SlideShare a Scribd company logo
1 of 11
CONVERTIDOR SEPIC
Daniel Sarabia Viera
Este convertido de DC/DC tiene un interruptor "SW" el cuales permite hacer dos circuitos
diferentes que estudiaremos a continuación:
SWOFF
SWON
En primer lugar realizamos las siguientes suposiciones:
<VL> = 0 <IC> = 0
1.1 Realizamos a continuaciónel cálculo de los voltajes suponiendo
1. 𝑣 𝐿2 = 0
 𝑉𝐿2𝑂𝑁 = 𝑉𝐶1
 𝑉𝐿2𝑂𝐹𝐹 = 𝑉0
Con esto calculamos:
< 𝑉𝐿2 > =
1
𝑇
∗ ∫ 𝑉𝐶1 +
1
𝑇
∗
𝑇 𝑂𝑁
0
∫ 𝑉𝑂 =
𝑇𝑂𝑁
𝑇
∗ 𝑉𝐶1 +
𝑇𝑂𝐹𝐹
𝑇
∗ 𝑉𝑜 = 0
𝑇 𝑂𝐹𝐹
0
< 𝑉𝐿2 > = 0 ; 𝑉𝐶1 =
(1 − 𝐷) 𝑉𝑜
𝐷
= 𝑉𝐿1
2. 𝑣 𝐿1 = 0
< 𝑉𝐿1 > =
1
𝑇
∗ ∫ 𝑉𝐿1𝑂𝑁 +
1
𝑇
∗ ∫ 𝑉𝐿1𝑂𝐹𝐹
𝑇 𝑂𝐹𝐹
0
𝑇 𝑂𝑁
0
 𝑉𝐿1𝑂𝑁 = 𝑉𝑖
𝑉𝐿1𝑂𝐹𝐹 = 𝑉𝑖 − 𝑉𝐶1 − 𝑉𝑜 = 𝑉𝑖 − 𝑉𝑜 ∗
1 − 𝐷
𝐷
− 𝑉𝑜 = ( 𝑉𝑖 ∗ 𝐷 − 𝑉𝑜[(1 − 𝐷) − 𝐷])/𝐷
 𝑉𝐿1𝑂𝐹𝐹 =
𝐷
𝐷
∗ (𝑉𝑖 −
𝑉𝑜
𝐷
) = 𝑉𝑖 −
𝑉𝑜
𝐷
Y ahora podemos realizar la integral para < 𝑉𝐿1 >:
< 𝑉𝐿1 > =
1
𝑇
∗ ∫ 𝑉𝑖 +
1
𝑇
∗ ∫ 𝑉𝑖 −
𝑉𝑜
𝐷
= 0
𝑇 𝑂𝐹𝐹
0
𝑇 𝑂𝑁
0
De donde despejamos la función de transferencia de la función:
𝑉𝑜
𝑉𝑖
=
𝐷
1 − 𝐷
1.2 Calculamos: 𝑰 𝑳𝟏 , ∆𝒊 𝑳𝟏, 𝑰 𝑳𝟐, ∆𝒊 𝑳𝟐, 𝑽 𝑪𝟏, ∆𝒗 𝑪𝟏,∆𝒗 𝑪𝟐
𝐼𝐿2𝑚𝑎𝑥 = 𝐼𝐿2 +
∆𝑖 𝐿2
2
𝐼𝐿2𝑚𝑖𝑛 = 𝐼𝐿2 −
∆𝑖 𝐿2
2
1.1 𝐼𝐿2𝑚𝑖𝑛 (𝑆𝑤 𝑂𝑁 )
 𝐼𝐿2 = 𝐼𝑜
𝑣 𝐿2 = 𝐿2 ∗
∆𝑖 𝐿2
∆𝑇
∆𝑖 𝐿2 =
𝑣 𝐿2
𝐿2
∗ ∆𝑇
𝑣 𝐿2 = 𝑣 𝐶4 = 𝑉𝑖
 ∆𝑖 𝐿2 =
𝑉𝑖
𝐿2
∗ 𝑇𝑂𝑁 =
𝑉𝑖 ∗𝐷
𝐿2∗𝑓
𝐼𝐿2𝑚𝑖𝑛 = 𝐼0 −
𝑉𝑖 ∗ 𝐷
2 ∗ 𝐿2 ∗ 𝑓
La corriente mínima la igualamos a cero para calcular el valor mínimo del
inductor 𝐿2:
𝐿2 =
𝑉𝑖 ∗𝐷
∆𝑖 𝐿2∗𝑓
Fórmula para seleccionar la bobina 𝐿2
1.2 𝐼𝐿2𝑚𝑎𝑥 (𝑆𝑤 𝑂𝐹𝐹)
𝐼𝐿2𝑚𝑎𝑥 = 𝐼0 +
𝑉𝑖 ∗ 𝐷
2 ∗ 𝐿2 ∗ 𝑓
1.3 ∆𝑖 𝐿2
∆𝑖 𝐿2 = 𝐼𝐿2𝑚𝑎𝑥 − 𝐼𝐿2𝑚𝑖𝑛 =
𝑉𝑖 ∗ 𝐷
𝐿2 ∗ 𝑓
𝐼𝐿1𝑚𝑎𝑥 = 𝐼𝐿1 +
∆𝑖 𝐿1
2
𝐼𝐿1𝑚𝑖𝑛 = 𝐼𝐿1 −
∆𝑖 𝐿1
2
2.1 𝐼𝐿1𝑚𝑖𝑛 (𝑆𝑤 𝑂𝐹𝐹)
 𝐼𝐿1
𝑉𝑖 ∗ 𝐼𝐿1 = 𝑉𝑜 ∗ 𝐼𝑜
Despejamos la corriente que pasa porla bobina, y sustituimos la relación
del voltaje obtenida en el principio:
𝐼𝐿1 =
𝐷 ∗ 𝐼𝑜
1 − 𝐷
 ∆𝑖 𝐿1 = ∆𝑖 𝐿2
∆𝑖 𝐿1 = −
𝑉𝑖 ∗ 𝐷
𝐿1 ∗ 𝑓
𝐼𝐿1𝑚𝑖𝑛 =
𝐷 ∗ 𝐼𝑜
1 − 𝐷
−
𝑉𝑖 ∗ 𝐷
2 ∗ 𝐿1 ∗ 𝑓
2.2 𝐼𝐿1𝑚𝑎𝑥 (𝑆𝑤 𝑂𝑁 )
𝐼𝐿1𝑚𝑎𝑥 =
𝐷 ∗ 𝐼𝑜
1 − 𝐷
+
𝑉𝑖 ∗ 𝐷
2 ∗ 𝐿1 ∗ 𝑓
2.3 ∆𝑖 𝐿1 = ∆𝑖 𝐿2
∆𝑖 𝐿1 =
𝑉𝑖 ∗ 𝐷
𝐿1 ∗ 𝑓
Despejamos para calcular el valor mínimo del inductor 𝐿1:
𝐿1 =
𝑉𝑖∗𝐷
∆𝑖 𝐿1∗𝑓
Nos ayuda a seleccionar la bobina
Para terminar este apartado, realizaremos la siguiente suposición:
1. < 𝐼𝐶2 >= 0
𝑖 𝑜 = 𝑖 𝐶2 = 𝐶2 ∗
∆𝑣 𝐶2
∆𝑇
∆𝑣 𝐶2 = 𝐼0 ∗
𝐷
𝐶2∗𝑓
 𝐼𝐶2 = 𝐼𝑜
2. < 𝐼𝐶1 >= 0
𝑖𝐼𝑁 = 𝑖 𝐶1 = 𝐶1 ∗
∆𝑣 𝐶1
∆𝑇
∆𝑣 𝐶1 = 𝐼𝐼𝑁 ∗
(1−𝐷)
𝐶1∗𝑓
 𝐼𝐶1 = 𝐼𝐿1
𝑉𝐶1 = 𝑉𝑖
1.3 Condición crítica del paso de Modo Continuo a Modo Discontinuo
Condiciones generales para determinar punto crítico entre modo continuo y
modo discontinuo son las siguientes:
 Si
∆𝑖 𝐿
2
> 𝐼𝐿 estaremos en modo discontinuo
 En caso contrario estamos en modo continuo
∆𝑖 𝐿
2
≤ 𝐼𝐿
Es necesario, fijar el circuito en modo continuo, dando los valores
necesarios para ambas bobinas.
De las formulas halladas anteriormente podemos obtener el valor (mínimo),
que debería de tener cada bobina.
𝐿
𝑅0
≥
𝑉0∗(1−𝐷)2
2∗𝑓∗𝐷
Las bobinas tendrán que tener un valor igual a dicho valor (mínimo) para
encontrarnos en el caso más desfavorable (Idealmente), puesto que hemos
dicho que estas tendrán que ser iguales o superiores al valor calculado.
1.4 Correccióndelciclo de trabajo por elementos reales para el Modo
Continuo
El ciclo de trabajo ideal es de: 𝐷 =
𝑉0
𝑉𝑖∗𝑉0
Pero en realidad sabemos que tanto las bobinas como los condensadores
tienen sus respectivas resistencias internas.
Primera suposición:
1. 𝑣 𝐿2 = 0
 𝑉𝐿2𝑂𝑁 = 𝑉𝑆𝑊 − 𝑉𝐶1 − 𝑖 𝐿2 ∗ 𝑅𝑆𝐶1 − 𝑖 𝐿2 ∗ 𝑅𝑆𝐿2
 𝑉𝐿2𝑂𝐹𝐹 = 𝑉𝛾 − 𝑅𝑆𝐿2 ∗ 𝑖 𝐿2 − 𝑖 𝐶2 ∗ 𝑅𝑆𝐶2
Entonces:
< 𝑉𝐿2 > =
1
𝑇
∗ ∫ 𝑉𝑆𝑊 − 𝑉𝐶1 − 𝑖 𝐿2 ∗ 𝑅 𝑆𝐶1 − 𝑖 𝐿2 ∗ 𝑅 𝑆𝐿2 +
1
𝑇
∗
𝑇 𝑂𝑁
0
∫ 𝑉𝛾 − 𝑅 𝑆𝐿2 ∗ 𝑖 𝐿2 − 𝑖 𝐶2 ∗ 𝑅 𝑆𝐶2
𝑇 𝑂𝐹𝐹
0
Resolviendo la integral, despejamos en función de 𝑉𝐶1:
< 𝑉𝐿2 > = 0 ; 𝑉𝐶1 =
𝐷 ∗ (1 − 𝐷)(−𝐼𝐶2 ∗ 𝑅 𝑆𝐶2 − 𝑉𝐶2 + 𝑉𝛾)
𝑅 𝑆𝐿2 ∗ 𝐼𝐿2
− 𝑅 𝑆𝐶1 ∗ 𝐼𝐿2 + 𝑉𝑆𝑊
2. 𝑣 𝐿1 = 0
 𝑉𝐿1𝑂𝑁 = 𝑉𝑖 + 𝑉𝑆𝑊 − 𝑖 𝐿1 ∗ 𝑅𝑆𝐿1
 𝑉𝐿1𝑂𝐹𝐹 = 𝑉𝑖 − 𝑖 𝐿1 ∗ 𝑅𝑆𝐿1 − 𝑉𝐶1 − 𝑖 𝐿1 ∗ 𝑅𝑆𝐶1 − 𝑉𝑜 + 𝑉𝛾
Entonces:
< 𝑉𝐿1 > =
1
𝑇
∗ ∫ 𝑉𝑖 + 𝑉𝑆𝑊 − 𝑖 𝐿1 ∗ 𝑅 𝑆𝐿1 +
1
𝑇
∗ ∫ 𝑉𝑖 − 𝑖 𝐿1 ∗ 𝑅 𝑆𝐿1 − 𝑉𝐶1 − 𝑖 𝐿1 ∗ 𝑅 𝑆𝐶1 − 𝑉𝑜 + 𝑉𝛾 = 0
𝑇 𝑂𝐹𝐹
0
𝑇 𝑂𝑁
0
Resolviendo la integral, despejamos en función de 𝑉𝐶1:
𝑉𝐶1 =
𝑉𝑖 − 𝑅𝑆𝐿1 ∗ 𝐼𝐿1 + 𝐷 ∗ 𝑉𝑆𝑊
(1 − 𝐷)
− 𝑅𝑆𝐶1 ∗ 𝐼𝐿1 + 𝑉𝛾 − 𝑉𝑜
De donde podemos despejar la función de transferencia de la función, es
decir:
𝑉𝑜
𝑉𝑖
=
𝐷 ∗ (1 − 𝐷)(−𝐼𝐶2 ∗ 𝑅𝑆𝐶2 − 𝑉𝐶2 + 𝑉𝛾)
−𝑅𝑆𝐿2 ∗ 𝐼𝐿2 ∗ 𝑉𝐼
+
−𝑅𝑆𝐶1 ∗ 𝐼𝐿2 + 𝑉𝑆𝑊
𝑉𝐼
+
𝑉𝑖 − 𝑅𝑆𝐿1 ∗ 𝐼𝐿1 + 𝐷 ∗ 𝑉𝑆𝑊
𝑉𝑖
+
−𝑅𝑆𝐶1 ∗ 𝐼𝐿1 + 𝑉𝛾
𝑉𝑖
1.5 Rendimiento del convertidor en Modo Continuo
𝑅𝑒𝑛𝑑𝑖𝑚𝑖𝑒𝑛𝑡𝑜 → 𝜂 =
𝑉 𝑜 ∗ 𝐼 𝑜
𝑉 𝑖 ∗ 𝐼 𝑖
 Modo continuo real:
𝜂 = (
𝐷 ∗ (1− 𝐷)(−𝐼𝐶2 ∗ 𝑅 𝑆𝐶2 − 𝑉𝐶2 + 𝑉𝛾)
−𝑅 𝑆𝐿2 ∗ 𝐼𝐿2 ∗ 𝑉𝐼
+
−𝑅 𝑆𝐶1 ∗ 𝐼𝐿2 + 𝑉𝑆𝑊
𝑉𝐼
+
𝑉𝑖 − 𝑅 𝑆𝐿1 ∗ 𝐼𝐿1 + 𝐷 ∗ 𝑉𝑆𝑊
𝑉𝑖
+
−𝑅 𝑆𝐶1 ∗ 𝐼𝐿1 + 𝑉𝛾
𝑉𝑖
) ∗
𝐷
1 − 𝐷
 Modo continuo ideal :
𝜂 = 100%
SELECCIÓN DE COMPONENTES
Para poderlo realizar, suponemos elementos ideales.
2.1. Corriente media y máxima en el diodo y en el interruptor.
 Diodo:
𝐼 𝐷𝑚𝑎𝑥 ≥ 𝐼 𝐿1 + 𝐼 𝐿2 → 𝐼 𝐷𝑚𝑎𝑥 ≥ 𝐾 ∗
𝐼0
1 − 𝐷
El diodo solo esta polarizado directamente en el tiempo TOFF y por ello solo se puede calcular la
corriente media en ese instante de T:
𝐼 𝐷𝑎𝑣𝑔 ≥
1
𝑇
∫
𝐼0
1 − 𝐷
= 𝐼0
𝑇 𝑂𝐹𝐹
0
→ 𝐼 𝐷𝑎𝑣𝑔 ≥ 𝐾 ∗ 𝐼0
 Interruptor:
𝐼 𝑆𝑊 ≥ 𝐼 𝐿1
𝐼𝑆𝑊𝑚𝑎𝑥 ≥ 𝐾 ∗
𝐷∗𝐼𝑜
1−𝐷
El interruptor solo conduce corriente en el tiempo TON, y por ello la corriente media se calculara
en ese instante de T:
𝐼 𝑆𝑊𝑎𝑣𝑔 ≥
1
𝑇
∫
𝐷 ∗ 𝐼0
1 − 𝐷
=
𝐷2 ∗ 𝐼0
1 − 𝐷
𝑇 𝑂𝑁
0
→ 𝐼 𝑆𝑊𝑎𝑣𝑔 ≥ 𝐾 ∗
𝐷2 ∗ 𝐼0
1 − 𝐷
2.2. Tensiónde bloqueo máxima en el diodo y en el interruptor.
 Diodo:
𝑉𝐷𝑚𝑎𝑥 ≥ 𝑉𝐶1 + 𝑉𝐶2 → 𝑉𝐷𝑚𝑎𝑥 ≥ 𝐾 ∗
𝑉𝑖
1 − 𝐷
La tensión media, solo se puede calcular en el momento 𝑇𝑂𝐹𝐹, ya que solo en este momento está
polarizado directamente.
𝑉𝐷𝑚𝑎𝑥 ≥ 𝐾 ∗ 𝑉𝑖
 Interruptor:
𝑉𝑆𝑊 ≥ 𝑉𝐶1
𝑉𝑆𝑊𝑚𝑎𝑥 ≥ 𝐾 ∗ 𝑉𝑖
La tensión media, solo se puede calcular en el momento 𝑇𝑂𝑁, ya que solo en este momento
conduce corriente.
𝐼 𝑆𝑊𝑎𝑣𝑔 ≥
1
𝑇
∫ 𝑉𝑖 = 𝐷 ∗ 𝑉𝑖
𝑇 𝑂𝑁
0
→ 𝐼 𝑆𝑊𝑎𝑣𝑔 ≥ 𝐾 ∗ 𝐷 ∗ 𝑉𝑖
2.3. Corriente eficazen los condensadores
( 𝐼𝑟𝑚𝑠𝐶1)2 =
1
𝑇
∫ ( 𝐼 𝐿1)2 +
𝑇 𝑂𝑁
0
1
𝑇
∫ ( 𝐼 𝐿2)2
𝑇 𝑂𝐹𝐹
0
→ 𝐼𝑟𝑚𝑠𝐶1 = √𝐷 ∗ (𝐼 𝐿1
2
−𝐼 𝐿2
2
) − 𝐼 𝐿2
2
( 𝐼𝑟𝑚𝑠𝐶2)2 =
1
𝑇
∫ ( 𝐼0)2 +
𝑇 𝑂𝑁
0
1
𝑇
∫ ( 𝐼 𝐶2 + 𝐼0)2
𝑇 𝑂𝐹𝐹
0
𝐼𝑟𝑚𝑠𝐶2 = √𝐼 𝑜[ 𝐼 𝑜 ∗ (2𝐷 + 1) + 𝐼 𝐶2 ∗ (2𝐷 + 2) − 𝐼 𝐶2
2
∗ (𝐷 + 1)]
2.4. Criterio para elegirel valor de 𝐂 𝟏
∆𝑣 𝐶1 = 𝐼𝐼𝑁 ∗
(1 − 𝐷)
𝐶1 ∗ 𝑓
𝐶1 ≥ 𝐾 ∗ 𝐼𝐼𝑁 ∗
(1 − 𝐷)
∆𝑣 𝐶1 ∗ 𝑓
Después de realizar todos estos cálculos, hemos podido observar que a la hora de hallar los
valores mínimos de cada elemento integrante del circuito, a todos se les ha multiplicado el
resultado por un factor "k" el cual podría tener valores mayores o iguales a 1'5 y así asegurar
que todos estos elementos de estudio permitan que el circuito opere en modo continuo.

More Related Content

What's hot

Régimen transitorio en circuitos Electricos
Régimen transitorio en circuitos Electricos  Régimen transitorio en circuitos Electricos
Régimen transitorio en circuitos Electricos JOe Torres Palomino
 
Redesde 2 puertos parámetros Z y parámetros Y
Redesde 2 puertos parámetros Z y parámetros YRedesde 2 puertos parámetros Z y parámetros Y
Redesde 2 puertos parámetros Z y parámetros YIsrael Magaña
 
Amplificadores multiplicadores
Amplificadores multiplicadoresAmplificadores multiplicadores
Amplificadores multiplicadoresZaiida Lozano
 
Filtros activos
Filtros activosFiltros activos
Filtros activosgotens1984
 
Mapas de karnaugh para 5 variables
Mapas de karnaugh para 5 variablesMapas de karnaugh para 5 variables
Mapas de karnaugh para 5 variablesRopoga
 
Leyes de kirchhoff ejercicios resueltos 2
Leyes de kirchhoff ejercicios resueltos 2Leyes de kirchhoff ejercicios resueltos 2
Leyes de kirchhoff ejercicios resueltos 2Luis Lopz
 
Laboratorio 3 electrónica de potencia I
Laboratorio 3 electrónica de potencia ILaboratorio 3 electrónica de potencia I
Laboratorio 3 electrónica de potencia Igino machuca
 
RESPUESTA EN FRECUENCIA (Métodos del Diagrama de Bode y del Diagrama Polar)
RESPUESTA EN FRECUENCIA (Métodos del Diagrama de Bode y del Diagrama Polar)RESPUESTA EN FRECUENCIA (Métodos del Diagrama de Bode y del Diagrama Polar)
RESPUESTA EN FRECUENCIA (Métodos del Diagrama de Bode y del Diagrama Polar)Elias1306
 
Practica del amplificador inversor y no inversor
Practica del amplificador inversor y no inversorPractica del amplificador inversor y no inversor
Practica del amplificador inversor y no inversorcire04
 
circuito derivador e integrador
circuito derivador e integradorcircuito derivador e integrador
circuito derivador e integradorfercanove
 
Electronica rectificadores
Electronica rectificadoresElectronica rectificadores
Electronica rectificadoresVelmuz Buzz
 
Sistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempoSistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempoMari Colmenares
 

What's hot (20)

Régimen transitorio en circuitos Electricos
Régimen transitorio en circuitos Electricos  Régimen transitorio en circuitos Electricos
Régimen transitorio en circuitos Electricos
 
Redesde 2 puertos parámetros Z y parámetros Y
Redesde 2 puertos parámetros Z y parámetros YRedesde 2 puertos parámetros Z y parámetros Y
Redesde 2 puertos parámetros Z y parámetros Y
 
Amplificadores multiplicadores
Amplificadores multiplicadoresAmplificadores multiplicadores
Amplificadores multiplicadores
 
Convertidor boost
Convertidor boostConvertidor boost
Convertidor boost
 
Filtros activos
Filtros activosFiltros activos
Filtros activos
 
Mapas de karnaugh para 5 variables
Mapas de karnaugh para 5 variablesMapas de karnaugh para 5 variables
Mapas de karnaugh para 5 variables
 
Circuitos Eléctricos CA - Parte 3
Circuitos Eléctricos CA - Parte 3Circuitos Eléctricos CA - Parte 3
Circuitos Eléctricos CA - Parte 3
 
Ejercicios física iii
Ejercicios  física iiiEjercicios  física iii
Ejercicios física iii
 
Leyes de kirchhoff ejercicios resueltos 2
Leyes de kirchhoff ejercicios resueltos 2Leyes de kirchhoff ejercicios resueltos 2
Leyes de kirchhoff ejercicios resueltos 2
 
Controladores ac
Controladores acControladores ac
Controladores ac
 
Redes de dos puertos
Redes de dos puertosRedes de dos puertos
Redes de dos puertos
 
Circuito sujetador
Circuito sujetadorCircuito sujetador
Circuito sujetador
 
Laboratorio 3 electrónica de potencia I
Laboratorio 3 electrónica de potencia ILaboratorio 3 electrónica de potencia I
Laboratorio 3 electrónica de potencia I
 
RESPUESTA EN FRECUENCIA (Métodos del Diagrama de Bode y del Diagrama Polar)
RESPUESTA EN FRECUENCIA (Métodos del Diagrama de Bode y del Diagrama Polar)RESPUESTA EN FRECUENCIA (Métodos del Diagrama de Bode y del Diagrama Polar)
RESPUESTA EN FRECUENCIA (Métodos del Diagrama de Bode y del Diagrama Polar)
 
Practica del amplificador inversor y no inversor
Practica del amplificador inversor y no inversorPractica del amplificador inversor y no inversor
Practica del amplificador inversor y no inversor
 
circuito derivador e integrador
circuito derivador e integradorcircuito derivador e integrador
circuito derivador e integrador
 
Electronica rectificadores
Electronica rectificadoresElectronica rectificadores
Electronica rectificadores
 
Practica 1
Practica 1Practica 1
Practica 1
 
Sistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempoSistemas lineales invariantes en el tiempo
Sistemas lineales invariantes en el tiempo
 
Campos Electromagneticos - Tema 6
Campos Electromagneticos - Tema 6Campos Electromagneticos - Tema 6
Campos Electromagneticos - Tema 6
 

Similar to Convertidor sepic daniel

Lab2 polarizacion transistor
Lab2 polarizacion transistorLab2 polarizacion transistor
Lab2 polarizacion transistorcristian bruno
 
Aporte individual paso3 dewis moreno
Aporte individual paso3 dewis morenoAporte individual paso3 dewis moreno
Aporte individual paso3 dewis morenoDewis Cotta
 
Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02ayoyototal123
 
Informe previo y experimento nª5 del Lab. Circuitos Electronicos II UNSAAC(wa...
Informe previo y experimento nª5 del Lab. Circuitos Electronicos II UNSAAC(wa...Informe previo y experimento nª5 del Lab. Circuitos Electronicos II UNSAAC(wa...
Informe previo y experimento nª5 del Lab. Circuitos Electronicos II UNSAAC(wa...Watner Ochoa Núñez
 
(3). lagrange 2019-1
(3). lagrange 2019-1(3). lagrange 2019-1
(3). lagrange 2019-1kevin cordova
 
Flujo turbulento
Flujo turbulentoFlujo turbulento
Flujo turbulentoNimsi Keren
 
Tema 1.6 determinacion de los parametros cto equiv.
Tema 1.6  determinacion de los parametros cto equiv. Tema 1.6  determinacion de los parametros cto equiv.
Tema 1.6 determinacion de los parametros cto equiv. Miguel Angel Alvaro Cervantes
 
PPT Amplificador Diferencial con BJT (36 pag).pptx
PPT Amplificador Diferencial con BJT (36 pag).pptxPPT Amplificador Diferencial con BJT (36 pag).pptx
PPT Amplificador Diferencial con BJT (36 pag).pptxJaimePavesi
 
Simplificacion de bloques tarea 3 ariday
Simplificacion de bloques tarea 3 aridaySimplificacion de bloques tarea 3 ariday
Simplificacion de bloques tarea 3 aridayAri Diaz
 
Simplificacion de bloques
Simplificacion de bloquesSimplificacion de bloques
Simplificacion de bloquessara Valdez
 
Clase 2a analisis de circuitos
Clase 2a analisis de circuitosClase 2a analisis de circuitos
Clase 2a analisis de circuitosTensor
 
Pasos para realizar un ejercicio de superposición
Pasos para realizar un ejercicio de superposiciónPasos para realizar un ejercicio de superposición
Pasos para realizar un ejercicio de superposiciónKevinRiosEspinoza92
 
Demostraciones 2° Parcial Termodinámica.docx
Demostraciones 2° Parcial Termodinámica.docxDemostraciones 2° Parcial Termodinámica.docx
Demostraciones 2° Parcial Termodinámica.docxAgustinGaona2
 
CIRCUITOS DE SEGUNDO ORDEN RLC.pdf
CIRCUITOS DE SEGUNDO ORDEN RLC.pdfCIRCUITOS DE SEGUNDO ORDEN RLC.pdf
CIRCUITOS DE SEGUNDO ORDEN RLC.pdfgabyhuacac1
 
Resumen de electronica_1
Resumen de electronica_1Resumen de electronica_1
Resumen de electronica_1Ivan Salazar C
 
Modelado de sistema rlc y tanques comunicantes matlab simulink
Modelado de sistema rlc y tanques comunicantes matlab simulinkModelado de sistema rlc y tanques comunicantes matlab simulink
Modelado de sistema rlc y tanques comunicantes matlab simulinkJoshwaBravo
 

Similar to Convertidor sepic daniel (20)

Lab2 polarizacion transistor
Lab2 polarizacion transistorLab2 polarizacion transistor
Lab2 polarizacion transistor
 
Aporte individual paso3 dewis moreno
Aporte individual paso3 dewis morenoAporte individual paso3 dewis moreno
Aporte individual paso3 dewis moreno
 
Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02
 
Informe previo y experimento nª5 del Lab. Circuitos Electronicos II UNSAAC(wa...
Informe previo y experimento nª5 del Lab. Circuitos Electronicos II UNSAAC(wa...Informe previo y experimento nª5 del Lab. Circuitos Electronicos II UNSAAC(wa...
Informe previo y experimento nª5 del Lab. Circuitos Electronicos II UNSAAC(wa...
 
Presentación UNAB.pptx
Presentación UNAB.pptxPresentación UNAB.pptx
Presentación UNAB.pptx
 
(3). lagrange 2019-1
(3). lagrange 2019-1(3). lagrange 2019-1
(3). lagrange 2019-1
 
Flujo turbulento
Flujo turbulentoFlujo turbulento
Flujo turbulento
 
Tema 1.6 determinacion de los parametros cto equiv.
Tema 1.6  determinacion de los parametros cto equiv. Tema 1.6  determinacion de los parametros cto equiv.
Tema 1.6 determinacion de los parametros cto equiv.
 
PPT Amplificador Diferencial con BJT (36 pag).pptx
PPT Amplificador Diferencial con BJT (36 pag).pptxPPT Amplificador Diferencial con BJT (36 pag).pptx
PPT Amplificador Diferencial con BJT (36 pag).pptx
 
Ejercicio de Flujo de Fluidos
Ejercicio de Flujo de Fluidos Ejercicio de Flujo de Fluidos
Ejercicio de Flujo de Fluidos
 
Simplificacion de bloques tarea 3 ariday
Simplificacion de bloques tarea 3 aridaySimplificacion de bloques tarea 3 ariday
Simplificacion de bloques tarea 3 ariday
 
Simplificacion de bloques
Simplificacion de bloquesSimplificacion de bloques
Simplificacion de bloques
 
Clase 2a analisis de circuitos
Clase 2a analisis de circuitosClase 2a analisis de circuitos
Clase 2a analisis de circuitos
 
Pasos para realizar un ejercicio de superposición
Pasos para realizar un ejercicio de superposiciónPasos para realizar un ejercicio de superposición
Pasos para realizar un ejercicio de superposición
 
Demostraciones 2° Parcial Termodinámica.docx
Demostraciones 2° Parcial Termodinámica.docxDemostraciones 2° Parcial Termodinámica.docx
Demostraciones 2° Parcial Termodinámica.docx
 
CIRCUITOS DE SEGUNDO ORDEN RLC.pdf
CIRCUITOS DE SEGUNDO ORDEN RLC.pdfCIRCUITOS DE SEGUNDO ORDEN RLC.pdf
CIRCUITOS DE SEGUNDO ORDEN RLC.pdf
 
Resumen de electronica_1
Resumen de electronica_1Resumen de electronica_1
Resumen de electronica_1
 
Modelado de sistema rlc y tanques comunicantes matlab simulink
Modelado de sistema rlc y tanques comunicantes matlab simulinkModelado de sistema rlc y tanques comunicantes matlab simulink
Modelado de sistema rlc y tanques comunicantes matlab simulink
 
Rectificador de media onda.pptx
Rectificador de media onda.pptxRectificador de media onda.pptx
Rectificador de media onda.pptx
 
Brigitte moreno
Brigitte morenoBrigitte moreno
Brigitte moreno
 

Recently uploaded

“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...
“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...
“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...WeslinDarguinHernand
 
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdfsmendozap1
 
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCarlosGabriel96
 
Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico EcuatorianoEstadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico EcuatorianoEduardoBriones22
 
Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Dr. Edwin Hernandez
 
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdfAnálisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdfGabrielCayampiGutier
 
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheAportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheElisaLen4
 
FUNCION DE ESTADO EN LA TERMODINAMICA.pdf
FUNCION DE ESTADO EN LA TERMODINAMICA.pdfFUNCION DE ESTADO EN LA TERMODINAMICA.pdf
FUNCION DE ESTADO EN LA TERMODINAMICA.pdfalfredoivan1
 
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf  PARA TRABAJO SEGUROATS-FORMATO cara.pdf  PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf PARA TRABAJO SEGUROalejandrocrisostomo2
 
semana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.pptsemana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.pptKelinnRiveraa
 
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTAPORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTElisaLen4
 
Sistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptxSistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptx170766
 
Sistema de lubricación para motores de combustión interna
Sistema de lubricación para motores de combustión internaSistema de lubricación para motores de combustión interna
Sistema de lubricación para motores de combustión internamengual57
 
Maquinaria Agricola utilizada en la produccion de Piña.pdf
Maquinaria Agricola utilizada en la produccion de Piña.pdfMaquinaria Agricola utilizada en la produccion de Piña.pdf
Maquinaria Agricola utilizada en la produccion de Piña.pdfdanielJAlejosC
 
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTOPRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTOwillanpedrazaperez
 
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJODIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJOJimyAMoran
 
Presentacion de la ganaderia en la región
Presentacion de la ganaderia en la regiónPresentacion de la ganaderia en la región
Presentacion de la ganaderia en la regiónmaz12629
 
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdfCONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdfwduranteg
 
Minería convencional: datos importantes y conceptos
Minería convencional: datos importantes y conceptosMinería convencional: datos importantes y conceptos
Minería convencional: datos importantes y conceptosisauVillalva
 
2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologica2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologicaJUDITHYEMELINHUARIPA
 

Recently uploaded (20)

“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...
“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...
“Análisis comparativo de viscosidad entre los fluidos de yogurt natural, acei...
 
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
 
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
 
Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico EcuatorianoEstadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano
 
Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...
 
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdfAnálisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
 
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheAportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
 
FUNCION DE ESTADO EN LA TERMODINAMICA.pdf
FUNCION DE ESTADO EN LA TERMODINAMICA.pdfFUNCION DE ESTADO EN LA TERMODINAMICA.pdf
FUNCION DE ESTADO EN LA TERMODINAMICA.pdf
 
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf  PARA TRABAJO SEGUROATS-FORMATO cara.pdf  PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
 
semana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.pptsemana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.ppt
 
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTAPORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
 
Sistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptxSistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptx
 
Sistema de lubricación para motores de combustión interna
Sistema de lubricación para motores de combustión internaSistema de lubricación para motores de combustión interna
Sistema de lubricación para motores de combustión interna
 
Maquinaria Agricola utilizada en la produccion de Piña.pdf
Maquinaria Agricola utilizada en la produccion de Piña.pdfMaquinaria Agricola utilizada en la produccion de Piña.pdf
Maquinaria Agricola utilizada en la produccion de Piña.pdf
 
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTOPRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
 
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJODIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
 
Presentacion de la ganaderia en la región
Presentacion de la ganaderia en la regiónPresentacion de la ganaderia en la región
Presentacion de la ganaderia en la región
 
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdfCONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
CONEXIONES SERIE, PERALELO EN MÓDULOS FOTOVOLTAICOS.pdf
 
Minería convencional: datos importantes y conceptos
Minería convencional: datos importantes y conceptosMinería convencional: datos importantes y conceptos
Minería convencional: datos importantes y conceptos
 
2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologica2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologica
 

Convertidor sepic daniel

  • 2. Este convertido de DC/DC tiene un interruptor "SW" el cuales permite hacer dos circuitos diferentes que estudiaremos a continuación: SWOFF SWON En primer lugar realizamos las siguientes suposiciones: <VL> = 0 <IC> = 0
  • 3. 1.1 Realizamos a continuaciónel cálculo de los voltajes suponiendo 1. 𝑣 𝐿2 = 0  𝑉𝐿2𝑂𝑁 = 𝑉𝐶1  𝑉𝐿2𝑂𝐹𝐹 = 𝑉0 Con esto calculamos: < 𝑉𝐿2 > = 1 𝑇 ∗ ∫ 𝑉𝐶1 + 1 𝑇 ∗ 𝑇 𝑂𝑁 0 ∫ 𝑉𝑂 = 𝑇𝑂𝑁 𝑇 ∗ 𝑉𝐶1 + 𝑇𝑂𝐹𝐹 𝑇 ∗ 𝑉𝑜 = 0 𝑇 𝑂𝐹𝐹 0 < 𝑉𝐿2 > = 0 ; 𝑉𝐶1 = (1 − 𝐷) 𝑉𝑜 𝐷 = 𝑉𝐿1 2. 𝑣 𝐿1 = 0 < 𝑉𝐿1 > = 1 𝑇 ∗ ∫ 𝑉𝐿1𝑂𝑁 + 1 𝑇 ∗ ∫ 𝑉𝐿1𝑂𝐹𝐹 𝑇 𝑂𝐹𝐹 0 𝑇 𝑂𝑁 0  𝑉𝐿1𝑂𝑁 = 𝑉𝑖 𝑉𝐿1𝑂𝐹𝐹 = 𝑉𝑖 − 𝑉𝐶1 − 𝑉𝑜 = 𝑉𝑖 − 𝑉𝑜 ∗ 1 − 𝐷 𝐷 − 𝑉𝑜 = ( 𝑉𝑖 ∗ 𝐷 − 𝑉𝑜[(1 − 𝐷) − 𝐷])/𝐷  𝑉𝐿1𝑂𝐹𝐹 = 𝐷 𝐷 ∗ (𝑉𝑖 − 𝑉𝑜 𝐷 ) = 𝑉𝑖 − 𝑉𝑜 𝐷 Y ahora podemos realizar la integral para < 𝑉𝐿1 >: < 𝑉𝐿1 > = 1 𝑇 ∗ ∫ 𝑉𝑖 + 1 𝑇 ∗ ∫ 𝑉𝑖 − 𝑉𝑜 𝐷 = 0 𝑇 𝑂𝐹𝐹 0 𝑇 𝑂𝑁 0 De donde despejamos la función de transferencia de la función: 𝑉𝑜 𝑉𝑖 = 𝐷 1 − 𝐷 1.2 Calculamos: 𝑰 𝑳𝟏 , ∆𝒊 𝑳𝟏, 𝑰 𝑳𝟐, ∆𝒊 𝑳𝟐, 𝑽 𝑪𝟏, ∆𝒗 𝑪𝟏,∆𝒗 𝑪𝟐
  • 4. 𝐼𝐿2𝑚𝑎𝑥 = 𝐼𝐿2 + ∆𝑖 𝐿2 2 𝐼𝐿2𝑚𝑖𝑛 = 𝐼𝐿2 − ∆𝑖 𝐿2 2 1.1 𝐼𝐿2𝑚𝑖𝑛 (𝑆𝑤 𝑂𝑁 )  𝐼𝐿2 = 𝐼𝑜 𝑣 𝐿2 = 𝐿2 ∗ ∆𝑖 𝐿2 ∆𝑇 ∆𝑖 𝐿2 = 𝑣 𝐿2 𝐿2 ∗ ∆𝑇 𝑣 𝐿2 = 𝑣 𝐶4 = 𝑉𝑖  ∆𝑖 𝐿2 = 𝑉𝑖 𝐿2 ∗ 𝑇𝑂𝑁 = 𝑉𝑖 ∗𝐷 𝐿2∗𝑓 𝐼𝐿2𝑚𝑖𝑛 = 𝐼0 − 𝑉𝑖 ∗ 𝐷 2 ∗ 𝐿2 ∗ 𝑓 La corriente mínima la igualamos a cero para calcular el valor mínimo del inductor 𝐿2: 𝐿2 = 𝑉𝑖 ∗𝐷 ∆𝑖 𝐿2∗𝑓 Fórmula para seleccionar la bobina 𝐿2 1.2 𝐼𝐿2𝑚𝑎𝑥 (𝑆𝑤 𝑂𝐹𝐹) 𝐼𝐿2𝑚𝑎𝑥 = 𝐼0 + 𝑉𝑖 ∗ 𝐷 2 ∗ 𝐿2 ∗ 𝑓 1.3 ∆𝑖 𝐿2 ∆𝑖 𝐿2 = 𝐼𝐿2𝑚𝑎𝑥 − 𝐼𝐿2𝑚𝑖𝑛 = 𝑉𝑖 ∗ 𝐷 𝐿2 ∗ 𝑓 𝐼𝐿1𝑚𝑎𝑥 = 𝐼𝐿1 + ∆𝑖 𝐿1 2 𝐼𝐿1𝑚𝑖𝑛 = 𝐼𝐿1 − ∆𝑖 𝐿1 2
  • 5. 2.1 𝐼𝐿1𝑚𝑖𝑛 (𝑆𝑤 𝑂𝐹𝐹)  𝐼𝐿1 𝑉𝑖 ∗ 𝐼𝐿1 = 𝑉𝑜 ∗ 𝐼𝑜 Despejamos la corriente que pasa porla bobina, y sustituimos la relación del voltaje obtenida en el principio: 𝐼𝐿1 = 𝐷 ∗ 𝐼𝑜 1 − 𝐷  ∆𝑖 𝐿1 = ∆𝑖 𝐿2 ∆𝑖 𝐿1 = − 𝑉𝑖 ∗ 𝐷 𝐿1 ∗ 𝑓 𝐼𝐿1𝑚𝑖𝑛 = 𝐷 ∗ 𝐼𝑜 1 − 𝐷 − 𝑉𝑖 ∗ 𝐷 2 ∗ 𝐿1 ∗ 𝑓 2.2 𝐼𝐿1𝑚𝑎𝑥 (𝑆𝑤 𝑂𝑁 ) 𝐼𝐿1𝑚𝑎𝑥 = 𝐷 ∗ 𝐼𝑜 1 − 𝐷 + 𝑉𝑖 ∗ 𝐷 2 ∗ 𝐿1 ∗ 𝑓 2.3 ∆𝑖 𝐿1 = ∆𝑖 𝐿2 ∆𝑖 𝐿1 = 𝑉𝑖 ∗ 𝐷 𝐿1 ∗ 𝑓 Despejamos para calcular el valor mínimo del inductor 𝐿1: 𝐿1 = 𝑉𝑖∗𝐷 ∆𝑖 𝐿1∗𝑓 Nos ayuda a seleccionar la bobina
  • 6. Para terminar este apartado, realizaremos la siguiente suposición: 1. < 𝐼𝐶2 >= 0 𝑖 𝑜 = 𝑖 𝐶2 = 𝐶2 ∗ ∆𝑣 𝐶2 ∆𝑇 ∆𝑣 𝐶2 = 𝐼0 ∗ 𝐷 𝐶2∗𝑓  𝐼𝐶2 = 𝐼𝑜 2. < 𝐼𝐶1 >= 0 𝑖𝐼𝑁 = 𝑖 𝐶1 = 𝐶1 ∗ ∆𝑣 𝐶1 ∆𝑇 ∆𝑣 𝐶1 = 𝐼𝐼𝑁 ∗ (1−𝐷) 𝐶1∗𝑓  𝐼𝐶1 = 𝐼𝐿1 𝑉𝐶1 = 𝑉𝑖 1.3 Condición crítica del paso de Modo Continuo a Modo Discontinuo Condiciones generales para determinar punto crítico entre modo continuo y modo discontinuo son las siguientes:  Si ∆𝑖 𝐿 2 > 𝐼𝐿 estaremos en modo discontinuo  En caso contrario estamos en modo continuo ∆𝑖 𝐿 2 ≤ 𝐼𝐿 Es necesario, fijar el circuito en modo continuo, dando los valores necesarios para ambas bobinas. De las formulas halladas anteriormente podemos obtener el valor (mínimo), que debería de tener cada bobina. 𝐿 𝑅0 ≥ 𝑉0∗(1−𝐷)2 2∗𝑓∗𝐷
  • 7. Las bobinas tendrán que tener un valor igual a dicho valor (mínimo) para encontrarnos en el caso más desfavorable (Idealmente), puesto que hemos dicho que estas tendrán que ser iguales o superiores al valor calculado. 1.4 Correccióndelciclo de trabajo por elementos reales para el Modo Continuo El ciclo de trabajo ideal es de: 𝐷 = 𝑉0 𝑉𝑖∗𝑉0 Pero en realidad sabemos que tanto las bobinas como los condensadores tienen sus respectivas resistencias internas. Primera suposición: 1. 𝑣 𝐿2 = 0  𝑉𝐿2𝑂𝑁 = 𝑉𝑆𝑊 − 𝑉𝐶1 − 𝑖 𝐿2 ∗ 𝑅𝑆𝐶1 − 𝑖 𝐿2 ∗ 𝑅𝑆𝐿2  𝑉𝐿2𝑂𝐹𝐹 = 𝑉𝛾 − 𝑅𝑆𝐿2 ∗ 𝑖 𝐿2 − 𝑖 𝐶2 ∗ 𝑅𝑆𝐶2 Entonces: < 𝑉𝐿2 > = 1 𝑇 ∗ ∫ 𝑉𝑆𝑊 − 𝑉𝐶1 − 𝑖 𝐿2 ∗ 𝑅 𝑆𝐶1 − 𝑖 𝐿2 ∗ 𝑅 𝑆𝐿2 + 1 𝑇 ∗ 𝑇 𝑂𝑁 0 ∫ 𝑉𝛾 − 𝑅 𝑆𝐿2 ∗ 𝑖 𝐿2 − 𝑖 𝐶2 ∗ 𝑅 𝑆𝐶2 𝑇 𝑂𝐹𝐹 0 Resolviendo la integral, despejamos en función de 𝑉𝐶1: < 𝑉𝐿2 > = 0 ; 𝑉𝐶1 = 𝐷 ∗ (1 − 𝐷)(−𝐼𝐶2 ∗ 𝑅 𝑆𝐶2 − 𝑉𝐶2 + 𝑉𝛾) 𝑅 𝑆𝐿2 ∗ 𝐼𝐿2 − 𝑅 𝑆𝐶1 ∗ 𝐼𝐿2 + 𝑉𝑆𝑊 2. 𝑣 𝐿1 = 0
  • 8.  𝑉𝐿1𝑂𝑁 = 𝑉𝑖 + 𝑉𝑆𝑊 − 𝑖 𝐿1 ∗ 𝑅𝑆𝐿1  𝑉𝐿1𝑂𝐹𝐹 = 𝑉𝑖 − 𝑖 𝐿1 ∗ 𝑅𝑆𝐿1 − 𝑉𝐶1 − 𝑖 𝐿1 ∗ 𝑅𝑆𝐶1 − 𝑉𝑜 + 𝑉𝛾 Entonces: < 𝑉𝐿1 > = 1 𝑇 ∗ ∫ 𝑉𝑖 + 𝑉𝑆𝑊 − 𝑖 𝐿1 ∗ 𝑅 𝑆𝐿1 + 1 𝑇 ∗ ∫ 𝑉𝑖 − 𝑖 𝐿1 ∗ 𝑅 𝑆𝐿1 − 𝑉𝐶1 − 𝑖 𝐿1 ∗ 𝑅 𝑆𝐶1 − 𝑉𝑜 + 𝑉𝛾 = 0 𝑇 𝑂𝐹𝐹 0 𝑇 𝑂𝑁 0 Resolviendo la integral, despejamos en función de 𝑉𝐶1: 𝑉𝐶1 = 𝑉𝑖 − 𝑅𝑆𝐿1 ∗ 𝐼𝐿1 + 𝐷 ∗ 𝑉𝑆𝑊 (1 − 𝐷) − 𝑅𝑆𝐶1 ∗ 𝐼𝐿1 + 𝑉𝛾 − 𝑉𝑜 De donde podemos despejar la función de transferencia de la función, es decir: 𝑉𝑜 𝑉𝑖 = 𝐷 ∗ (1 − 𝐷)(−𝐼𝐶2 ∗ 𝑅𝑆𝐶2 − 𝑉𝐶2 + 𝑉𝛾) −𝑅𝑆𝐿2 ∗ 𝐼𝐿2 ∗ 𝑉𝐼 + −𝑅𝑆𝐶1 ∗ 𝐼𝐿2 + 𝑉𝑆𝑊 𝑉𝐼 + 𝑉𝑖 − 𝑅𝑆𝐿1 ∗ 𝐼𝐿1 + 𝐷 ∗ 𝑉𝑆𝑊 𝑉𝑖 + −𝑅𝑆𝐶1 ∗ 𝐼𝐿1 + 𝑉𝛾 𝑉𝑖
  • 9. 1.5 Rendimiento del convertidor en Modo Continuo 𝑅𝑒𝑛𝑑𝑖𝑚𝑖𝑒𝑛𝑡𝑜 → 𝜂 = 𝑉 𝑜 ∗ 𝐼 𝑜 𝑉 𝑖 ∗ 𝐼 𝑖  Modo continuo real: 𝜂 = ( 𝐷 ∗ (1− 𝐷)(−𝐼𝐶2 ∗ 𝑅 𝑆𝐶2 − 𝑉𝐶2 + 𝑉𝛾) −𝑅 𝑆𝐿2 ∗ 𝐼𝐿2 ∗ 𝑉𝐼 + −𝑅 𝑆𝐶1 ∗ 𝐼𝐿2 + 𝑉𝑆𝑊 𝑉𝐼 + 𝑉𝑖 − 𝑅 𝑆𝐿1 ∗ 𝐼𝐿1 + 𝐷 ∗ 𝑉𝑆𝑊 𝑉𝑖 + −𝑅 𝑆𝐶1 ∗ 𝐼𝐿1 + 𝑉𝛾 𝑉𝑖 ) ∗ 𝐷 1 − 𝐷  Modo continuo ideal : 𝜂 = 100% SELECCIÓN DE COMPONENTES Para poderlo realizar, suponemos elementos ideales. 2.1. Corriente media y máxima en el diodo y en el interruptor.  Diodo: 𝐼 𝐷𝑚𝑎𝑥 ≥ 𝐼 𝐿1 + 𝐼 𝐿2 → 𝐼 𝐷𝑚𝑎𝑥 ≥ 𝐾 ∗ 𝐼0 1 − 𝐷 El diodo solo esta polarizado directamente en el tiempo TOFF y por ello solo se puede calcular la corriente media en ese instante de T: 𝐼 𝐷𝑎𝑣𝑔 ≥ 1 𝑇 ∫ 𝐼0 1 − 𝐷 = 𝐼0 𝑇 𝑂𝐹𝐹 0 → 𝐼 𝐷𝑎𝑣𝑔 ≥ 𝐾 ∗ 𝐼0  Interruptor: 𝐼 𝑆𝑊 ≥ 𝐼 𝐿1
  • 10. 𝐼𝑆𝑊𝑚𝑎𝑥 ≥ 𝐾 ∗ 𝐷∗𝐼𝑜 1−𝐷 El interruptor solo conduce corriente en el tiempo TON, y por ello la corriente media se calculara en ese instante de T: 𝐼 𝑆𝑊𝑎𝑣𝑔 ≥ 1 𝑇 ∫ 𝐷 ∗ 𝐼0 1 − 𝐷 = 𝐷2 ∗ 𝐼0 1 − 𝐷 𝑇 𝑂𝑁 0 → 𝐼 𝑆𝑊𝑎𝑣𝑔 ≥ 𝐾 ∗ 𝐷2 ∗ 𝐼0 1 − 𝐷 2.2. Tensiónde bloqueo máxima en el diodo y en el interruptor.  Diodo: 𝑉𝐷𝑚𝑎𝑥 ≥ 𝑉𝐶1 + 𝑉𝐶2 → 𝑉𝐷𝑚𝑎𝑥 ≥ 𝐾 ∗ 𝑉𝑖 1 − 𝐷 La tensión media, solo se puede calcular en el momento 𝑇𝑂𝐹𝐹, ya que solo en este momento está polarizado directamente. 𝑉𝐷𝑚𝑎𝑥 ≥ 𝐾 ∗ 𝑉𝑖  Interruptor: 𝑉𝑆𝑊 ≥ 𝑉𝐶1 𝑉𝑆𝑊𝑚𝑎𝑥 ≥ 𝐾 ∗ 𝑉𝑖 La tensión media, solo se puede calcular en el momento 𝑇𝑂𝑁, ya que solo en este momento conduce corriente. 𝐼 𝑆𝑊𝑎𝑣𝑔 ≥ 1 𝑇 ∫ 𝑉𝑖 = 𝐷 ∗ 𝑉𝑖 𝑇 𝑂𝑁 0 → 𝐼 𝑆𝑊𝑎𝑣𝑔 ≥ 𝐾 ∗ 𝐷 ∗ 𝑉𝑖
  • 11. 2.3. Corriente eficazen los condensadores ( 𝐼𝑟𝑚𝑠𝐶1)2 = 1 𝑇 ∫ ( 𝐼 𝐿1)2 + 𝑇 𝑂𝑁 0 1 𝑇 ∫ ( 𝐼 𝐿2)2 𝑇 𝑂𝐹𝐹 0 → 𝐼𝑟𝑚𝑠𝐶1 = √𝐷 ∗ (𝐼 𝐿1 2 −𝐼 𝐿2 2 ) − 𝐼 𝐿2 2 ( 𝐼𝑟𝑚𝑠𝐶2)2 = 1 𝑇 ∫ ( 𝐼0)2 + 𝑇 𝑂𝑁 0 1 𝑇 ∫ ( 𝐼 𝐶2 + 𝐼0)2 𝑇 𝑂𝐹𝐹 0 𝐼𝑟𝑚𝑠𝐶2 = √𝐼 𝑜[ 𝐼 𝑜 ∗ (2𝐷 + 1) + 𝐼 𝐶2 ∗ (2𝐷 + 2) − 𝐼 𝐶2 2 ∗ (𝐷 + 1)] 2.4. Criterio para elegirel valor de 𝐂 𝟏 ∆𝑣 𝐶1 = 𝐼𝐼𝑁 ∗ (1 − 𝐷) 𝐶1 ∗ 𝑓 𝐶1 ≥ 𝐾 ∗ 𝐼𝐼𝑁 ∗ (1 − 𝐷) ∆𝑣 𝐶1 ∗ 𝑓 Después de realizar todos estos cálculos, hemos podido observar que a la hora de hallar los valores mínimos de cada elemento integrante del circuito, a todos se les ha multiplicado el resultado por un factor "k" el cual podría tener valores mayores o iguales a 1'5 y así asegurar que todos estos elementos de estudio permitan que el circuito opere en modo continuo.