Your SlideShare is downloading. ×
TRULLO - local trust bootstrapping
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

TRULLO - local trust bootstrapping

1,219
views

Published on


0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,219
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
22
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. TRULLO (daniele quercia & stephen hailes & licia capra) U C L
  • 2. U C L
  • 3. TRU st bootstrapping by L atently L ifting c O ntext
  • 4. What do I do?
  • 5. Research @ ...
  • 6.  
  • 7. what I research?
  • 8. Reputation Systems for Mobiles
  • 9. What’s that?
  • 10. Example: antique markets
  • 11. Problem: Visitors cannot see prices of everything!
  • 12. Solution: Sellers disseminate e-ads, and visitors collect them
  • 13. Problem: Sellers may disseminate irrelevant ads
  • 14. Proposal …
  • 15. Keep track of which sellers send irrelevant ads A > “May I rely on B ?”
  • 16. Daniele Quercia But first, A has to set its initial trust in B
  • 17. Daniele Quercia
      • Existing Ideas?
  • 18. Daniele Quercia
      • 3 Solutions …
  • 19. Daniele Quercia
        • (  over-simplified)
    fixed values
  • 20. Daniele Quercia
        • recommendations
        • (  fake ones)
  • 21. Daniele Quercia
        • and inter-context lifting …
  • 22. Greek Coins Roman Coins Coins Chairs Antiques universal ontology 
  • 23. Daniele Quercia
      • Idea behind TRULLO
  • 24. Daniele Quercia
      • Users learn from their ratings
  • 25. Daniele Quercia
      • They extract “features”
      • from their own ratings
  • 26. Daniele Quercia
      • How?
  • 27. Daniele Quercia
    • S ingular
      • V alue
      • D ecomposition
  • 28. Daniele Quercia SVD
  • 29. Daniele Quercia personal ratings (latent) features   unknown value = combination of those features
  • 30. Daniele Quercia
      • Beauty: features are
      • NOT user-specified BUT learnt
  • 31.
    • Does it work?
    • User Utility & Time: Fast?
  • 32. Daniele Quercia Tested on simulation (realistic?)
        • (antique)
  • 33. Daniele Quercia
        •  utility   # “Useful” sellers selected
  • 34. Daniele Quercia
    • Much knowledge needed?
  • 35. Daniele Quercia
  • 36. Daniele Quercia
    • Time? Tested on …
  • 37. Daniele Quercia Nokia 3230
  • 38. Daniele Quercia
  • 39. Daniele Quercia
    • Of course …
  • 40. Daniele Quercia Further Research
  • 41. Daniele Quercia
        • And if B is unknown?