Geometria analitica
Upcoming SlideShare
Loading in...5
×
 

Geometria analitica

on

  • 3,291 views

 

Statistics

Views

Total Views
3,291
Views on SlideShare
3,259
Embed Views
32

Actions

Likes
2
Downloads
38
Comments
0

5 Embeds 32

http://liliossa.blogspot.com 18
http://blogtizona.blogspot.com.es 8
http://ticesfera.blogspot.com.es 2
http://blogtizona.blogspot.mx 2
http://blogtizona.blogspot.com 2

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Geometria analitica Geometria analitica Presentation Transcript

  • GEOMETRIA ANALITICA LILIA MARIA OSSA ACERO 10-02
  •  Se conoce como geometría analítica al estudio de ciertas líneas y figuras geométricas aplicando técnicas básicas del análisis matemático y del álgebra en un determinado sistema de coordenadas. Descartes le dio impulso a la geometría analítica. Lo novedoso de la geometría analítica es que permite representar figuras geométricas mediante fórmulas del tipo f(x, y) = 0, donde f representa una función u otro tipo de expresión matemática. La idea que llevó a la geometría analítica fue: a cada punto en un plano le corresponde un par ordenado de números y a cada par ordenado de números le corresponde un punto en un plano. Fue inventada por René Descartes y por Pierre Fermat, a principios del siglo XVII, y como vimos, relaciona la matemática y el álgebra con la geometría por medio de las correspondencias anteriores.
  •  Además, Descartes y Fermat observaron, y esto es crucial, que las ecuaciones algebraicas corresponden con figuras geométricas. Eso significa que las líneas y ciertas figuras geométricas se pueden expresar como ecuaciones y, a su vez, las ecuaciones pueden graficarse como líneas o figuras geométricas. En particular, las rectas pueden expresarse como ecuaciones polinómicas de primer grado y las circunferencias y el resto de cónicas como ecuaciones polinómicas de segundo grado. (Ver: Ecuación de la circunferencia).Por lo expresado anteriormente, podemosaventurar una definición más sencilla para lageometría analítica:Rama de la geometría en que las líneas rectas,las curvas y las figuras geométricas serepresentan mediante expresiones algebraicas ynuméricas usando un conjunto de ejes ycoordenadas.
  •  Por ejemplo, en la figura 1, el punto A está a 1 unidad hacia la derecha en el eje horizontal (x) y a 4 unidades hacia arriba en el eje vertical (y). Las coordenadas del punto A son, por tanto, 1 y 4, y el punto queda fijado con las expresiones x = 1, y = 4. Los valores positivos de x están situados a la derecha del eje y, y los negativos a la izquierda; los valores positivos de y están por encima del eje x y los negativos por debajo. Así, el punto B de la figura 1 tiene por coordenadas x = 5, y = 0. En general, una línea recta se puede representar siempre utilizando una ecuación lineal con dos variables, x e y, de la forma ax + by + c = 0. (Ver: Ecuación de la recta). De la misma manera, se pueden encontrar fórmulas para la circunferencia, la elipse y otras cónicas y curvas regulares.
  • Ahora tenemos claro que la geometría analítica se desenvuelve en el llamado Plano cartesiano, y si recordamos, como ya dijimos, que Descartes y Fermat observaron la correspondencia entre las ecuaciones algebraicas y las figuras geométricas, podemos colegir que los dos objetivos (o problemas) fundamentales de la geometría analítica son:A cada punto le corresponde un par ordenado, y a cada par ordenado le corresponde un punto.1.- Dada la descripción geométrica de un conjunto de puntos o lugar geométrico (una línea o una figura geométrica) en un sistema de coordenadas, obtener la ecuación algebraica que cumplen dichos puntos.Para este objetivo, siguiendo con el ejemplo anterior, todos los puntos que pertenecen a la línea recta que pasa por A y B cumplen la ecuación lineal x + y = 5; lo que expresado de modo general es ax + by = c.2.- El segundo objetivo (o tipo de problema) es: dada una expresión algebraica, describir en términos geométricos el lugar geométrico de los puntos que cumplen dicha expresión.
  •  Invirtiendo el ejemplo anterior, dada la ecuación algebraica x + y = 5, podemos calcular todos los valores para x e y que la cumplan y anotados esos valores en el Plano cartesiano veremos que corresponden a la recta AB. Usando ecuaciones como éstas, es posible resolver algebraicamente esos problemas geométricos de construcción, como la bisección de un ángulo o de una recta dados, encontrar la perpendicular a una recta que pasa por cierto punto, o dibujar una circunferencia que pasa por tres puntos dados que no estén en línea recta. La geometría analítica ha tenido gran importancia en el desarrollo de las matemáticas pues ha unificado los conceptos de análisis (relaciones numéricas) y geometría (relaciones espaciales).Ver: Plano Cartesiano
  • CONTRUCCIONES FUNDAMENTALESEn un sistema de coordenadas cartesianas, un punto del plano queda determinado por dos números, llamados abscisa y ordenada del punto. Mediante ese procedimiento a todo punto del plano corresponden siempre dos números reales ordenados (abscisa y ordenada), y recíprocamente, a un par ordenado de números corresponde un único punto del plano. Consecuentemente el sistema cartesiano establece una correspondencia biunívoca entre un concepto geométrico como es el de los puntos del plano y un concepto algebraico como son los pares ordenados de números. Esta correspondencia constituye el fundamento de la geometría analítica.Con la geometría analítica se puede determinar figuras geométricas planas por medio de ecuaciones e inecuaciones con dos incógnitas. Éste es un método alternativo de resolución de problemas, o cuando menos nos proporciona un nuevo punto de vista con el cual poder atacar el problema.
  • LOCALIZACION DE UN PUNTO EN UN PLANOCARTESIANO Como distancia a los ejesEn un plano traza dos rectas orientadas perpendiculares entre sí (ejes) —que por convenio se trazan de manera que una de ellas sea horizontal y la otra vertical—, y cada punto del plano queda unívocamente determinado por las distancias de dicho punto a cada uno de los ejes, siempre y cuando se dé también un criterio para determinar sobre qué semiplano determinado por cada una de las rectas hay que tomar esa distancia, criterio que viene dado por un signo. Ese par de números, las coordenadas, quedará representado por un par ordenado , siendo la distancia a uno de los ejes (por convenio será la distancia al eje horizontal) e la distancia al otro eje (al vertical).En la coordenada , el signo positivo (que suele omitirse) significa que la distancia se toma hacia la derecha sobre el eje horizontal (eje de las abscisas), y el signo negativo (nunca se omite) indica que la distancia se toma hacia la izquierda. Para la coordenada , el signo positivo (también se omite) indica que la distancia se toma hacia arriba sobre el eje vertical (eje de ordenadas), tomándose hacia abajo si el signo es negativo (en ningún caso se omiten los signos negativos).A la coordenada se la suele denominar abscisa del punto, mientras que a la se la denomina ordenada del punto.Los puntos del eje de abscisas tienen por lo tanto ordenada igual a , así que serán de la forma , mientras que los del eje de ordenadas tendrán abscisa igual a , por lo que serán de la forma .El punto donde ambos ejes se cruzan tendrá por lo tanto distancia a cada uno de los ejes, luego su abscisa será y su ordenada también será . A este punto —el — se le denomina origen de coordenadas.
  •  Como proyección sobre los ejesSe consideran dos rectas orientadas, (ejes) , perpendiculares entre sí, x e y, con un origen común, el punto O de intersección de ambas rectas.Teniendo un punto P, al cual se desea determinar las coordenadas, se procede de la siguiente forma:Por el punto P se trazan rectas perpendiculares a los ejes, éstas determinan en la intersección con los mismos dos puntos, P (el punto ubicado sobre el eje x) y el punto P´´ ( el punto ubicado sobre el eje y).Dichos puntos son las proyecciones ortogonales sobre los ejes x e y del punto P.A los Puntos P y P´´ le corresponden por número la distancia desde ellos al origen, teniendo en cuenta que si el punto Pse encuentra a la izquierda de O, dicho número será negativo, y si el punto P´´ se encuentra hacia abajo del punto O, dicho número será negativo. Los números relacionados con P y P´´, en ese orden son los valores de las coordenadas del punto P.Ejemplo 1: P se encuentra a la derecha de O una distancia igual a 2 unidades. P´´ se encuentra hacia arriba de O, una distancia igual a 3 unidades. Por lo que las coordenadas de P son (2 ; 3)