowdayscurrent nuclear projecthavebeenunderconstruction more than 20 years 27
  • 28. World nuclear industry status report• Thetoalnumbre of canceledorderstobuild nuclear plantswere 253 in 31 countries, many of them at advancedconstruccionstage. Justthe USA has cancleled 138 orders. French AtomicEnergyCommision Statics-2003• Theaccidentsthathaveoccur in thelastyearslikeFukishimaDaiichi, Chernobyl, ThreeMile Island are responsable of thefall in nuclear energyindustry. 28
  • 29. 18901 2005 Alaska, Muir Glacier
  • 30. Alaska,ReidGlacierd 1899 2003
  • 31. DominicanRHaiti epublic
  • 32. C AH IA RIN P OA L L U T I O N
  • 33. NUCLEAR TE CH NO LO energy GY FOR THE FUTURE
  • 34. MENUBIG reactorsInterestingfactsSmallreactorsInterstingfactsAdvantagesanddisavantages
  • 35. BIG REACTORS
  • 36. INTERESTING FACTS: JETPARTICIPANTS ENERGY 24 MW 16 MW PRODUCTION 65% OF RATIO 1983
  • 37. ITER INTERESTING FACTS PARTICIPANTS 50 MW 500 MWENERGY 1000% RATIOPRODUCTION 2019
  • 38. ONE 1000MW HOME S
  • 39. -8MW 450MW 8000 500.000
  • 40. SMALL REACTORS
  • 41. TOSHIBA 4SREACTOR DESAIGNER LIFE THERY YEARS HEAT SUPPLAY ADVANTA ENERGY GES STEAM DESALINIZATION
  • 42. 83.800 50 MW 135 MW THERMAL33.800 50.000
  • 43. HYPERION DESAIGNER LIFE TEN YEARS ADVANTAGES HEAT SUPPLAY ENERGY DESALINIZATION TRANSPORTATIO N
  • 44. 42.500 70 MW THERMAL 25 MW ELECTRICITY25.00017.500
  • 45. THORIUM REACTOR(SSTAR) DESAIGNER DESAIGNER LIFE THERY YEARS ADVANTAGES TRANSPORTATION PRICE LOW NUCLEAR WASTE NO NUCLEAR WEAPONS
  • 46. 10-100 MW100.000
  • 47. PROBLEMS
  • 48. 20.000.000.000.000 euros46.000.000.000.000.000 Colombian pesos
  • 49. POLICY
  • 50. ECONOMY 52
  • 51. REFERENCES• NGRExpert. (2012). Nuclear fuel cycle and supporting industries• http://www.energia-nuclear.net/ 53
  • 52. THANKYOU 54